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This paper investigates the second-order synchronization of two heterogeneous nonlinear coupled networks by introducing
controller and adaptive laws. Based on Lyapunov stability properties and LaSalle invariance principle, it is proved that the position
and the velocity of two heterogeneous nonlinear coupled networks are asymptotically stable. Finally, some numerical simulations
are presented to verify the analytical results.

1. Introduction

In recent years, people have paid more attention to the
synchronization problem of complex networks due to their
broad applications, such as biology, physics, communication,
computer, and the traffic [1–3].

Various models and algorithms about complex networks
have been investigated based on different tasks or interests.
To achieve the synchronization of complex networks, the
adaptive strategy is one of the most interesting topics on
the synchronization problem of complex networks. In [4],
the authors introduced an adaptive synchronization scheme
in complex networks which was linked through nonlinearly
coupling. [5] considered the consensus problems of mul-
tiagent systems with second-order nonlinear dynamics by
introducing the distributed control gains. In [6], the agents
of second-order multiagent systems were governed by both
position and velocity consensus protocol with time-varying
velocity. In [7], the authors studied the group-consensus
problem of second-order nonlinear multiagent systems.
There have been many studies about the second-order net-
works [8–11]. However, due to the limit of outside influences
and communication conditions, the dynamics of the coupling
nodes can be different; so the heterogeneous networksmodels
were proposed in [12–15]. In [16], the authors investigated
the consensus problem of heterogeneous multiagent systems.
In [17], the authors discussed the adaptive consensus of

second-order multiagent systems with heterogeneous non-
linear dynamics and time-varying delays. In [18], the authors
studied the finite-time consensus problem of heterogeneous
multiagent systems consisting of first-order and second-
order integrator agents. In [19], the authors investigated the
containment control problem of heterogeneous multiagent
systems. The recent papers focus on the synchronization of
single network [20, 21]. However, the synchronization can
also occur in two or more networks [22, 23], such as the
inside doors and the outside doors of city subways. In [24], the
authors investigated the synchronization between two cou-
pled complex networks. In [25], the authors further solved the
synchronization problem of two nonlinear coupled networks.
In [26], the number of nodes, dynamics, and topological
structures of the two complex networks were different. How-
ever, the second-order synchronization of two heterogeneous
nonlinear coupled networks has not been investigated.

Motivated by this, in this paper, we focus on the problem
of adaptive second-order synchronization of two heteroge-
neous nonlinear coupled networks. The main contributions
of this paper are threefold: (1) the nonlinear intrinsic dynam-
ics of each node is heterogeneous; (2) the synchronization
occurs in the two heterogeneous nonlinear coupled networks;
(3) controller and adaptive laws are introduced to solve
the second-order synchronization of the two heterogeneous
nonlinear coupled networks. Particularly, even if the topolog-
ical structure is unknown, the two heterogeneous nonlinear
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networks can achieve synchronization by introducing the
suitable controller and adaptive laws.

This paper is organized as follows. In Section 2, the
second-order models of two heterogeneous nonlinear cou-
pled networks are given. Moreover, some preliminaries are
introduced to solve the adaptive synchronization. Section 3
presents the main results and the theoretical analysis of the
second-order synchronization of two heterogeneous non-
linear coupled networks. Some numerical simulations of
the theoretical results are given in Section 4. Finally, the
conclusion is made in Section 5.

