
April 7, 2016 International Journal of Control Event-triggered*Filtering*and*Fault*Estimation*for*Nonlinear*Systems*with*Stochastic*Sensor*Saturations

To appear in the International Journal of Control
Vol. 00, No. 00, Month 20XX, 1–17

Event-triggered Filtering and Fault Estimation for Nonlinear Systems with

Stochastic Sensor Saturations

Yang Liua, Zidong Wangb, Xiao Hea, and D. H. Zhouc,a∗

aDepartment of Automation, TNList, Tsinghua University, Beijing 100084, P. R. China; bDepartment of

Computer Science, Brunel University London, Uxbridge, Middlesex, UB8 3PH, U.K.; cCollege of Electrical

Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590,

P. R. China

(Received 00 Month 20XX; accepted 00 Month 20XX)

This paper is concerned with the filtering problem for a class of nonlinear systems with stochastic sensor
saturations and event-triggered measurement transmissions. An event-triggered transmission scheme is
proposed with hope to ease the traffic burden and improve the energy efficiency. The measurements are
subject to randomly occurring sensor saturations governed by Bernoulli distributed sequences. Special
effort is made to obtain an upper bound of the filtering error covariance in the presence of linearization
errors, stochastic sensor saturations as well as event-triggered transmissions. A filter is designed to min-
imize the obtained upper bound at each time step by solving two sets of Riccati-like matrix equations,
and thus the recursive algorithm is suitable for online computation. Sufficient conditions are established
under which the filtering error is exponentially bounded in mean square. The applicability of the pre-
sented method is demonstrated by dealing with the fault estimation problem. An illustrative example is
exploited to show the effectiveness of the proposed algorithm.

Keywords: Nonlinear systems; Kalman filtering; fault estimation; event-triggered transmission; sensor
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1. Introduction

In the past few decades, the event-triggered transmission (ETT) mechanism has aroused a great
deal of interest due to the rapid development of computer science and digital microprocessor Demir
& Lunze (2014); Orihuela, Millan, Vivas, & Rubio (2014); Tabuada (2007); Zhang, Hao, Zhang,
& Wang (2015). Compared with the conventional clock-driven strategy referring to periodic signal
transmissions, in an ETT scheme, the outputs/inputs are released only when some conditions are
violated. By reducing signal exchanges, the ETT could avoid some harmful transmission phenomena
(e.g. data dropout, time delay and congestion), improve the energy efficiency and extend the lifetime
of the services.
Recently, the event-triggered filtering (ETF) problem has started to gain some initial research

attention especially for systems with wireless links and energy constraints. For example, the event-
triggered H∞ filtering problem with transmission delays has been investigated in Hu & Yue (2012)
and a modified Kalman filter for linear systems with event-triggered transmissions has been de-
signed in Suh & Nguyen (2007) where the differences between the measurements have been as-
sumed to be uniformly distributed. In Sijs & Lazar (2009); Liang, Jia, Johansson, & Shi (2013),
the event-triggered minimum-variance filter has been thoroughly studied where the probability
density functions (PDFs) of the states and the innovations conditional on measurements have been
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approximated with a sum of Gaussian distributions. However, when the system model is relatively
complicated, the conditional PDFs will be intrinsically non-Gaussian and the Gaussian approxi-
mations may be quite inaccurate. Therefore, there appears to be a practical need to develop an
alternative approach for addressing the ETF problem without strong assumptions on the distribu-
tion of measurements.
Due to physical and technological limitations, sensors/actuators cannot provide signals with un-

bounded amplitudes and such saturation phenomena pose extra challenges to the systems design.
The control/filtering problems with actuator/sensor saturations have drawn much research atten-
tion Ding & Zheng (2015); Turner & Tarbouriech (2009); Yang & Li (2009); Yuan &Wu (2015); Zuo,
Ho, & Wang (2010) where most available literature has treated the saturations as sector-bounded
nonlinearities. Nevertheless, sensors in practical systems might frequently encounter some transient
phenomena especially when systems are deployed in unattended environments such as power grids
Han, Xie, Chen, & Ling (2014); Kisner et al. (2010); Neuman (2009). Under the circumstances,
the saturation itself may undergo random switches/changes in its occurrence/intensity because of
various reasons such as random sensor failures and abrupt environmental changes Wang, Shen, &
Liu (2012). As such, it would be interesting to examine the impact of both the ETT and stochastic
saturations on the filter performance in the minimum variance sense. Note that the filtering prob-
lem with stochastic saturations has not received adequate research attention yet, not to mention
the case when the nonlinearity and ETT are also taken into account. Note that, 1) it is novel to
cope with the ETT issue without the approximated conditional PDFs of states and innovations;
and 2) it would be non-trivial to include the saturation level and the statistical characteristics of
the sensor saturations in the filter design.
In this paper, we aim to address the filtering problem for a class of nonlinear systems subject

to event-triggered measurement transmissions and stochastic sensor saturations. Some Bernoulli-
distributed sequences are introduced to govern the stochastic sensor saturations. An upper bound
of the filtering error covariance is obtained and then the filter gain is determined so as to minimize
the bound. The filtering performance is analyzed with respect to the error boundedness. Sufficient
conditions are achieved under which the filtering error is exponentially bounded in mean square.
As a consequence, the application on the fault estimation problem is investigated, since faults
resulting from external disturbances and component/actuator malfunctions might still occur in
the presence of ETT and stochastic sensor saturations. The main novelty of the paper lies in
the following aspects: 1) a comprehensive model is established which covers nonlinearities, event-
triggered measurement transmissions and stochastic sensor saturations; 2) an upper bound of
the filtering error covariance is minimized by appropriately designing the recursive filter and the
algorithm is applied in the fault estimation problem; and 3) the boundedness of the filtering error
dynamics is analyzed.
Notations. Rn and Rn×m denote, respectively, the n-dimensional Euclidean space and the set

