2,025 research outputs found

    Finding Academic Experts on a MultiSensor Approach using Shannon's Entropy

    Full text link
    Expert finding is an information retrieval task concerned with the search for the most knowledgeable people, in some topic, with basis on documents describing peoples activities. The task involves taking a user query as input and returning a list of people sorted by their level of expertise regarding the user query. This paper introduces a novel approach for combining multiple estimators of expertise based on a multisensor data fusion framework together with the Dempster-Shafer theory of evidence and Shannon's entropy. More specifically, we defined three sensors which detect heterogeneous information derived from the textual contents, from the graph structure of the citation patterns for the community of experts, and from profile information about the academic experts. Given the evidences collected, each sensor may define different candidates as experts and consequently do not agree in a final ranking decision. To deal with these conflicts, we applied the Dempster-Shafer theory of evidence combined with Shannon's Entropy formula to fuse this information and come up with a more accurate and reliable final ranking list. Experiments made over two datasets of academic publications from the Computer Science domain attest for the adequacy of the proposed approach over the traditional state of the art approaches. We also made experiments against representative supervised state of the art algorithms. Results revealed that the proposed method achieved a similar performance when compared to these supervised techniques, confirming the capabilities of the proposed framework

    Paradox Elimination in Dempster–Shafer Combination Rule with Novel Entropy Function: Application in Decision-Level Multi-Sensor Fusion

    Get PDF
    Multi-sensor data fusion technology in an important tool in building decision-making applications. Modified Dempster–Shafer (DS) evidence theory can handle conflicting sensor inputs and can be applied without any prior information. As a result, DS-based information fusion is very popular in decision-making applications, but original DS theory produces counterintuitive results when combining highly conflicting evidences from multiple sensors. An effective algorithm offering fusion of highly conflicting information in spatial domain is not widely reported in the literature. In this paper, a successful fusion algorithm is proposed which addresses these limitations of the original Dempster–Shafer (DS) framework. A novel entropy function is proposed based on Shannon entropy, which is better at capturing uncertainties compared to Shannon and Deng entropy. An 8-step algorithm has been developed which can eliminate the inherent paradoxes of classical DS theory. Multiple examples are presented to show that the proposed method is effective in handling conflicting information in spatial domain. Simulation results showed that the proposed algorithm has competitive convergence rate and accuracy compared to other methods presented in the literature

    Time-Domain Data Fusion Using Weighted Evidence and Dempster–Shafer Combination Rule: Application in Object Classification

    Get PDF
    To apply data fusion in time-domain based on Dempster–Shafer (DS) combination rule, an 8-step algorithm with novel entropy function is proposed. The 8-step algorithm is applied to time-domain to achieve the sequential combination of time-domain data. Simulation results showed that this method is successful in capturing the changes (dynamic behavior) in time-domain object classification. This method also showed better anti-disturbing ability and transition property compared to other methods available in the literature. As an example, a convolution neural network (CNN) is trained to classify three different types of weeds. Precision and recall from confusion matrix of the CNN are used to update basic probability assignment (BPA) which captures the classification uncertainty. Real data of classified weeds from a single sensor is used test time-domain data fusion. The proposed method is successful in filtering noise (reduce sudden changes—smoother curves) and fusing conflicting information from the video feed. Performance of the algorithm can be adjusted between robustness and fast-response using a tuning parameter which is number of time-steps(ts)

    A Simple Proportional Conflict Redistribution Rule

    Full text link
    One proposes a first alternative rule of combination to WAO (Weighted Average Operator) proposed recently by Josang, Daniel and Vannoorenberghe, called Proportional Conflict Redistribution rule (denoted PCR1). PCR1 and WAO are particular cases of WO (the Weighted Operator) because the conflicting mass is redistributed with respect to some weighting factors. In this first PCR rule, the proportionalization is done for each non-empty set with respect to the non-zero sum of its corresponding mass matrix - instead of its mass column average as in WAO, but the results are the same as Ph. Smets has pointed out. Also, we extend WAO (which herein gives no solution) for the degenerate case when all column sums of all non-empty sets are zero, and then the conflicting mass is transferred to the non-empty disjunctive form of all non-empty sets together; but if this disjunctive form happens to be empty, then one considers an open world (i.e. the frame of discernment might contain new hypotheses) and thus all conflicting mass is transferred to the empty set. In addition to WAO, we propose a general formula for PCR1 (WAO for non-degenerate cases).Comment: 21 page

    Evidence Propagation and Consensus Formation in Noisy Environments

    Full text link
    We study the effectiveness of consensus formation in multi-agent systems where there is both belief updating based on direct evidence and also belief combination between agents. In particular, we consider the scenario in which a population of agents collaborate on the best-of-n problem where the aim is to reach a consensus about which is the best (alternatively, true) state from amongst a set of states, each with a different quality value (or level of evidence). Agents' beliefs are represented within Dempster-Shafer theory by mass functions and we investigate the macro-level properties of four well-known belief combination operators for this multi-agent consensus formation problem: Dempster's rule, Yager's rule, Dubois & Prade's operator and the averaging operator. The convergence properties of the operators are considered and simulation experiments are conducted for different evidence rates and noise levels. Results show that a combination of updating on direct evidence and belief combination between agents results in better consensus to the best state than does evidence updating alone. We also find that in this framework the operators are robust to noise. Broadly, Yager's rule is shown to be the better operator under various parameter values, i.e. convergence to the best state, robustness to noise, and scalability.Comment: 13th international conference on Scalable Uncertainty Managemen

    Continuous Improvement Through Knowledge-Guided Analysis in Experience Feedback

    Get PDF
    Continuous improvement in industrial processes is increasingly a key element of competitiveness for industrial systems. The management of experience feedback in this framework is designed to build, analyze and facilitate the knowledge sharing among problem solving practitioners of an organization in order to improve processes and products achievement. During Problem Solving Processes, the intellectual investment of experts is often considerable and the opportunities for expert knowledge exploitation are numerous: decision making, problem solving under uncertainty, and expert configuration. In this paper, our contribution relates to the structuring of a cognitive experience feedback framework, which allows a flexible exploitation of expert knowledge during Problem Solving Processes and a reuse such collected experience. To that purpose, the proposed approach uses the general principles of root cause analysis for identifying the root causes of problems or events, the conceptual graphs formalism for the semantic conceptualization of the domain vocabulary and the Transferable Belief Model for the fusion of information from different sources. The underlying formal reasoning mechanisms (logic-based semantics) in conceptual graphs enable intelligent information retrieval for the effective exploitation of lessons learned from past projects. An example will illustrate the application of the proposed approach of experience feedback processes formalization in the transport industry sector
    • …
    corecore