2. Preliminaries and Problem Statement

Consider the second-order models of two heterogeneous
nonlinear coupled networks consisting of 𝑁 identical nodes
described by

𝑥̇
𝑖 (𝑡) = V

𝑖 (𝑡)

V̇
𝑖 (𝑡)

= 𝑓
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡)) + ∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

+ 𝜉 (𝑓
𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡)) − 𝑔

𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡))) + 𝑢

𝑖
,

(1)
̇𝑞
𝑖 (𝑡) = 𝑝

𝑖 (𝑡)

𝑝̇
𝑖 (𝑡)

= 𝑔
𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡)) + ∑

𝑗∈N𝑖

𝜇3𝑏𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇4𝑏𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

+ (1− 𝜉) (𝑓𝑖 (𝑡, 𝑞𝑖 (𝑡) , 𝑝𝑖 (𝑡)) − 𝑔
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡))) ,

(2)

where 𝑥
𝑖
(𝑡) = (𝑥

𝑖1(𝑡), 𝑥𝑖2(𝑡), . . . , 𝑥𝑖𝑛(𝑡))
𝑇

∈ 𝑅
𝑛, 𝑞
𝑖
(𝑡) =

(𝑞
𝑖1(𝑡), 𝑞𝑖2(𝑡), . . . , 𝑞𝑖𝑛(𝑡))

𝑇
∈ 𝑅
𝑛 (𝑖 = 1, 2, . . . , 𝑁) describe

the position vectors of networks (1) and (2), respectively,
and V

𝑖
(𝑡) = (V

𝑖1(𝑡), V𝑖2(𝑡), . . . , V𝑖𝑛(𝑡))
𝑇

∈ 𝑅
𝑛, 𝑝
𝑖
(𝑡) =

(𝑝
𝑖1(𝑡), 𝑝𝑖2(𝑡), . . . , 𝑝𝑖𝑛(𝑡))

𝑇
∈ 𝑅
𝑛
(𝑖 = 1, 2, . . . , 𝑁) are their

velocity vectors, respectively. 𝑓
𝑖
: 𝑅
𝑛

→ 𝑅
𝑛 and 𝑔

𝑖
: 𝑅
𝑛

→

𝑅
𝑛 are continuous functions. 𝜇

𝑖
> 0 (𝑖 = 1, 2, 3, 4) are the

position and velocity coupling strengths in two networks,
respectively. 𝐴 = [𝑎

𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 and 𝐵 = [𝑏
𝑖𝑗
] ∈ 𝑅

𝑛×𝑛 denote
the coupling configurations of the two networks, respectively.
If there exists communication channel between node 𝑖 and
node 𝑗, then 𝑎

𝑖𝑗
> 0, 𝑏

𝑖𝑗
> 0 (𝑖 ̸= 𝑗); otherwise, 𝑎

𝑖𝑗
= 0,

𝑏
𝑖𝑗

= 0 (𝑖 ̸= 𝑗), and the diagonal elements are defined as
𝑎
𝑖𝑖
= −∑

𝑁

𝑗=1,𝑗 ̸=𝑖 𝑎𝑖𝑗, 𝑏𝑖𝑖 = −∑
𝑁

𝑗=1,𝑗 ̸=𝑖 𝑏𝑖𝑗.𝑁𝑖 is the neighbor set of
node 𝑖. 0 ≤ 𝜉 ≤ 1 describe the nonlinear coupling parameter
of both networks. 𝑢

𝑖
is the controller of network.

Define the position error and velocity error of the 𝑖th node
as

𝑚
𝑖 (𝑡) = 𝑥

𝑖 (𝑡) − 𝑞
𝑖 (𝑡)

𝑛
𝑖 (𝑡) = V

𝑖 (𝑡) − 𝑝
𝑖 (𝑡) .

(3)

Differentiating𝑚
𝑖
(𝑡) and 𝑛

𝑖
(𝑡), then

𝑚̇
𝑖 (𝑡) = 𝑥̇

𝑖 (𝑡) − ̇𝑞
𝑖 (𝑡) = V

𝑖 (𝑡) − 𝑝
𝑖 (𝑡) = 𝑛

𝑖 (𝑡)

̇𝑛
𝑖 (𝑡)

= 𝑓
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡)) + ∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡)) − 𝑔

𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇3𝑏𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇4𝑏𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

+ (2𝜉 − 1) (𝑓𝑖 (𝑡, 𝑞𝑖 (𝑡) , 𝑝𝑖 (𝑡)) − 𝑔
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡)))

+ 𝑢
𝑖
.

