3,480 research outputs found

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    Survey on wireless technology trade-offs for the industrial internet of things

    Get PDF
    Aside from vast deployment cost reduction, Industrial Wireless Sensor and Actuator Networks (IWSAN) introduce a new level of industrial connectivity. Wireless connection of sensors and actuators in industrial environments not only enables wireless monitoring and actuation, it also enables coordination of production stages, connecting mobile robots and autonomous transport vehicles, as well as localization and tracking of assets. All these opportunities already inspired the development of many wireless technologies in an effort to fully enable Industry 4.0. However, different technologies significantly differ in performance and capabilities, none being capable of supporting all industrial use cases. When designing a network solution, one must be aware of the capabilities and the trade-offs that prospective technologies have. This paper evaluates the technologies potentially suitable for IWSAN solutions covering an entire industrial site with limited infrastructure cost and discusses their trade-offs in an effort to provide information for choosing the most suitable technology for the use case of interest. The comparative discussion presented in this paper aims to enable engineers to choose the most suitable wireless technology for their specific IWSAN deployment

    Detection of Link Failures and Autonomous Reconfiguration in WMNs

    Get PDF
    During their lifetime, multihop wireless mesh networks (WMNs) experience frequent link failures caused by channel interference, dynamic obstacles, and/or applications’ bandwidth demands. By reconfiguring these link failures ARS generates an effective reconfiguration plan that requires only local network configuration changes by exploiting channel, radio, and path diversity. ARS effectively identifies reconfiguration plans that satisfy QoS constraints. And ARS's online reconfigurability allows for real-time time failure detection and network reconfiguration. ARS is mainly evaluated in IEEE 802.11a networks. It's design goal is to reconfigure from network link failures accurately. Even then WMNs face some frequent link failures. By overcome these problems  we present Localized sElf-reconfiGuration algOrithms  (LEGO) to autonomously and effectively  recnfigure from wireless link failures. First, LEGO locally detects link failures. Second, it dynamically forms/deforms a local group for cooperative network reconfiguration among local mesh routers in a fully distributed manner. Next, LEGO intelligently generates a local network reconfiguration plan. Finally, by figuring local channel utilization and reconfiguration cost in its planning, LEGO maximizes the network’s ability to meet diverse links’ QoS demands. LEGO has been implemented on a Linux-based system and experimented on a real life test bed, demonstrating its effectiveness in recovering from link failures and its improvement of channel efficiency by up to 92%. Keywords - Self-Reconfigurable Networks, Multi-Radio Wireless Networks, IEEE 802.11, WLAN access points (AP)
    • 

    corecore