of all n ×m real matrices. The superscript “T” denotes the transpose and the notation X ≥ Y
(respectively, X > Y ) where X and Y are symmetric matrices, means that X − Y is positive
semidefinite (respectively, positive definite). I is the identity matrix with compatible dimension.
E{x} stands for the expectation of the stochastic variable x. ∥A∥ denotes the spectral norm of
matrix A, and ∥x∥ refers to the Euclidean norm of vector x. diag{· · · } stands for a block-diagonal
matrix. ◦ is the Hadamard product defined as [A ◦B]ij = AijBij .

2. Problem Formulation

Consider the following stochastic discrete-time nonlinear system:{
xk+1 = g(xk, uk) +Dkwk,
yk = Λαk

σ(Ckxk) + (I − Λαk
)Ckxk + Fkvk,

(1)
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where xk ∈ Rn is the state; uk ∈ Rl is the control; yk ∈ Rm is the measurement; wk ∈ Rp and
vk ∈ Rq are the mutually uncorrelated zero-mean process noise and the communication noise with
E{wkw

T
k } = Wk and E{vkvTk } = Vk. The initial condition x0 is stochastic with known E{x0} and

E{x0xT0 }, and independent of the noises. Ck, Dk, and Fk are known matrices and the nonlinear
function g is twice continuously differentiable.
For every k ∈ N, Λαk

= diag{α1,k, . . . , αm,k} where for every i = 1, 2, . . . ,m, αi,k ∈ R is a
Bernoulli distributed white sequence taking values on 0 or 1 with{

Prob{αi,k = 1} = λi,
Prob{αi,k = 0} = 1− λi.

(2)

Here, λi ∈ [0, 1] is a known scalar for every i. Denoting Λλ := diag{λ1, . . . , λm}, it follows directly
that E {Λαk

} = Λλ.

For a vector r = [r1, . . . , rm]T , the saturation function σ : Rm → Rm is defined as:

σ(r) = [σ1(r1), . . . , σm(rm)]T (3)

where σs(rs) = sign(rs)min(bs, |rs|) and bs ≥ 0 for all s = 1, . . . ,m. Furthermore, sign(·) denotes
the signum function and bs represents the saturation level.
In this paper, the following standard send-on-delta Miskowicz (2006) transmission strategy is

considered: the current measurement yk+j would be transmitted if it satisfies

(yk+j − yk)
T (yk+j − yk) > ς, (4)

where yk is the previously transmitted measurement and ς is a given positive scalar. Letting the
release instants be denoted by k0, k1, · · · , the released signal ỹk can be written as

ỹk = ykj
, k ∈ {kj , kj + 1, · · · , kj+1 − 1}. (5)

For system (1), consider a filter of the following structure:

x̂k+1|k =g(x̂k|k, uk), (6)

x̂k+1|k+1 =x̂k+1|k +Kk+1

[
ỹk+1 − Λλσ(Ck+1x̂k+1|k)− (I − Λλ)Ck+1x̂k+1|k

]
, (7)

where x̂k|k ∈ Rn is the estimation of xk at time step k with x̂0|0 = E {x0}, x̂k+1|k ∈ Rn is the one
step prediction at time step k, and Kk+1 is the filter gain to be determined.

Remark 1: The measurement equation in (1) is introduced to address the stochastic sensor satu-
rations which may arise from uncertain working conditions and technological/physical limitations.
The proposed transmission condition (4) means that the current measurement is released only when
it changes greatly. Also note that the terms reflecting the statistics (i.e. λi for all i = 1, 2, . . . ,m)
are fixed scalars, which facilitates the filter implementation. Both ETT and stochastic sensor sat-
urations would affect the observability of the addressed system, making the filtering problem more
challenging.

Denote the prediction error, the estimation error, and their covariances conditional on the
received measurements as ek+1|k = xk+1 − x̂k+1|k, ek+1|k+1 = xk+1 − x̂k+1|k+1, Pk+1|k =

E
{
ek+1|ke

T
k+1|k|y0, . . . , yk

}
, and Pk+1|k+1 = E

{
ek+1|k+1e

T
k+1|k+1|y0, . . . , yk+1

}
, respectively. The

goal of the addressed problem is to design an estimator in the form of (6) and (7) for system (1)
such that an upper bound of Pk+1|k+1 can be obtained and subsequently minimized.
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3. Filter Design

In this section, two sets of recursive Riccati-like matrix equations are established to calculate the
filter parameter in (7) in order to minimize an upper bound of the filtering error covariance for
system (1). To start with, it follows from (1) and (6) that

ek+1|k =g(xk, uk)− g(x̂k|k, uk) +Dkwk. (8)

Based on the results in Calafiore (2005); Xiong, Wei, & Liu (2010), (8) can be written as:

ek+1|k =(Ak + SkUk)ek|k +Dkwk, (9)

where

Ak =
∂g(zk, uk)

∂zk

∣∣∣∣
zk=x̂k|k

,

Sk is a problem-dependent scaling matrix and Uk is an unknown matrix with ∥Uk∥ ≤ 1. Then the
following lemma can be established.