(4)

Denoting 𝑎
𝑖𝑗
= 𝑎
𝑖𝑗
− 𝑎
𝑖𝑗
and 𝑏̃
𝑖𝑗
= 𝑏
𝑖𝑗
− 𝑏̂
𝑖𝑗
, we can have

̇̃𝑎
𝑖𝑗
= − ̇̂𝑎
𝑖𝑗
= − (𝑛

𝑖
+𝑚
𝑖
)
𝑇

⋅ (𝜇1 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡)) + 𝜇2 (V𝑗 (𝑡) − V

𝑖 (𝑡))) ,

̇̃
𝑏
𝑖𝑗
= −

̇̂
𝑏
𝑖𝑗
= (𝑛
𝑖
+𝑚
𝑖
)
𝑇

⋅ (𝜇3 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡)) + 𝜇4 (𝑝𝑗 (𝑡) − 𝑝

𝑖 (𝑡))) ,

𝐸̇
𝑖
= − 2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
.

(5)

The controller is designed as

𝑢
𝑖 (𝑡) = − 2𝜉 (𝑓

𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡)) − 𝑔

𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡)))

+ 𝐸
𝑖
(𝑚
𝑖 (𝑡) + 𝑛

𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇3𝑏̂𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇4𝑏̂𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡)) .

(6)



Mathematical Problems in Engineering 3

Combining (6), system (4) can be rewritten as

𝑚̇
𝑖 (𝑡) = 𝑛

𝑖 (𝑡)

̇𝑛
𝑖 (𝑡) = 𝑓

𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡)) −𝑓

𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

+ 𝑔
𝑖
(𝑡, 𝑥
𝑖 (𝑡) , V𝑖 (𝑡)) − 𝑔

𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇3𝑏̃𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇4𝑏̃𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

+ 𝐸
𝑖
(𝑚
𝑖 (𝑡) + 𝑛

𝑖 (𝑡)) .

(7)

In the following, the necessary definition, assumption,
and lemma will be presented for discussing the second-order
synchronization of two heterogeneous nonlinear coupled
networks.

Definition 1. Networks (1) and (2) are said to achieve second-
order synchronization if

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑞
𝑖 (𝑡)

󵄩󵄩󵄩󵄩 = 0

lim
𝑡→∞

󵄩󵄩󵄩󵄩V𝑖 (𝑡) − 𝑝
𝑖 (𝑡)

󵄩󵄩󵄩󵄩 = 0;
(8)

that is,
lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑚𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 0

lim
𝑡→∞

󵄩󵄩󵄩󵄩𝑛𝑖 (𝑡)
󵄩󵄩󵄩󵄩 = 0,

(9)

for 𝑖 = 1, 2, . . . , 𝑁.

Assumption 2. For every 𝑓
𝑖
of network (1) and 𝑔

𝑖
of network

(2) (∀𝑥, V, 𝑞, 𝑝 ∈ 𝑅
𝑛), there exist the constants 𝜌1 > 0, 𝜌2 > 0

such that
󵄩󵄩󵄩󵄩𝑓𝑖 (𝑡, 𝑥𝑖 (𝑡) , V𝑖 (𝑡)) −𝑓

𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡))

󵄩󵄩󵄩󵄩

≤ 𝜌1 (
󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑞

𝑖 (𝑡)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩V𝑖 (𝑡) − 𝑝
𝑖 (𝑡)

󵄩󵄩󵄩󵄩) ,

󵄩󵄩󵄩󵄩𝑔𝑖 (𝑡, 𝑥𝑖 (𝑡) , V𝑖 (𝑡)) − 𝑔
𝑖
(𝑡, 𝑞
𝑖 (𝑡) , 𝑝𝑖 (𝑡))

󵄩󵄩󵄩󵄩

≤ 𝜌2 (
󵄩󵄩󵄩󵄩𝑥𝑖 (𝑡) − 𝑞

𝑖 (𝑡)
󵄩󵄩󵄩󵄩 +

󵄩󵄩󵄩󵄩V𝑖 (𝑡) − 𝑝
𝑖 (𝑡)

󵄩󵄩󵄩󵄩) .

