126,020 research outputs found

    Optimal Embedding of Functions for In-Network Computation: Complexity Analysis and Algorithms

    Full text link
    We consider optimal distributed computation of a given function of distributed data. The input (data) nodes and the sink node that receives the function form a connected network that is described by an undirected weighted network graph. The algorithm to compute the given function is described by a weighted directed acyclic graph and is called the computation graph. An embedding defines the computation communication sequence that obtains the function at the sink. Two kinds of optimal embeddings are sought, the embedding that---(1)~minimizes delay in obtaining function at sink, and (2)~minimizes cost of one instance of computation of function. This abstraction is motivated by three applications---in-network computation over sensor networks, operator placement in distributed databases, and module placement in distributed computing. We first show that obtaining minimum-delay and minimum-cost embeddings are both NP-complete problems and that cost minimization is actually MAX SNP-hard. Next, we consider specific forms of the computation graph for which polynomial time solutions are possible. When the computation graph is a tree, a polynomial time algorithm to obtain the minimum delay embedding is described. Next, for the case when the function is described by a layered graph we describe an algorithm that obtains the minimum cost embedding in polynomial time. This algorithm can also be used to obtain an approximation for delay minimization. We then consider bounded treewidth computation graphs and give an algorithm to obtain the minimum cost embedding in polynomial time

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    On Distributed Computation in Noisy Random Planar Networks

    Full text link
    We consider distributed computation of functions of distributed data in random planar networks with noisy wireless links. We present a new algorithm for computation of the maximum value which is order optimal in the number of transmissions and computation time.We also adapt the histogram computation algorithm of Ying et al to make the histogram computation time optimal.Comment: 5 pages, 2 figure

    Towards a Queueing-Based Framework for In-Network Function Computation

    Full text link
    We seek to develop network algorithms for function computation in sensor networks. Specifically, we want dynamic joint aggregation, routing, and scheduling algorithms that have analytically provable performance benefits due to in-network computation as compared to simple data forwarding. To this end, we define a class of functions, the Fully-Multiplexible functions, which includes several functions such as parity, MAX, and k th -order statistics. For such functions we exactly characterize the maximum achievable refresh rate of the network in terms of an underlying graph primitive, the min-mincut. In acyclic wireline networks, we show that the maximum refresh rate is achievable by a simple algorithm that is dynamic, distributed, and only dependent on local information. In the case of wireless networks, we provide a MaxWeight-like algorithm with dynamic flow splitting, which is shown to be throughput-optimal

    Engineering Resilient Collective Adaptive Systems by Self-Stabilisation

    Get PDF
    Collective adaptive systems are an emerging class of networked computational systems, particularly suited in application domains such as smart cities, complex sensor networks, and the Internet of Things. These systems tend to feature large scale, heterogeneity of communication model (including opportunistic peer-to-peer wireless interaction), and require inherent self-adaptiveness properties to address unforeseen changes in operating conditions. In this context, it is extremely difficult (if not seemingly intractable) to engineer reusable pieces of distributed behaviour so as to make them provably correct and smoothly composable. Building on the field calculus, a computational model (and associated toolchain) capturing the notion of aggregate network-level computation, we address this problem with an engineering methodology coupling formal theory and computer simulation. On the one hand, functional properties are addressed by identifying the largest-to-date field calculus fragment generating self-stabilising behaviour, guaranteed to eventually attain a correct and stable final state despite any transient perturbation in state or topology, and including highly reusable building blocks for information spreading, aggregation, and time evolution. On the other hand, dynamical properties are addressed by simulation, empirically evaluating the different performances that can be obtained by switching between implementations of building blocks with provably equivalent functional properties. Overall, our methodology sheds light on how to identify core building blocks of collective behaviour, and how to select implementations that improve system performance while leaving overall system function and resiliency properties unchanged.Comment: To appear on ACM Transactions on Modeling and Computer Simulatio
    corecore