Lemma 1: The prediction error covariance satisfies

Pk+1|k = E
{
(Ak + SkUk)Pk|k(Ak + SkUk)

T
}
+DkWkD

T
k , (10)

and the estimation error covariance can be recursively calculated as follows:

Pk+1|k+1 = [I −Kk+1(I − Λλ)Ck+1]Pk+1|k[I −Kk+1(I − Λλ)Ck+1]
T +Kk+1E{(Λαk+1

− Λλ)

× [σ(Ck+1xk+1)− Ck+1xk+1][σ(Ck+1xk+1)− Ck+1xk+1]
T (Λαk+1

− Λλ)
T }KT

k+1

+Kk+1ΛλE{[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)][σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]
T }ΛT

λ

×KT
k+1 +Kk+1E{(ỹk+1 − yk+1)(ỹk+1 − yk+1)

T }KT
k+1 −

[
I −Kk+1(I − Λλ)Ck+1

]
× E{ek+1|k[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]

T }ΛT
λK

T
k+1 −Kk+1ΛλE{[σ(Ck+1xk+1)

− σ(Ck+1x̂k+1|k)]e
T
k+1|k} [I −Kk+1(I − Λλ)Ck+1]

T − [I −Kk+1(I − Λλ)Ck+1]

× E{ek+1|k(ỹk+1 − yk+1)
T }KT

k+1 −Kk+1E{(ỹk+1 − yk+1)e
T
k+1|k}[I −Kk+1(I − Λλ)

× Ck+1]
T +Kk+1E{(ỹk+1 − yk+1)[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]

T }ΛT
λK

T
k+1 +Kk+1

× ΛλE{[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)](ỹk+1 − yk+1)
T }KT

k+1 +Kk+1E{(ỹk+1 − yk+1)

× vTk+1}F T
k+1K

T
k+1 +Kk+1Fk+1E{vk+1(ỹk+1 − yk+1)

T }KT
k+1 +Kk+1E{(Λαk+1

− Λλ)

× [σ(Ck+1xk+1)− Ck+1xk+1](ỹk+1 − yk+1)
T }KT

k+1 +Kk+1E{(ỹk+1 − yk+1)

× [σ(Ck+1xk+1)− Ck+1xk+1]
T (Λαk+1

− Λλ)
T }KT

k+1 +Kk+1Fk+1Vk+1F
T
k+1K

T
k+1. (11)

Proof. (10) is easily accessible from (9) and the fact that ek|k is independent of wk, and now we
are going to prove (11). From (1) and (7), it follows that

ek+1|k+1 =ek+1|k −Kk+1

[
ỹk+1 − Λλσ(Ck+1x̂k+1|k)− (I − Λλ)Ck+1x̂k+1|k

]
. (12)
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Adding the zero term

Kk+1yk+1 −Kk+1yk+1 +Kk+1Λλσ(Ck+1xk+1)−Kk+1Λλσ(Ck+1xk+1)

+Kk+1(I − Λλ)Ck+1xk+1 −Kk+1(I − Λλ)Ck+1xk+1

to the right-hand side of (12), we have

ek+1|k+1 =[I −Kk+1(I − Λλ)Ck+1]ek+1|k −Kk+1(Λαk+1
− Λλ)[σ(Ck+1xk+1)− Ck+1xk+1]

−Kk+1Λλ[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]−Kk+1(ỹk+1 − yk+1)−Kk+1Fk+1vk+1.

(13)

(11) can be obtained directly from (13). This concludes the proof.

Remark 2: In Lemma 1, the exact covariances of one-step prediction error and filtering error have
been obtained. However, it is very difficult to determine the covariances recursively by using these
two equations because of the stochastic sensor saturations and event-triggered transmissions. To
handle terms related to yk+1 − ỹk+1 and the saturations, we need the posteriori PDF of the states
based on the PDF of states conditional on measurements. Unfortunately, since the system (1)
is relatively complex that contains both the nonlinearities and the stochastic sensor saturations,
the conditional PDF might be difficult to calculate or approximate. In Suh & Nguyen (2007),
yk+1 − ỹk+1 is assumed to be uniformly distributed, and the filtering error covariance is updated
accordingly. However, such an assumption is a bit too stringent in practice. An alternative way is to
find an upper bound of the filtering error covariance and then design the filter gain to minimize the
upper bound at each time step. In this way, neither the conditional PDF nor the strong assumption
on the distribution of yk+1 − ỹk+1 will be required.

Before proceeding, the following lemma is to be introduced Hu, Wang, Gao, & Stergioulas (2012);
Liu, Wang, He, & Zhou (2015).

Lemma 2: For any two matrices X,Y ∈ Rn×n, the inequality XY T + Y XT ≤ εXXT + ε−1Y Y T

holds where ε > 0 is a constant scalar.

Now we are in a position to obtain an upper bound of the filtering error covariance and design
the filter to minimize the bound.

Theorem 1: Let εj (j = 1, . . . , 8) and γk (k ∈ N) be positive scalars. Assume that the following
recursive equations

P̄k+1|k =(1 + ε1)AkP̄k|kA
T
k + γk(1 + ε−1

1 )SkS
T
k +DkWkD

T
k , (14)

P̄k+1|k+1 =(1 + ε2 + ε3) [I −Kk+1(I − Λλ)Ck+1] P̄k+1|k[I −Kk+1(I − Λλ)Ck+1]
T

+ (1 + ε6)Kk+1(Λ̃ ◦Θk+1)K
T
k+1 + 4b̄(1 + ε−1

2 + ε4)Kk+1ΛλΛ
T
λK

T
k+1

+ ς(1 + ε−1
3 + ε−1

4 + ε5 + ε−1
6 )Kk+1K

T
k+1 + (1 + ε−1

5 )Kk+1Fk+1Vk+1F
T
k+1K

T
k+1, (15)

