196 research outputs found

    Coordinated Beamforming with Relaxed Zero Forcing: The Sequential Orthogonal Projection Combining Method and Rate Control

    Full text link
    In this paper, coordinated beamforming based on relaxed zero forcing (RZF) for K transmitter-receiver pair multiple-input single-output (MISO) and multiple-input multiple-output (MIMO) interference channels is considered. In the RZF coordinated beamforming, conventional zero-forcing interference leakage constraints are relaxed so that some predetermined interference leakage to undesired receivers is allowed in order to increase the beam design space for larger rates than those of the zero-forcing (ZF) scheme or to make beam design feasible when ZF is impossible. In the MISO case, it is shown that the rate-maximizing beam vector under the RZF framework for a given set of interference leakage levels can be obtained by sequential orthogonal projection combining (SOPC). Based on this, exact and approximate closed-form solutions are provided in two-user and three-user cases, respectively, and an efficient beam design algorithm for RZF coordinated beamforming is provided in general cases. Furthermore, the rate control problem under the RZF framework is considered. A centralized approach and a distributed heuristic approach are proposed to control the position of the designed rate-tuple in the achievable rate region. Finally, the RZF framework is extended to MIMO interference channels by deriving a new lower bound on the rate of each user.Comment: Lemma 1 proof corrected; a new SOPC algorithm invented; K > N case considere

    Energy Efficient Coordinated Beamforming for Multi-cell MISO Systems

    Full text link
    In this paper, we investigate the optimal energy efficient coordinated beamforming in multi-cell multiple-input single-output (MISO) systems with KK multiple-antenna base stations (BS) and KK single-antenna mobile stations (MS), where each BS sends information to its own intended MS with cooperatively designed transmit beamforming. We assume single user detection at the MS by treating the interference as noise. By taking into account a realistic power model at the BS, we characterize the Pareto boundary of the achievable energy efficiency (EE) region of the KK links, where the EE of each link is defined as the achievable data rate at the MS divided by the total power consumption at the BS. Since the EE of each link is non-cancave (which is a non-concave function over an affine function), characterizing this boundary is difficult. To meet this challenge, we relate this multi-cell MISO system to cognitive radio (CR) MISO channels by applying the concept of interference temperature (IT), and accordingly transform the EE boundary characterization problem into a set of fractional concave programming problems. Then, we apply the fractional concave programming technique to solve these fractional concave problems, and correspondingly give a parametrization for the EE boundary in terms of IT levels. Based on this characterization, we further present a decentralized algorithm to implement the multi-cell coordinated beamforming, which is shown by simulations to achieve the EE Pareto boundary.Comment: 6 pages, 2 figures, to be presented in IEEE GLOBECOM 201

    Achieving Global Optimality for Weighted Sum-Rate Maximization in the K-User Gaussian Interference Channel with Multiple Antennas

    Full text link
    Characterizing the global maximum of weighted sum-rate (WSR) for the K-user Gaussian interference channel (GIC), with the interference treated as Gaussian noise, is a key problem in wireless communication. However, due to the users' mutual interference, this problem is in general non-convex and thus cannot be solved directly by conventional convex optimization techniques. In this paper, by jointly utilizing the monotonic optimization and rate profile techniques, we develop a new framework to obtain the globally optimal power control and/or beamforming solutions to the WSR maximization problems for the GICs with single-antenna transmitters and single-antenna receivers (SISO), single-antenna transmitters and multi-antenna receivers (SIMO), or multi-antenna transmitters and single-antenna receivers (MISO). Different from prior work, this paper proposes to maximize the WSR in the achievable rate region of the GIC directly by exploiting the facts that the achievable rate region is a "normal" set and the users' WSR is a "strictly increasing" function over the rate region. Consequently, the WSR maximization is shown to be in the form of monotonic optimization over a normal set and thus can be solved globally optimally by the existing outer polyblock approximation algorithm. However, an essential step in the algorithm hinges on how to efficiently characterize the intersection point on the Pareto boundary of the achievable rate region with any prescribed "rate profile" vector. This paper shows that such a problem can be transformed into a sequence of signal-to-interference-plus-noise ratio (SINR) feasibility problems, which can be solved efficiently by existing techniques. Numerical results validate that the proposed algorithms can achieve the global WSR maximum for the SISO, SIMO or MISO GIC.Comment: This is the longer version of a paper to appear in IEEE Transactions on Wireless Communication

    Pareto Boundary of the Rate Region for Single-Stream MIMO Interference Channels: Linear Transceiver Design

    Full text link
    We consider a multiple-input multiple-output (MIMO) interference channel (IC), where a single data stream per user is transmitted and each receiver treats interference as noise. The paper focuses on the open problem of computing the outermost boundary (so-called Pareto boundary-PB) of the achievable rate region under linear transceiver design. The Pareto boundary consists of the strict PB and non-strict PB. For the two user case, we compute the non-strict PB and the two ending points of the strict PB exactly. For the strict PB, we formulate the problem to maximize one rate while the other rate is fixed such that a strict PB point is reached. To solve this non-convex optimization problem which results from the hard-coupled two transmit beamformers, we propose an alternating optimization algorithm. Furthermore, we extend the algorithm to the multi-user scenario and show convergence. Numerical simulations illustrate that the proposed algorithm computes a sequence of well-distributed operating points that serve as a reasonable and complete inner bound of the strict PB compared with existing methods.Comment: 16 pages, 9 figures. Accepted for publication in IEEE Tans. Signal Process. June. 201

    Efficient Computation of Pareto Optimal Beamforming Vectors for the MISO Interference Channel with Successive Interference Cancellation

    Full text link
    We study the two-user multiple-input single-output (MISO) Gaussian interference channel where the transmitters have perfect channel state information and employ single-stream beamforming. The receivers are capable of performing successive interference cancellation, so when the interfering signal is strong enough, it can be decoded, treating the desired signal as noise, and subtracted from the received signal, before the desired signal is decoded. We propose efficient methods to compute the Pareto-optimal rate points and corresponding beamforming vector pairs, by maximizing the rate of one link given the rate of the other link. We do so by splitting the original problem into four subproblems corresponding to the combinations of the receivers' decoding strategies - either decode the interference or treat it as additive noise. We utilize recently proposed parameterizations of the optimal beamforming vectors to equivalently reformulate each subproblem as a quasi-concave problem, which we solve very efficiently either analytically or via scalar numerical optimization. The computational complexity of the proposed methods is several orders-of-magnitude less than the complexity of the state-of-the-art methods. We use the proposed methods to illustrate the effect of the strength and spatial correlation of the channels on the shape of the rate region.Comment: Accepted for publication in IEEE Transactions on Signal Processin
    corecore