4,698 research outputs found

    A coding scheme for wireless networks with multiple antenna nodes and no channel information

    Get PDF
    In this paper, we present a coding strategy for wireless relay networks where the relay nodes are small devices with few resources, while the source and sink are equipped with multiple antennas to increase the transmission rate. We assume no channel knowledge at all, and the receiver decodes knowing none of the channel paths. This coding scheme uses distributed space-time coding techniques and is inspired by noncoherent differential space-time coding. It is shown to yield a diversity linear in the minimum number of transmit/receive antennas times the number of relays

    Cyclic Distributed Space–Time Codes for Wireless Relay Networks With No Channel Information

    Get PDF
    In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver, or relays. The coding scheme uses distributed space–time coding, that is, the relay nodes cooperate to encode the transmitted signal so that the receiver senses a space–time codeword. It is inspired by noncoherent differential techniques. The proposed strategy is available for any number of relays nodes. It is analyzed, and shown to yield a diversity linear in the number of relays. We also study the resistance of the scheme to relay node failures, and show that a network with R relay nodes and d of them down behaves, as far as diversity is concerned, as a network with R-d nodes. Finally, our construction can be easily generalized to the case where the transmitter and receiver nodes have several antennas

    Two-group decodable distributed differential space-time code for wireless relay networks based on SAST codes 2

    Get PDF
    Space-time code can be implemented in wireless relay networks when all relays cooperate to generate the code at the receiver. In this case, it is called distributed space-time code. If the channel response changes very quickly, the idea of differential space-time coding is needed to overcome the difficulty of updating the channel state information at the receiver. As a result, the transmitted signal can be demodulated without any knowledge of the channel state information at the relays or the receiver. In this paper, development of new low decoding complexity distributed differential space-time codes is considered. The developed codes are designed using semiorthogonal algebraic space-time codes. They work for networks with an even number of relays and have a two-group decodable maximum likelihood receiver. The performance of the new codes is analyzed via MATLAB simulation which demonstrates that they outperform both cyclic codes and circulant codes

    Differential Distributed Space-Time Coding with Imperfect Synchronization in Frequency-Selective Channels

    Full text link
    Differential distributed space-time coding (D-DSTC) is a cooperative transmission technique that can improve diversity in wireless relay networks in the absence of channel information. Conventionally, it is assumed that channels are flat-fading and relays are perfectly synchronized at the symbol level. However, due to the delay spread in broadband systems and the distributed nature of relay networks, these assumptions may be violated. Hence, inter-symbol interference (ISI) may appear. This paper proposes a new differential encoding and decoding process for D-DSTC systems with multiple relays over slow frequency-selective fading channels with imperfect synchronization. The proposed method overcomes the ISI caused by frequency-selectivity and is robust against synchronization errors while not requiring any channel information at the relays and destination. Moreover, the maximum possible diversity with a decoding complexity similar to that of the conventional D-DSTC is attained. Simulation results are provided to show the performance of the proposed method in various scenarios.Comment: to appear in IEEE Transaction on Wireless Communications, 201

    OFDM based Distributed Space Time Coding for Asynchronous Relay Networks

    Full text link
    Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DSTBCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.Comment: 5 pages, 2 figures, to appear in IEEE International Conference on Communications, Beijing, China, May 19-23, 200

    Noncoherent Low-Decoding-Complexity Space-Time Codes for Wireless Relay Networks

    Full text link
    The differential encoding/decoding setup introduced by Kiran et al, Oggier et al and Jing et al for wireless relay networks that use codebooks consisting of unitary matrices is extended to allow codebooks consisting of scaled unitary matrices. For such codebooks to be used in the Jing-Hassibi protocol for cooperative diversity, the conditions that need to be satisfied by the relay matrices and the codebook are identified. A class of previously known rate one, full diversity, four-group encodable and four-group decodable Differential Space-Time Codes (DSTCs) is proposed for use as Distributed DSTCs (DDSTCs) in the proposed set up. To the best of our knowledge, this is the first known low decoding complexity DDSTC scheme for cooperative wireless networks.Comment: 5 pages, no figures. To appear in Proceedings of IEEE ISIT 2007, Nice, Franc

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Differential Distributed Space-Time Coding with Imperfect Synchronization

    Full text link
    Differential distributed space-time coding (D-DSTC) has been considered to improve both diversity and data-rate in cooperative communications in the absence of channel information. However, conventionally, it is assumed that relays are perfectly synchronized in the symbol level. In practice, this assumption is easily violated due to the distributed nature of the relay networks. This paper proposes a new differential encoding and decoding process for D-DSTC systems with two relays. The proposed method is robust against synchronization errors and does not require any channel information at the destination. Moreover, the maximum possible diversity and symbol-by-symbol decoding are attained. Simulation results are provided to show the performance of the proposed method for various synchronization errors and the fact that our algorithm is not sensitive to synchronization error.Comment: to appear in IEEE Globecom, 201

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe
    corecore