5
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have positive definite solutions with initial condition P̄0|0 = P0|0, where

b̄ =
m∑
s=1

b2s, (16)

Θk+1 =b̄(1 + ε7)I + (1 + ε−1
7 )(1 + ε8)Ck+1P̄k+1|kC

T
k+1

+ (1 + ε−1
7 )(1 + ε−1

8 )Ck+1x̂k+1|kx̂
T
k+1|kC

T
k+1, (17)

P̄k|k ≤γkI, (18)

Λ̃ =diag{λ1 − λ21, . . . , λm − λ2m}, (19)

Yk+1 =(1 + ε2 + ε3)(I − Λλ)Ck+1P̄k+1|kC
T
k+1(I − Λλ)

T + 4b̄

× (1 + ε−1
2 + ε4)ΛλΛ

T
λ + (1 + ε6)Λ̃ ◦Θk+1 + ς(1 + ε−1

3

+ ε−1
4 + ε5 + ε−1

6 )I + (1 + ε−1
5 )Fk+1Vk+1F

T
k+1, (20)

Zk+1 =(1 + ε2 + ε3)(I − Λλ)Ck+1P̄k+1|k, (21)

Kk+1 =Z
T
k+1Y

−1
k+1. (22)

Then P̄k|k is an upper bound of Pk|k, and the bound P̄k+1|k+1 is minimized at each time step with
the filter gain Kk+1 given in (22).

Proof. The theorem can be proved by induction. Based on the initial condition, we have P̄0|0 ≥
P0|0. Then, assume that P̄k|k ≥ Pk|k, and we need to prove that P̄k+1|k+1 ≥ Pk+1|k+1. Firstly,

based on P̄k|k ≥ Pk|k, one needs to show that P̄k+1|k ≥ Pk+1|k and Θk+1 ≥ E{[σ(Ck+1xk+1) −
Ck+1xk+1][σ(Ck+1xk+1)− Ck+1xk+1]

T } =: Ψk+1.
With the assumption P̄k|k ≥ Pk|k, we have from (10) that

Pk+1|k ≤E
{
(Ak + SkUk)P̄k|k(Ak + SkUk)

T
}
+DkWkD

T
k .

Then, it follows from Lemma 2 that

Pk+1|k ≤(1 + ε1)AkP̄k|kA
T
k + (1 + ε−1

1 )E
{
SkUkP̄k|kU

T
k S

T
k

}
+DkWkD

T
k . (23)

From (18) and ∥Uk∥ ≤ 1, we have SkUkP̄k|kU
T
k S

T
k ≤ γkSkS

T
k and, subsequently, (23) can be

written as

Pk+1|k ≤(1 + ε1)AkP̄k|kA
T
k + γk(1 + ε−1

1 )SkS
T
k +DkWkD

T
k = P̄k+1|k.

Next, let us deal with Ψk+1. It follows from Lemma 2 that

Ψk+1 ≤(1 + ε7)E{σ(Ck+1xk+1)σ
T (Ck+1xk+1)}+ (1 + ε−1

7 )E{Ck+1xk+1x
T
k+1C

T
k+1}.

From the facts that xk+1 = x̂k+1|k + ek+1|k and P̄k+1|k ≥ Pk+1|k, it follows that

Ψk+1 ≤(1 + ε7)E{σ(Ck+1xk+1)σ
T (Ck+1xk+1)}+ (1 + ε−1

7 )(1 + ε8)Ck+1P̄k+1|kC
T
k+1

+ (1 + ε−1
7 )(1 + ε−1

8 )Ck+1x̂k+1|kx̂
T
k+1|kC

T
k+1. (24)

Since the absolute value of the ith entry of σ(Ck+1xk+1) is less than or equal to bi, we obtain

σ(Ck+1xk+1)σ
T (Ck+1xk+1) ≤ b̄I. (25)

6
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Substituting (25) into (24) yields

Ψk+1 ≤ b̄(1 + ε7)I + (1 + ε−1
7 )(1 + ε8)Ck+1P̄k+1|kC

T
k+1

+ (1 + ε−1
7 )(1 + ε−1

8 )Ck+1x̂k+1|kx̂
T
k+1|kC

T
k+1 = Θk+1.

Now, we are going to show that P̄k+1|k+1 ≥ Pk+1|k+1. It follows from Lemma 2 that

Pk+1|k+1 ≤(1 + ε2 + ε3) [I −Kk+1(I − Λλ)Ck+1]Pk+1|k[I −Kk+1(I − Λλ)Ck+1]
T + (1 + ε6)Kk+1

× E{(Λαk+1
− Λλ)[σ(Ck+1xk+1)− Ck+1xk+1][σ(Ck+1xk+1)− Ck+1xk+1]

T (Λαk+1

− Λλ)
T }KT

k+1 + (1 + ε−1
2 + ε4)Kk+1ΛλE{[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]

× [σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]
T }ΛT

λK
T
k+1 + (1 + ε−1

3 + ε−1
4 + ε5 + ε−1

6 )Kk+1

× E{(ỹk+1 − yk+1)(ỹk+1 − yk+1)
T }KT

k+1 + (1 + ε−1
5 )Kk+1Fk+1Vk+1F

T
k+1K

T
k+1. (26)

Considering P̄k+1|k ≥ Pk+1|k and Θk+1 ≥ Ψk+1, (26) can be written as

Pk+1|k+1 ≤(1 + ε2 + ε3)[I −Kk+1(I − Λλ)Ck+1]P̄k+1|k[I −Kk+1(I − Λλ)Ck+1]
T + (1 + ε6)Kk+1

× E{(Λαk+1
− Λλ)Θk+1(Λαk+1

− Λλ)
T }KT

k+1 + (1 + ε−1
2 + ε4)Kk+1ΛλE{[σ(Ck+1xk+1)

− σ(Ck+1x̂k+1|k)][σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]
T }ΛT

λK
T
k+1 + (ε−1

3 + ε−1
4 + ε5 + ε−1

6

+ 1)Kk+1E{(ỹk+1 − yk+1)(ỹk+1 − yk+1)
T }KT

k+1 + (1 + ε−1
5 )Kk+1Fk+1Vk+1F

T
k+1K

T
k+1.

