6 research outputs found

    Smartening the Environment using Wireless Sensor Networks in a Developing Country

    Get PDF
    The miniaturization process of various sensing devices has become a reality by enormous research and advancements accomplished in Micro Electro-Mechanical Systems (MEMS) and Very Large Scale Integration (VLSI) lithography. Regardless of such extensive efforts in optimizing the hardware, algorithm, and protocols for networking, there still remains a lot of scope to explore how these innovations can all be tied together to design Wireless Sensor Networks (WSN) for smartening the surrounding environment for some practical purposes. In this paper we explore the prospects of wireless sensor networks and propose a design level framework for developing a smart environment using WSNs, which could be beneficial for a developing country like Bangladesh. In connection to this, we also discuss the major aspects of wireless sensor networks.Comment: 5 page

    Improved Correction Localization Algorithm Based on Dynamic Weighted Centroid for Wireless Sensor Networks

    Get PDF
    Abstract: For wireless sensor network applications that require location information for sensor nodes, locations of nodes can be estimated by a number of localization algorithms. However, precise location information may be unavailable due to the constraint in energy, computation, or terrain. An improved correction localization algorithm based on dynamic weighted centroid for wireless sensor networks was proposed in this paper. The idea is that each anchor node computes its position error through its neighbor anchor nodes in its range, the position error will be transform to distance error, according the distance between unknown node and anchor node and the anchor node's distance error, the dynamic weighted value will be computed. For each unknown node, it can use the coordinate of anchor node in its range and the dynamic weighted value to compute it's coordinate. Simulation results show that the localization accuracy of the proposed algorithm is better than the traditional centroid localization algorithm and weighted centroid localization algorithm, the position error of three algorithms is decreased along radius increasing, where the decreased trend of our algorithm is significant

    Secure protocol for ad hoc transportation system

    Full text link
    Abstract—We define an ad hoc transportation system as one that has no infrastructure such as roads (and lanes), traffic lights etc. We assume that in such a system the vehicle are autonomic and can guide and direct themselves without a human driver. In this paper we investigate how a safe distance can be maintained between vehicles. A vehicle which has been compromised by an adversary can cause serious chaos and accidents in such a network (a denial of service type of attack). A simple key management scheme is then introduced to ensure secure communications between the components of the system. Keywords–collision avoidance, cyber-physical systems, secure communications I

    An Integrated environment for data acquisition with dynamic changes in wireless sensor networks

    Get PDF
    The wireless sensor network (WSN) is an important technology with a wide variety of diverse applications in such domains as healthcare, military forces and environmental monitoring. Our research aims at developing methods and tools capable of addressing WSN problems such as energy constraint, low memory, and computation capability of a sensor node by implementing a new WSN design concept, improving existing and developing new protocols. Our research goal is to develop novel generic methodologies supporting a higher level of design flexibility and possible architectural optimization against multiple criteria such as the quality of data (QoD), quality of service (QoS), and lifetime extension. Application requirements may vary in terms of abovementioned parameters and consequently there is no single platform that can be applied to all domains. Moreover, current methods do not provide opportunities for dynamic changes of either protocols or their parameters, which might improve WSN agility and survivability in a harsh environment. This problem can be solved by integrating various protocols at different layers within a single framework and supporting their dynamic selection in order to adapt the network to varying application requirements. This thesis develops a mechanism which facilitates structural design and implementation of an Integrated Environment for Data Acquisition with Dynamic Changes (IEDADC). It features adaptation and integration of protocols, protocol switching and automatic or manual selection as well as the implementation of quality assurance and localization techniques. The design methodology is tested by implementing a SN prototype consisting of a base station and sensor nodes. Sun Small Programmable Object Technology is used as a hardware basis for this work. The software has been developed in Java programming language including the host and sensor nodes\u27 applications. The conducted experiments have confirmed the higher level of design flexibility and optimization of the following criteria: energy consumption, QoD and QoS

    Positioning and Scheduling of Wireless Sensor Networks - Models, Complexity, and Scalable Algorithms

    Get PDF

    Distributed direction-based localization in wireless sensor networks

    No full text
    [[abstract]]Location awareness is an attractive research issue in the wireless sensor network (WSN). However, precise location information may be unavailable due to the constraint in energy, computation, or terrain. Additionally, several applications can tolerate the diverse level of inaccuracy in such geographic information. Thus, this paper presents a direction-based localization scheme, DLS, whose main goal is for each sensor to determine its direction rather than its absolute position. The direction we are concerned with is the one relative to the sink. Motivated by the proposed spatial locality property, DLS considers multiple messages received for a sensor to determine its direction. Furthermore, a novel scheme, anchor deployment strategy, is also proposed for the improvement of the estimated correctness in direction of the sensor within the communication range of the sink. With the aid of the virtual dual direction coordinate (VDDC) system, DLS is able to efficiently and precisely position sensors around the axes. We evaluate DLS via simulations in terms of various numbers of sensors and communication ranges for the scenarios with different numbers of directions. The average correct rates in DLS reach approximately 94%, 86%, and 81% for the networks with 4, 8, and 16 directions, respectively. DLS achieves outstanding performance for the high density networks as well. In addition, DLS also works well regardless of the sink placement. Overall, simulation results validate the practicality of DLS, and show that DLS can effectively achieve direction estimation.[[incitationindex]]SC
    corecore