48 research outputs found

    Internet Traffic based Channel Selection in Multi-Radio Multi-Channel Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks(WMNs) are the outstanding technology to facilitate wireless broadband Internet access to users. Routers in WMN have multiple radio interfaces to which multiple orthogonal/partially overlapping channels are assigned to improve the capacity of WMN. This paper is focused on channel selection problem in WMN since proper channel selection to radio interfaces of mesh router increases the performance of WMN. To access the Internet through WMN, the users have to associate with one of the mesh routers. Since most of the Internet Servers are still in wired networks, the major dominant traffic of Internet users is in downlink direction i.e. from the gateway of WMN to user. This paper proposes a new method of channel selection to improve the user performance in downlink direction of Internet traffic. The method is scalable and completely distributed solution to the problem of channel selection in WMN. The simulation results indicate the significant improvement in user performance

    Distributed Time-Frequency Division Multiple Access Protocol For Wireless Sensor Networks

    Get PDF
    It is well known that biology-inspired self-maintaining algorithms in wireless sensor nodes achieve near optimum time division multiple access (TDMA) characteristics in a decentralized manner and with very low complexity. We extend such distributed TDMA approaches to multiple channels (frequencies). This is achieved by extending the concept of collaborative reactive listening in order to balance the number of nodes in all available channels. We prove the stability of the new protocol and estimate the delay until the balanced system state is reached. Our approach is benchmarked against single-channel distributed TDMA and channel hopping approaches using TinyOS imote2 wireless sensors.Comment: 4 pages, IEEE Wireless Communications Letters, to appear in 201

    An Autonomous Channel Selection Algorithm for WLANs

    Get PDF
    IEEE 802.11 wireless devices need to select a channel in order to transmit their packets. However, as a result of the contention-based nature of the IEEE 802.11 CSMA/CA MAC mechanism, the capacity experienced by a station is not fixed. When a station cannot win a sufficient number of transmission opportunities to satisfy its traffic load, it will become saturated. If the saturation condition persists, more and more packets are stored in the transmit queue and congestion occurs. Congestion leads to high packet delay and may ultimately result in catastrophic packet loss when the transmit queue’s capacity is exceeded. In this thesis, we propose an autonomous channel selection algorithm with neighbour forcing (NF) to minimize the incidence of congestion on all stations using the channels. All stations reassign the channels based on the local monitoring information. This station will change the channel once it finds a channel that has sufficient available bandwidth to satisfy its traffic load requirement or it will force its neighbour stations into saturation by reducing its PHY transmission rate if there exists at least one successful channel assignment according to a predicting module which checks all the possible channel assignments. The results from a simple C++ simulator show that the NF algorithm has a higher probability than the dynamic channel assignment without neighbour forcing (NONF) to successfully reassign the channel once stations have become congested. In an experimental testbed, the Madwifi open source wireless driver has been modified to incorporate the channel selection mechanism. The results demonstrate that the NF algorithm also has a better performance than the NONF algorithm in reducing the congestion time of the network where at least one station has become congested

    Economy of Spectrum Access in Timy Varying Multichannel Networks

    Get PDF
    We consider a wireless network consisting of two classes of potentially mobile users: primary users and secondary users. Primary users license frequency channels and transmit in their respective bands as required. Secondary users resort to unlicensed access of channels that are not used by their primary users. Primaries impose access fees on the secondaries which depend on access durations and may be different for different primary channels and different available communication rates in the channels. The available rates to the secondaries change with time depending on the usage status of the primaries and the random access quality of channels. Secondary users seek to minimize their total access cost subject to stabilizing their queues whenever possible. Our first contribution is to present a dynamic link scheduling policy that attains this objective. The computation time of this policy, however, increases exponentially with the size of the network. We next present an approximate scheduling scheme based on graph partitioning that is distributed and attains arbitrary trade-offs between aggregate access cost and computation times of the schedules, irrespective of the size of the network. Our performance guarantees hold for general arrival and primary usage statistics and multihop networks. Each secondary user is, however, primarily interested in minimizing the cost it incurs, rather than in minimizing the aggregate cost. Thus, it will schedule its transmissions so as to minimize the aggregate cost only if it perceives that the aggregate cost is shared among the users as per a fair cost sharing scheme. Using concepts from cooperative game theory, we develop a rational basis for sharing the aggregate cost among secondary sessions and present a cost sharing mechanism that conforms to the above basis

    Medium access in cognitive radio networks: From single hop to multiple hops

    Get PDF
    If channel assembling is enabled, this technique can be utilized for potential performance improvement in CRNs. Two use cases are envisaged for channel assembling. In the first use case, the system can accommodate parallel SU services in multiple channels, while in the second use case, the system allows only one SU service at a time. In the use case where parallel SU services are allowed, various channel assembling strategies are proposed and modeled in order to investigate their performance and to acquire better comprehension of the behavior of CRNs with channel assembling. Moreover, the capacity upper bound for CRNs with channel assembling in the quasistationary regime is derived. In the use case when there is only one SU service that can utilize the vacant channels at a time, we formulate channel access into two optimization problems on power allocation in multi-channel CRNs and propose various algorithms to solve these problems
    corecore