Based on the transmission condition (4), for any k ∈ N, we have

(ỹk − yk)(ỹk − yk)
T ≤ςI. (27)

Similar to (25), we get

[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)][σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]
T ≤ 4b̄I. (28)

From (27) and (28), it follows that

Pk+1|k+1 ≤(1 + ε2 + ε3) [I −Kk+1(I − Λλ)Ck+1] P̄k+1|k[I −Kk+1(I − Λλ)Ck+1]
T + (1 + ε6)Kk+1

× (Λ̃ ◦Θk+1)K
T
k+1 + 4b̄(1 + ε−1

2 + ε4)Kk+1ΛλΛ
T
λK

T
k+1 + ς(1 + ε−1

3 + ε−1
4 + ε5 + ε−1

6 )

×Kk+1K
T
k+1 + (1 + ε−1

5 )Kk+1Fk+1Vk+1F
T
k+1K

T
k+1 = P̄k+1|k+1.

So far, P̄k|k has been verified to be an upper bound of Pk|k, and what remains to show is that

Kk+1 in (22) minimizes the bound. With (20) and (21), P̄k+1|k+1 can be written as

P̄k+1|k+1 =(1 + ε2 + ε3)P̄k+1|k +Kk+1Yk+1K
T
k+1 − ZT

k+1K
T
k+1 −Kk+1Zk+1.

Noticing the fact that Yk+1 = Y T
k+1 > 0 and completing the square with respect to Kk+1, we

have

P̄k+1|k+1 =(Kk+1 − ZT
k+1Y

−1
k+1)Yk+1(Kk+1 − ZT

k+1Y
−1
k+1)

T − ZT
k+1Y

−1
k+1Zk+1 + (1 + ε2 + ε3)P̄k+1|k.

7
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Therefore, it is straightforward to see that when Kk+1 = ZT
k+1Y

−1
k+1, the bound P̄k+1|k+1 is mini-

mized and satisfies the next recursion:

P̄k+1|k+1 =− ZT
k+1Y

−1
k+1Zk+1 + (1 + ε2 + ε3)P̄k+1|k.

The proof is now complete.

Remark 3: The filtering problem is solved in Theorem 1 in a recursive way for a class of discrete
time-varying nonlinear systems with stochastic sensor saturations and event-triggered transmis-
sions. To cope with the stochastic sensor saturations and event-triggered transmissions, special
effort has been made to obtain the upper bound of the filtering error covariance and design the
filter so as to minimize the bound. The matrix Sk reflects the linearization errors, the parameters
Λλ and b̄ represent the effects of stochastic sensor saturations, and the scalar ς quantities the
influences of the event-triggered transmissions. The parameters εj can be determined to balance
the intrinsic characteristic of the proposed filter and the impacts induced by ETT and stochastic
sensor saturations. Neither the approximated PDF of states conditional on measurements nor the
assumption on the distribution of yk+1− ỹk+1 is required in the presented approach. In other words,
the applicability and feasibility of the algorithm have been enhanced. Furthermore, the desired fil-
ter gain is obtained via solving two sets of discrete Riccati-like equations, hence the method is
suitable for online applications.

4. Boundedness Analysis

Before proceeding, the following widely used concept for the boundedness of stochastic processes
is introduced.

Definition 1: Reif, Gunther, Yaz, & Unbehauen (1999) The stochastic process ζk is said to be
exponentially bounded in mean square if there are real numbers η > 0, ν > 0 and 0 < ϑ < 1 such
that

E
{
∥ζk∥2

}
≤ η∥ζ0∥2ϑk + ν (29)

holds for every k > 0.

For the boundedness analysis of the estimation error, we establish sufficient conditions under
which the filtering error is exponentially bounded in mean square. For this purpose, we make the
following assumption.

Assumption 1: There are positive real numbers ā, c̄, c, λ̄, λ, ψ̄, s̄, f̄ , f , d̄, d, w̄, w, v̄ > 0 such that
the following bounds on various matrices are fulfilled for every 1 ≤ i ≤ m and k ≥ 0:

∥Ak∥ ≤ ā, ∥Sk∥ ≤ s̄, c ≤ ∥Ck∥ ≤ c̄, tr {Ψk} ≤ ψ̄, λ ≤ λi ≤ λ̄,

dI ≤ DkD
T
k ≤ d̄I, f ≤ ∥Fk∥ ≤ f̄ , wI ≤Wk ≤ w̄I, Vk ≤ v̄I. (30)

Moreover, the following inequality holds:

ϱ =
[
(1 + η)ā2 + (1 + η−1)s̄2

] [
1 +

c̄2

(1− λ̄)c2

]2
< 1, (31)

where η is a positive scalar.

8
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Theorem 2: Consider the time-varying system (1) with the filter given in (6) and (7) whose
parameters are provided in Theorem 1. Under Assumption 1, the filtering error is exponentially
bounded in mean square.