(10)

Lemma 3 (see [17]). For any vectors 𝑥, 𝑦 ∈ 𝑅
𝑛 and positive

definite matrix 𝐺 ∈ 𝑅
𝑛×𝑛, the following matrix inequality

holds:

2𝑥𝑇𝑦 ≤ 𝑥
𝑇
𝐺𝑥+𝑦

𝑇
𝐺
−1
𝑦. (11)

3. Main Results

In this section, we will investigate the second-order synchro-
nization of two heterogeneous nonlinear coupled networks
and provide the detailed analysis.

Theorem4. Consider networks (1) and (2) steered by (6) under
Assumption 2, then the position and velocity of each node can
asymptotically synchronize.

Proof. Constructing the Lyapunov function,

𝑉 (𝑡) = 𝑉1 (𝑡) +𝑉2 (𝑡) +𝑉3 (𝑡) , (12)

where

𝑉1 (𝑡) =
1
2

𝑁

∑

𝑖=1
(𝑚
𝑖 (𝑡) + 𝑛

𝑖 (𝑡))
𝑇
(𝑚
𝑖 (𝑡) + 𝑛

𝑖 (𝑡)) ,

𝑉2 (𝑡) =
1
2

𝑁

∑

𝑖=1
∑

𝑗∈N𝑖

𝑏̃
2
𝑖𝑗
+
1
2

𝑁

∑

𝑖=1
∑

𝑗∈N𝑖

𝑎
2
𝑖𝑗
,

𝑉3 (𝑡) =
1
2

𝑁

∑

𝑖=1
(𝐸
𝑖
+ 𝑘
𝑖
)
2
,

(13)

and where 𝑘
𝑖
is a positive constant.

Differentiating 𝑉1(𝑡), then

𝑉̇1 (𝑡) =
𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
̇𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
̇𝑛
𝑖
≤
1
2

⋅

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+
3
2

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

̇𝑛
𝑖
≤
1
2

⋅

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+
3
2

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇[

[

𝜌1 (𝑚𝑖 + 𝑛
𝑖
)

+ ∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡)) + 𝜌2 (𝑚𝑖 + 𝑛

𝑖
)

− ∑

𝑗∈N𝑖

𝜇3𝑏̃𝑖𝑗 (𝑞j (𝑡) − 𝑞
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇4𝑏̃𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡)) + 𝐸

𝑖
(𝑚
𝑖
+ 𝑛
𝑖
)]

]

=
1
2

⋅

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+
3
2

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇
(𝜌1 +𝜌2) (𝑚𝑖

+ 𝑛
𝑖
) +

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇[

[

∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

⋅ [

[

− ∑

𝑗∈N𝑖

𝜇3𝑏̃𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))
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− ∑

𝑗∈N𝑖

𝜇4𝑏̃𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇
𝐸
𝑖
(𝑚
𝑖

+ 𝑛
𝑖
) =

1
2

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+
3
2

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝜌𝑚
𝑖

+

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝜌𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝜌𝑚
𝑖
+

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝜌𝑛
𝑖
+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

⋅ [

[

∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

⋅ [

[

− ∑

𝑗∈N𝑖

𝜇3𝑏̃𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇4𝑏̃𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇
𝐸
𝑖
(𝑚
𝑖

+ 𝑛
𝑖
) ≤

1
2

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+
3
2

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+𝜌

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖

+𝜌

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+𝜌

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+𝜌

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

⋅ [

[

∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

⋅ [

[

− ∑

𝑗∈N𝑖

𝜇3𝑏̃𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇4𝑏̃𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇
𝐸
𝑖
(𝑚
𝑖

