3,867 research outputs found

    Ambulatory position and orientation tracking fusing magnetic and inertial sensing

    Get PDF
    This paper presents the design and testing of a portable magnetic system combined with miniature inertial sensors for ambulatory 6 degrees of freedom ( DOF) human motion tracking. The magnetic system consists of three orthogonal coils, the source, fixed to the body and 3-D magnetic sensors, fixed to remote body segments, which measure the fields generated by the source. Based on the measured signals, a processor calculates the relative positions and orientations between source and sensor. Magnetic actuation requires a substantial amount of energy which limits the update rate with a set of batteries. Moreover, the magnetic field can easily be disturbed by ferromagnetic materials or other sources. Inertial sensors can be sampled at high rates, require only little energy and do not suffer from magnetic interferences. However, accelerometers and gyroscopes can only measure changes in position and orientation and suffer from integration drift. By combing measurements from both systems in a complementary Kalman filter structure, an optimal solution for position and orientation estimates is obtained. The magnetic system provides 6 DOF measurements at a relatively low update rate while the inertial sensors track the changes position and orientation in between the magnetic updates. The implemented system is tested against a lab-bound camera tracking system for several functional body movements. The accuracy was about 5 mm for position and 3 degrees for orientation measurements. Errors were higher during movements with high velocities due to relative movement between source and sensor within one cycle of magnetic actuation

    UltraSwarm: A Further Step Towards a Flock of Miniature Helicopters

    Get PDF
    We describe further progress towards the development of a MAV (micro aerial vehicle) designed as an enabling tool to investigate aerial flocking. Our research focuses on the use of low cost off the shelf vehicles and sensors to enable fast prototyping and to reduce development costs. Details on the design of the embedded electronics and the modification of the chosen toy helicopter are presented, and the technique used for state estimation is described. The fusion of inertial data through an unscented Kalman filter is used to estimate the helicopter’s state, and this forms the main input to the control system. Since no detailed dynamic model of the helicopter in use is available, a method is proposed for automated system identification, and for subsequent controller design based on artificial evolution. Preliminary results obtained with a dynamic simulator of a helicopter are reported, along with some encouraging results for tackling the problem of flocking

    Design and Validation of a Portable Wireless Data Acquisition System for Measuring Human Joint Angles in Medical Applications

    Get PDF
    A prototype sensor system to capture and measure human joint movements in medical applications was developed. An algorithm that uses measurements from two IMU sensors to estimate the angle of one human joint was developed. Custom-made hardware and software were developed. Validation results showed 0.67° maximum error in static condition, 1.56° maximum RMSE for dynamic measurements and 2.5° average error during fast movements’ tests. The prototype has been successfully used by medical teams

    Body sensor network for in-home personal healthcare

    Get PDF
    A body sensor network solution for personal healthcare under an indoor environment is developed. The system is capable of logging the physiological signals of human beings, tracking the orientations of human body, and monitoring the environmental attributes, which covers all necessary information for the personal healthcare in an indoor environment. The major three chapters of this dissertation contain three subsystems in this work, each corresponding to one subsystem: BioLogger, PAMS and CosNet. Each chapter covers the background and motivation of the subsystem, the related theory, the hardware/software design, and the evaluation of the prototype’s performance

    Low-Cost Sensors and Biological Signals

    Get PDF
    Many sensors are currently available at prices lower than USD 100 and cover a wide range of biological signals: motion, muscle activity, heart rate, etc. Such low-cost sensors have metrological features allowing them to be used in everyday life and clinical applications, where gold-standard material is both too expensive and time-consuming to be used. The selected papers present current applications of low-cost sensors in domains such as physiotherapy, rehabilitation, and affective technologies. The results cover various aspects of low-cost sensor technology from hardware design to software optimization

    Pushing the limits of inertial motion sensing

    Get PDF

    Inertial measurement units: a brief state of the art on gait analysis

    Get PDF
    Gait analysis systems are monitoring systems that establish a symbiosis relationship with Ambient Assisted Living (AAL) environments. Human locomotion analysis has a very important role always aiming at improving the quality of life both for individuals needing treatment or rehabilitation, as well as for healthy and elderly people. In fact, a deep and detailed knowledge about gait characteristics at a given time, and not least, monitoring and evaluating over time, will allow early diagnosis of diseases and their complications, and contribute to the decision of the treatment that should be chosen. There are several techniques used for gait measuring such as: Image Processing, Floor Sensors, and Wearable Sensors. Among the wearable sensors, has emerged an electronic device that combines multiple sensors designated by Inertial Measurement Unit (IMU). This device measures angular rate, body's specific force, and in some cases the magnetic field, and this information may be used to monitor human gait. In this article, the aim is: i) to verify the sensors that build up the IMUs, and the resulting designations that the device may have depending on the sensors it contains; ii) to list the applications of the IMUs on gait analysis; iii) to be aware of the devices available on the market and the associated commercial brands; and iv) to list the advantages and disadvantages associated with the device compared to other gait analysis systems. Concerning the literature in the scientific community, although there are some studies that focus on gait analysis or IMUs, none of them aggregates the purposes that will be addressed in this article.This work is supported by the FCT - Fundação para a Ciência e Tecnologia - with the scholarship reference SFRH/BD/108309/2015, with the reference project UID/EEA/04436/2013, by FEDER funds through the COMPETE 2020 - Programa Operacional Competitividade e Internacionalização (POCI) - with the reference project POCI-01-0145- FEDER-006941

    Discovering user mobility and activity in smart lighting environments

    Full text link
    "Smart lighting" environments seek to improve energy efficiency, human productivity and health by combining sensors, controls, and Internet-enabled lights with emerging “Internet-of-Things” technology. Interesting and potentially impactful applications involve adaptive lighting that responds to individual occupants' location, mobility and activity. In this dissertation, we focus on the recognition of user mobility and activity using sensing modalities and analytical techniques. This dissertation encompasses prior work using body-worn inertial sensors in one study, followed by smart-lighting inspired infrastructure sensors deployed with lights. The first approach employs wearable inertial sensors and body area networks that monitor human activities with a user's smart devices. Real-time algorithms are developed to (1) estimate angles of excess forward lean to prevent risk of falls, (2) identify functional activities, including postures, locomotion, and transitions, and (3) capture gait parameters. Two human activity datasets are collected from 10 healthy young adults and 297 elder subjects, respectively, for laboratory validation and real-world evaluation. Results show that these algorithms can identify all functional activities accurately with a sensitivity of 98.96% on the 10-subject dataset, and can detect walking activities and gait parameters consistently with high test-retest reliability (p-value < 0.001) on the 297-subject dataset. The second approach leverages pervasive "smart lighting" infrastructure to track human location and predict activities. A use case oriented design methodology is considered to guide the design of sensor operation parameters for localization performance metrics from a system perspective. Integrating a network of low-resolution time-of-flight sensors in ceiling fixtures, a recursive 3D location estimation formulation is established that links a physical indoor space to an analytical simulation framework. Based on indoor location information, a label-free clustering-based method is developed to learn user behaviors and activity patterns. Location datasets are collected when users are performing unconstrained and uninstructed activities in the smart lighting testbed under different layout configurations. Results show that the activity recognition performance measured in terms of CCR ranges from approximately 90% to 100% throughout a wide range of spatio-temporal resolutions on these location datasets, insensitive to the reconfiguration of environment layout and the presence of multiple users.2017-02-17T00:00:00
    corecore