Proof. Denote Ξk+1 = I−Kk+1(I−Λλ)Ck+1, Ǎk+1 = Ξk+1Ak and Âk+1 = Ξk+1SkUk. Substituting

(9) into (13) and considering the definitions of Ǎk+1 and Âk+1, we have

ek+1|k+1 = (Ǎk+1 + Âk+1)ek|k + pk+1 + qk+1, (32)

where

pk+1 =−Kk+1Λλ[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]−Kk+1(ỹk+1 − yk+1),

qk+1 =Ξk+1Dkwk −Kk+1(Λαk+1
− Λλ)[σ(Ck+1xk+1)− Ck+1xk+1]−Kk+1Fk+1vk+1.

Based on (22), it follows easily from λ ≤ λi ≤ λ̄ and c ≤ ∥Ck+1∥ ≤ c̄ that

∥Kk+1∥ =
∥∥ZT

k+1Y
−1
k+1

∥∥
<

∥∥∥ [(1 + ε2 + ε3)(I − Λλ)Ck+1P̄k+1|k
]T

[(1 + ε2 + ε3)

× (I − Λλ)Ck+1P̄k+1|kC
T
k+1(I − Λλ)

T ]−1
∥∥∥

≤ c̄

(1− λ̄)c2
=: k̄,

and

∥Ξk+1∥ <
∥∥∥I − [

(1 + ε2 + ε3)(I − Λλ)Ck+1P̄k+1|k
]T

[(1 + ε2 + ε3)(I − Λλ)

× Ck+1P̄k+1|kC
T
k+1(I − Λλ)

T ]−1(I − Λλ)Ck+1

∥∥∥
≤ 1 +

c̄2

c2
=: ξ̄.

Then, we have ∥∥Ǎk+1

∥∥ ≤ ∥Ξk+1∥ ∥Ak∥ ≤ ξ̄ā =: ā1,∥∥∥Âk+1

∥∥∥ ≤ ∥Ξk+1∥ ∥Sk∥ ∥Uk∥ ≤ ξ̄s̄ =: ā2.

Recalling Lemma 2, we can obtain

E
{
pTk+1pk+1

}
≤(1 + η1)E

{
[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]

TΛT
λK

T
k+1Kk+1Λλ[σ(Ck+1xk+1)− σ(Ck+1x̂k+1|k)]

}
+ (1 + η−1

1 )E
{
(ỹk+1 − yk+1)

TKT
k+1Kk+1(ỹk+1 − yk+1)

}
, (33)

where η1 is a positive scalar.
Substituting (27) and (28) into (33) leads to

E
{
pTk+1pk+1

}
≤4(1 + η1)b̄λ̄

2k̄2 + (1 + η−1
1 )ςk̄2 =: p̄2.

9
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Since wk, vk, and αi,k are assumed to be mutually independent, we have

E
{
qTk+1qk+1

}
=E

{
wT
kD

T
k Ξ

T
k+1Ξk+1Dkwk

}
+ E

{
vTk+1F

T
k+1K

T
k+1Kk+1Fk+1vk+1

}
+ E

{
[σ(Ck+1xk+1)

− Ck+1xk+1]
T (Λαk+1

− Λλ)
TKT

k+1Kk+1(Λαk+1
− Λλ)[σ(Ck+1xk+1)− Ck+1xk+1]

}
≤pξ̄2d̄2w̄ + qk̄2f̄2v̄ + k̄2λ̂2ψ̄ =: q̄2,

where λ̂ = max{1− λ, λ̄}.
Consider the following iterative matrix equation

Πk+1 =(1 + η)Ǎk+1ΠkǍ
T
k+1 + (1 + η−1)ρmax(Πk)Ξk+1SkS

T
k Ξ

T
k+1 +DkWkD

T
k ,

with initial condition Π0 = D0W0D
T
0 where ρmax(Πk) represents the maximum eigenvalue of Πk.

Then, it follows directly that

∥Πk+1∥ ≤ ∥Πk∥
[
(1 + η)

∥∥Ǎk+1

∥∥2 + (1 + η−1) ∥Ξk+1Sk∥2
]
+

∥∥DkWkD
T
k

∥∥
≤ ϱ ∥Πk∥+ w̄d̄2.

By iteration, we obtain

∥Πk∥ ≤ ϱk ∥Π0∥+ w̄d̄2
k−1∑
i=0

ϱi.

With assumption (31), we have ϱ < 1 and then arrive at

∥Πk∥ < ∥Π0∥+ w̄d̄2
∞∑
i=0

ϱi = ∥Π0∥+
w̄d̄2

1− ϱ
. (34)

Furthermore, since Πk is positive definite for all k, it is straightforward to see that

Πk+1 ≥ DkWkD
T
k ≥ wd2I. (35)

Based on (34) and (35), it can be concluded that there are positive real numbers π, π̄ > 0 such
that the inequality πI ≤ Πk ≤ π̄I holds for every k ≥ 0.
According to Assumption 1, we have

(Ǎk+1 + Âk+1)
TΠ−1

k+1(Ǎk+1 + Âk+1)−Π−1
k

≤(Ǎk+1 + Âk+1)
T
[
(Ǎk+1 + Âk+1)Πk(Ǎk+1 + Âk+1)

T +DkWkD
T
k

]−1
(Ǎk+1 + Âk+1)−Π−1

k

=−
[
Πk +Πk(Ǎk+1 + Âk+1)

T
(
DkWkD

T
k

)−1
(Ǎk+1 + Âk+1)Πk

]−1

=−
[
I + (Ǎk+1 + Âk+1)

T
(
DkWkD

T
k

)−1
(Ǎk+1 + Âk+1)Πk

]−1
Π−1

k

≤−
[
(ā1 + ā2)

2π̄

wd2
+ 1

]−1

Π−1
k .