+ 𝑛
𝑖
) = (

1
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+(

3
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇[

[

∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇

⋅ [

[

− ∑

𝑗∈N𝑖

𝜇3𝑏̃𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇4𝑏̃𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

]

]

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇
𝐸
𝑖
(𝑚
𝑖

+ 𝑛
𝑖
) ,

(14)

where 𝜌 = 𝜌1 + 𝜌2.
Differentiating 𝑉2(𝑡), we get

𝑉̇2 (𝑡) =
𝑁

∑

𝑖=1
∑

𝑗∈N𝑖

𝑏̃
𝑖𝑗

̇̃
𝑏
𝑖𝑗
+

𝑁

∑

𝑖=1
∑

𝑗∈N𝑖

𝑎
𝑖𝑗

̇̃𝑎
𝑖𝑗

=

𝑁

∑

𝑖=1
∑

𝑗∈N𝑖

𝑏̃
𝑖𝑗
(𝑛
𝑖
+𝑚
𝑖
)
𝑇

⋅ [𝜇3 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡)) + 𝜇4 (𝑝𝑗 (𝑡) − 𝑝

𝑖 (𝑡))]

+

𝑁

∑

𝑖=1
∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑛
𝑖
+𝑚
𝑖
)
𝑇

⋅ [−𝜇1 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡)) − 𝜇2 (V𝑗 (𝑡) − V

𝑖 (𝑡))] .

(15)

Differentiating 𝑉3(𝑡), then

𝑉̇3 (𝑡) =
𝑁

∑

𝑖=1
(𝐸
𝑖
+ 𝑘
𝑖
) 𝐸̇
𝑖
=

𝑁

∑

𝑖=1
𝐸
𝑖
𝐸̇
𝑖
+

𝑁

∑

𝑖=1
𝑘
𝑖
𝐸̇
𝑖

=

𝑁

∑

𝑖=1
𝐸
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)

+

𝑁

∑

𝑖=1
𝑘
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
) .

(16)

Combining 𝑉̇1(𝑡), 𝑉̇2(𝑡), and 𝑉̇3(𝑡), then we can have

𝑉̇ (𝑡) ≤ (
1
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+(

3
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖

+

𝑁

∑

𝑖=1
(𝑚
𝑖
+ 𝑛
𝑖
)
𝑇
𝐸
𝑖
(𝑚
𝑖
+ 𝑛
𝑖
)

+

𝑁

∑

𝑖=1
𝐸
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)

+

𝑁

∑

𝑖=1
𝑘
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)

= (
1
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+(

3
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖

+

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝐸
𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝐸
𝑖
𝑛
𝑖
+

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝐸
𝑖
𝑚
𝑖

+

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝐸
𝑖
𝑚
𝑖
+

𝑁

∑

𝑖=1
𝐸
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)



Mathematical Problems in Engineering 5

+

𝑁

∑

𝑖=1
𝑘
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)

≤ (
1
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+(

3
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖

+ 2
𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝐸
𝑖
𝑚
𝑖
+ 2
𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝐸
𝑖
𝑛
𝑖

+

𝑁

∑

𝑖=1
𝐸
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)

+

𝑁

∑

𝑖=1
𝑘
𝑖
(−2 󵄩󵄩󵄩󵄩𝑛𝑖

󵄩󵄩󵄩󵄩

2
− 2 󵄩󵄩󵄩󵄩𝑚𝑖

󵄩󵄩󵄩󵄩

2
)

= (
1
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑚
𝑇

𝑖
𝑚
𝑖
+(

3
2
+ 2𝜌)

𝑁

∑

𝑖=1
𝑛
𝑇

𝑖
𝑛
𝑖

− 2𝑘
𝑖

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑚𝑖
󵄩󵄩󵄩󵄩

2
− 2𝑘
𝑖

𝑁

∑

𝑖=1

󵄩󵄩󵄩󵄩𝑛𝑖
󵄩󵄩󵄩󵄩

2
≤ 0,

(17)

if 𝑘
𝑖
≥ 3/4 + 𝜌. Based on LaSalle invariance principle, we

can know that, for any initial states, the error solution will
tend to zero, which implies that networks (1) and (2) can
asymptotically synchronize with controller (6).

