19 research outputs found

    Designing Fully Distributed Consensus Protocols for Linear Multi-agent Systems with Directed Graphs

    Full text link
    This paper addresses the distributed consensus protocol design problem for multi-agent systems with general linear dynamics and directed communication graphs. Existing works usually design consensus protocols using the smallest real part of the nonzero eigenvalues of the Laplacian matrix associated with the communication graph, which however is global information. In this paper, based on only the agent dynamics and the relative states of neighboring agents, a distributed adaptive consensus protocol is designed to achieve leader-follower consensus for any communication graph containing a directed spanning tree with the leader as the root node. The proposed adaptive protocol is independent of any global information of the communication graph and thereby is fully distributed. Extensions to the case with multiple leaders are further studied.Comment: 16 page, 3 figures. To appear in IEEE Transactions on Automatic Contro

    Distributed Consensus of Linear Multi-Agent Systems with Adaptive Dynamic Protocols

    Full text link
    This paper considers the distributed consensus problem of multi-agent systems with general continuous-time linear dynamics. Two distributed adaptive dynamic consensus protocols are proposed, based on the relative output information of neighboring agents. One protocol assigns an adaptive coupling weight to each edge in the communication graph while the other uses an adaptive coupling weight for each node. These two adaptive protocols are designed to ensure that consensus is reached in a fully distributed fashion for any undirected connected communication graphs without using any global information. A sufficient condition for the existence of these adaptive protocols is that each agent is stabilizable and detectable. The cases with leader-follower and switching communication graphs are also studied.Comment: 17 pages, 5 figue

    Adaptive Second-Order Synchronization of Two Heterogeneous Nonlinear Coupled Networks

    Get PDF
    This paper investigates the second-order synchronization of two heterogeneous nonlinear coupled networks by introducing controller and adaptive laws. Based on Lyapunov stability properties and LaSalle invariance principle, it is proved that the position and the velocity of two heterogeneous nonlinear coupled networks are asymptotically stable. Finally, some numerical simulations are presented to verify the analytical results

    Distributed sampled-data control of nonholonomic multi-robot systems with proximity networks

    Full text link
    This paper considers the distributed sampled-data control problem of a group of mobile robots connected via distance-induced proximity networks. A dwell time is assumed in order to avoid chattering in the neighbor relations that may be caused by abrupt changes of positions when updating information from neighbors. Distributed sampled-data control laws are designed based on nearest neighbour rules, which in conjunction with continuous-time dynamics results in hybrid closed-loop systems. For uniformly and independently initial states, a sufficient condition is provided to guarantee synchronization for the system without leaders. In order to steer all robots to move with the desired orientation and speed, we then introduce a number of leaders into the system, and quantitatively establish the proportion of leaders needed to track either constant or time-varying signals. All these conditions depend only on the neighborhood radius, the maximum initial moving speed and the dwell time, without assuming a prior properties of the neighbor graphs as are used in most of the existing literature.Comment: 15 pages, 3 figure

    Fully Distributed Adaptive Controllers for Cooperative Output Regulation of Heterogeneous Linear Multi-agent Systems with Directed Graphs

    Full text link
    This paper considers the cooperative output regulation problem for linear multi-agent systems with a directed communication graph, heterogeneous linear subsystems, and an exosystem whose output is available to only a subset of subsystems. Both the cases with nominal and uncertain linear subsystems are studied. For the case with nominal linear subsystems, a distributed adaptive observer-based controller is designed, where the distributed adaptive observer is implemented for the subsystems to estimate the exogenous signal. For the case with uncertain linear subsystems, the proposed distributed observer and the internal model principle are combined to solve the robust cooperative output regulation problem. Compared with the existing works, one main contribution of this paper is that the proposed control schemes can be designed and implemented by each subsystem in a fully distributed fashion for general directed graphs. For the special case with undirected graphs, a distributed output feedback control law is further presented.Comment: 8 pages, 2 figures. submitted for publicatio
    corecore