10
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Define α0 =
[
(ā1+ā2)2π̄

wd2 + 1
]−1

. Since α0 < 1, there always exists a positive scalar β such that

α = (1 + β)(1 − α0) < 1. Choosing a positive scalar γ > 0, and denoting Vk
(
ek|k

)
= eTk|kΠ

−1
k ek|k,

and µ =
[
(1 + β−1 + γ)p̄2 + (1 + γ−1)q̄2

]
/π, it follows from (32) that

E
{
Vk+1(ek+1|k+1)|ek|k

}
− (1 + β)Vk(ek|k)

=E
{[

(Ǎk+1 + Âk+1)ek|k + pk+1 + qk+1

]T
Π−1

k+1

[
(Ǎk+1 + Âk+1)ek|k + pk+1 + qk+1

]
|ek|k

}
− (1 + β)eTk|kΠ

−1
k ek|k

=E
{
eTk|k(Ǎk+1 + Âk+1)

TΠ−1
k+1(Ǎk+1 + Âk+1)ek|k − (1 + β)eTk|kΠ

−1
k ek|k|ek|k

}
+ 2E

{
eTk|k(Ǎk+1

+ Âk+1)
TΠ−1

k+1pk+1|ek|k
}
+ E

{
pTk+1Π

−1
k+1pk+1|ek|k

}
+ 2E

{
pTk+1Π

−1
k+1qk+1|ek|k

}
+ E

{
qTk+1Π

−1
k+1qk+1|ek|k

}
. (36)

Applying Lemma 2 to (36), we have

E
{
Vk+1(ek+1|k+1)|ek|k

}
− (1 + β)Vk(ek|k)

≤(1 + β)E
{
eTk|k

[
(Ǎk+1 + Âk+1)

TΠ−1
k+1(Ǎk+1 + Âk+1)−Π−1

k

]
ek|k|ek|k

}
+ (1 + β−1 + γ)

× E
{
pTk+1Π

−1
k+1pk+1|ek|k

}
+ (1 + γ−1)E

{
qTk+1Π

−1
k+1qk+1|ek|k

}
≤− α0(1 + β)Vk(ek|k) + µ.

Then it follows that

E
{
Vk+1(ek+1|k+1)|ek|k

}
≤αVk(ek|k) + µ,

which gives rise to

E
{∥∥ek|k∥∥2} ≤ π̄

π

∥∥e0|0∥∥2 αk + µπ̄

∞∑
i=0

αi

=
π̄

π

∥∥e0|0∥∥2 αk +
µπ̄

1− α

in which the relationships 0 < α < 1 and µ, π̄ > 0 have been utilized. Therefore, the stochastic
process ek|k is exponentially bounded in mean square and the proof is complete.

5. Fault Estimation

In this section, we aim to show that the main results in Theorem 1 can be applied to estimate both
the system state and additive faults within a unified framework.
Consider the following faulty system corresponding to (1):{

xk+1 = g(xk, uk) +Dkwk + Ekfk,
yk = Λαk

σ(Ckxk) + (I − Λαk
)Ckxk + Fkvk,

(37)

where fk ∈ Rl is the additive fault, Ek is a known matrix with appropriate dimensions, and all the

other variables are the same as defined in (1). Defining an augmented state x̄k =
[
xTk , f

T
k

]T
, (37)

11
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can be rewritten as follows:{
x̄k+1 = ḡ(x̄k, uk) + D̄kwk,
yk =Λαk

σ(C̄kx̄k) + (I − Λαk
)C̄kx̄k + Fkvk,

(38)

where

ḡ(x̄k, uk) :=

[
g(xk, uk) + Ekfk

fk

]
, D̄k :=

[
Dk

0

]
, C̄k := [Ck, 0] .

Similar to (6) and (7), consider a filter of the following structure:

x̃k+1|k =ḡ(x̃k|k, uk), (39)

x̃k+1|k+1 =x̃k+1|k + K̃k+1

[
ỹk+1 − Λλσ(C̄k+1x̃k+1|k)− (I − Λλ)C̄k+1x̃k+1|k

]
, (40)

where x̃k|k ∈ Rn is the estimation of x̄k at time step k with x̃0|0 =
[
E
{
xT0

}
, 0T

]T
, x̃k+1|k ∈ Rn is

the one step prediction at time step k, and K̃k+1 is the filter gain to be determined. Denote the
prediction error, the estimation error and their covariances conditional on the received measure-

ments as ẽk+1|k = x̄k+1− x̃k+1|k, ẽk+1|k+1 = x̄k+1− x̃k+1|k+1, Qk+1|k = E
{
ẽk+1|kẽ

T
k+1|k|y0, . . . , yk

}
,

and Qk+1|k+1 = E
{
ẽk+1|k+1ẽ

T
k+1|k+1|y0, . . . , yk+1

}
, respectively. Then, we can obtain the following

theorem whose proof is similar to that of Theorem 1 and is therefore omitted here.