Remark 5. When the topology structure is unknown, the
two heterogeneous nonlinear coupled networks also can be
asymptotically synchronized by controller (6).

Corollary 6. If the coupled networks (1) and (2) have the iden-
tical dynamics, the networks can asymptotically synchronize
through the following controller:

𝑢
𝑖 (𝑡) = − ∑

𝑗∈N𝑖

𝜇1𝑎𝑖𝑗 (𝑥𝑗 (𝑡) − 𝑥
𝑖 (𝑡))

− ∑

𝑗∈N𝑖

𝜇2𝑎𝑖𝑗 (V𝑗 (𝑡) − V
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇3𝑏̂𝑖𝑗 (𝑞𝑗 (𝑡) − 𝑞
𝑖 (𝑡))

+ ∑

𝑗∈N𝑖

𝜇4𝑏̂𝑖𝑗 (𝑝𝑗 (𝑡) − 𝑝
𝑖 (𝑡))

+ 𝐸
𝑖
(𝑚
𝑖 (𝑡) + 𝑛

𝑖 (𝑡)) ,

(18)

where 𝑎
𝑖𝑗
, 𝑏̂
𝑖𝑗
, 𝐸
𝑖
are the same as Theorem 4.

4. Simulations

In this section, several numerical simulations are given to
illustrate the analytical results.
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Figure 1: The error trajectories for velocity with controllers.

We choose Lorentz system of two different parameters
as nonlinear dynamics of networks (1) and (2). The Lorentz
system is described as the following:

𝑥̇ (𝑡) = V (𝑡)

V̇ (𝑡) =

{{{{

{{{{

{

𝛼(V
𝑦
− V
𝑥
)

𝛽V
𝑥
− V
𝑥
V
𝑧
− V
𝑦

V
𝑥
V
𝑦
− 𝛾V
𝑦
,

(19)

where 𝛼, 𝛽, and 𝛾 are the parameters. For network (1), let 𝛼 =

10, 𝛽 = 28, and 𝛾 = 8/3; and for network (2), let 𝛼 = 16,
𝛽 = 4, and 𝛾 = 45.92.

The coupling matrixes of networks (1) and (2) with four
nodes, respectively, are described by the following matrixes:

𝐴 =

[
[
[
[
[

[

−2 1 0 1
1 −2 1 0
0 1 −1 0
1 0 0 −1

]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[

[

−2 1 0 1
1 −2 1 0
0 1 −2 1
1 0 1 −2

]
]
]
]
]

]

.

(20)

With controller (6), it can be found that the velocity
and position of networks (1) and (2) can synchronize to
the synchronous state, described as Figures 1-2, respectively.
However, if networks (1) and (2) without the controller are in
the same conditions, we can find that velocity and position of
the networks cannot achieve synchronization, when 𝜉 = 0.1.
The simulations are shown in Figures 3 and 4.
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Figure 2: The error trajectories for position with controllers.
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Figure 3: The error trajectories for velocity without controllers.

5. Conclusion

In this paper, we have considered the adaptive second-order
synchronization of two heterogeneous nonlinear coupled
networks. By constructing a valid Lyapunov function, we
have proved that the networks can achieve asymptotically
synchronization with the given controller and adaptive laws.
Particularly, even if the topological structure is unknown, the
networks also can be synchronized by the given controller
and adaptive laws.
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Figure 4: The error trajectories for position without controllers.
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