Theorem 3: Let ε̃j(j = 1, . . . , 8) and γ̃k(k ∈ N) be positive scalars. Assume that, with initial
condition Q̄0|0 = Q0|0, the following equations

Q̄k+1|k =(1 + ε̃1)ÃkQ̄k|kÃ
T
k + γ̃k(1 + ε̃−1

1 )S̃kS̃
T
k + D̄kWkD̄

T
k , (41)

Q̄k+1|k+1 =(1 + ε̃2 + ε̃3)
[
I − K̃k+1(I − Λλ)C̄k+1

]
Q̄k+1|k

[
I − K̃k+1(I − Λλ)C̄k+1

]T
+ (1 + ε̃6)

× K̃k+1(Λ̃ ◦ Θ̃k+1)K̃
T
k+1 + 4b̄(1 + ε̃−1

2 + ε̃4)K̃k+1ΛλΛ
T
λ K̃

T
k+1 + ς(1 + ε̃−1

3 + ε̃−1
4 + ε̃5

+ ε̃−1
6 )K̃k+1K̃

T
k+1 + (1 + ε̃−1

5 )K̃k+1Fk+1Vk+1F
T
k+1K̃

T
k+1, (42)

have positive definite solutions, where

Ãk =
∂ḡ(z̄k, uk)

∂z̄k

∣∣∣∣
z̄k=x̃k|k

=

 ∂g(zk, uk)∂zk

∣∣∣∣
zk=Hx̃k|k

Ek

0 I

 , (43)

H = [I 0] , (44)

Θ̃k+1 =b̄(1 + ε̃7)I + (1 + ε̃−1
7 )(1 + ε̃8)C̄k+1Q̄k+1|kC̄

T
k+1

+ (1 + ε̃−1
7 )(1 + ε̃−1

8 )C̄k+1x̃k+1|kx̃
T
k+1|kC̄

T
k+1, (45)

Q̄k|k ≤γ̃kI, (46)

Ỹk+1 =(1 + ε̃2 + ε̃3)(I − Λλ)C̄k+1Q̄k+1|kC̄
T
k+1(I − Λλ)

T + 4b̄

× (1 + ε̃−1
2 + ε̃4)ΛλΛ

T
λ + Λ̃ ◦ Θ̃k+1 + ς(1 + ε̃−1

3 + ε̃−1
4

+ ε̃5)I + (1 + ε̃−1
5 )Fk+1Vk+1F

T
k+1, (47)

Z̃k+1 =(1 + ε̃2 + ε̃3)(I − Λλ)C̄k+1Q̄k+1|k, (48)

K̃k+1 =Z̃
T
k+1Ỹ

−1
k+1. (49)

12
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S̃k is a problem-dependent scaling matrix. b̄ and Λ̃ are the same as defined in (16) and (19),
respectively. Then Q̄k|k is an upper bound of Qk|k, and the bound Q̄k|k is minimized at each time
step with the filter gain given in (49).

The proof is similar to that of Theorem 1 and is therefore omitted here. With Theorem 3, the
state estimation and fault diagnosis problem can get solved simultaneously. The possible fault and
state have been regarded as an augmented state and jointly estimated in the proposed filter. In the
next section, a simulation example is illustrated to show the effectiveness of the proposed filter.

6. Illustrations

Inspired by the model proposed in Li & Shi (2012), the following inverted pendulum example is
considered in this section:

[
x
(1)
k+1

x
(2)
k+1

]
=

 1 T
ml2

−κT + Tk11− Tχ
ml2

+ Tk2


[
x
(1)
k

x
(2)
k

]
+

[
0

Tmgl sin(x
(1)
k )

]
+

[
0
2T

]
wk.

where x1 = θ, x2 = ml2θ̇, m is the mass, l is the length of the inverted pendulum, T is the sampling
period, g is the gravitation coefficient, θ is the inclination angle, χ is the spring coefficient, κ is the
damping parameter. The output measurement with stochastic sensor saturation can be written as

yk =λkσ
(
0.1x

(1)
k + 0.1x

(2)
k

)
+ (1− λk)

(
0.1x

(1)
k + 0.1x

(2)
k

)
+ vk.

The system parameters are m = 0.5kg, l = 0.5m, χ = 0.25, k1 = −49.5, k2 = −167.5, sampling
period T = 0.01s, and κ = 0.5N/m. The variances of wk and vk are 0.25 and 9×10−4, respectively.
Prob{λk = 1} = 0.8. The saturation level is 0.2. The transmission threshold is set to be ς = 0.002.
The initial states are uniformly distributed over [0.5,1.5]. εi(i = 1, 2, 3, 5, 7) are selected as 0.1, and
εi(i = 4, 6, 8) are determined as 1. For all i = 1, 2, . . . , 8, ε̃i = εi.
In the fault-free case, Fig. 1 and Fig. 2 show the systems states and their estimates. Fig. 3

illustrates the real filtering errors and the bound calculated from Theorem 2. It can be seen that
acceptable estimation performance is achieved.
When the inverted pendulum is subject to unexpected torques, additive faults may occur. Con-

sider a fault fk in the following form in x
(1)
k :

fk =

{
−0.9, if k ≥ 26,
0, otherwise.

Fig. 4 depicts the actual fault and its estimate obtained from Theorem 3. It can be observed that
the proposed filter could estimate the additive fault well.

7. Conclusion

In this paper, the filtering problem has been investigated for a class of time-varying nonlinear
systems with stochastic sensor saturations and event-triggered measurement transmissions. Spe-
cial effort has been made to obtain an upper bound of the filtering error covariance and then
minimize such an upper bound by solving two sets of discrete matrix equations. The presented
method has been utilized to estimate the additive faults. Future research topics would include the

13
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Figure 1. State 1 and its estimate
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Figure 2. State 2 and its estimate

extension of our results to more complex systems such as nonlinear polynomial systems Basin &
Rodriguez-Ramirez (2012), delayed sensing systems Caballero-Águila, Hermoso-Carazo, Jiménez-
López, Linares-Pérez, & Nakamori (2010), networked control systems Karimi (2009) and two-
dimensional systems Li & Gao (2012).
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