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Economy of Spectrum Access in Timy Varying Multichannel Networks

Abstract
We consider a wireless network consisting of two classes of potentially mobile users: primary users and
secondary users. Primary users license frequency channels and transmit in their respective bands as required.
Secondary users resort to unlicensed access of channels that are not used by their primary users. Primaries
impose access fees on the secondaries which depend on access durations and may be different for different
primary channels and different available communication rates in the channels. The available rates to the
secondaries change with time depending on the usage status of the primaries and the random access quality of
channels. Secondary users seek to minimize their total access cost subject to stabilizing their queues whenever
possible. Our first contribution is to present a dynamic link scheduling policy that attains this objective. The
computation time of this policy, however, increases exponentially with the size of the network. We next
present an approximate scheduling scheme based on graph partitioning that is distributed and attains arbitrary
trade-offs between aggregate access cost and computation times of the schedules, irrespective of the size of the
network. Our performance guarantees hold for general arrival and primary usage statistics and multihop
networks. Each secondary user is, however, primarily interested in minimizing the cost it incurs, rather than in
minimizing the aggregate cost. Thus, it will schedule its transmissions so as to minimize the aggregate cost
only if it perceives that the aggregate cost is shared among the users as per a fair cost sharing scheme. Using
concepts from cooperative game theory, we develop a rational basis for sharing the aggregate cost among
secondary sessions and present a cost sharing mechanism that conforms to the above basis.

Disciplines
Electrical and Computer Engineering | Engineering

Comments
Suggested Citation:
Khouzani, M.H.R. and S. Sarkar. (2010). "Economy of Spectrum Access in Time Varying Multichannel
Networks." IEEE Transactions on Mobile Computing. Vol. 9(10). pp. 1361-1376.

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/ese_papers/569

http://repository.upenn.edu/ese_papers/569?utm_source=repository.upenn.edu%2Fese_papers%2F569&utm_medium=PDF&utm_campaign=PDFCoverPages


Economy of Spectrum Access in Time
Varying Multichannel Networks

M.H.R. Khouzani and Saswati Sarkar

Abstract—We consider a wireless network consisting of two classes of potentially mobile users: primary users and secondary users.

Primary users license frequency channels and transmit in their respective bands as required. Secondary users resort to unlicensed

access of channels that are not used by their primary users. Primaries impose access fees on the secondaries which depend on

access durations and may be different for different primary channels and different available communication rates in the channels. The

available rates to the secondaries change with time depending on the usage status of the primaries and the random access quality of

channels. Secondary users seek to minimize their total access cost subject to stabilizing their queues whenever possible. Our first

contribution is to present a dynamic link scheduling policy that attains this objective. The computation time of this policy, however,

increases exponentially with the size of the network. We next present an approximate scheduling scheme based on graph partitioning

that is distributed and attains arbitrary trade-offs between aggregate access cost and computation times of the schedules, irrespective

of the size of the network. Our performance guarantees hold for general arrival and primary usage statistics and multihop networks.

Each secondary user is, however, primarily interested in minimizing the cost it incurs, rather than in minimizing the aggregate cost.

Thus, it will schedule its transmissions so as to minimize the aggregate cost only if it perceives that the aggregate cost is shared among

the users as per a fair cost sharing scheme. Using concepts from cooperative game theory, we develop a rational basis for sharing the

aggregate cost among secondary sessions and present a cost sharing mechanism that conforms to the above basis.

Index Terms—Stochastic network optimization, cognitive networks, economy of spectrum access, imperfect scheduling, graph

partitioning, cost sharing, Shapley value.

Ç

1 INTRODUCTION

IN conventional wireless networks, legacy users license
fixed spans of the spectrum. Actual measurements of

spectrum usage confirm that since access is fixed to specific
frequencies, large portions of potential bandwidth are used
only sporadically. This results in poor utilization of the
bandwidth, as low as (6 percent) [1]. As the demand for
bandwidth grows and industrial, scientific, and medical
bands (ISM) become overcrowded, higher utilization of
licensed bands becomes imperative. One strategy to over-
come the bandwidth underutilization problem, inspired by
the major success of unlicensed bands, is spectrum pooling,
in which the license owners of the channels (primaries)
permit previously specified renters (secondaries) to access
their bandwidth during the times or in locations that they
themselves do not use it [2].

The temporary underutilized bandwidth at a certain time
and location is known as a spectrum hole [3]. The advent of
cognitive radio (CR) in the form of software defined radio
(SDR) technology enabled wireless devices to continuously
scan the spectrum in search of spectrum holes and
dynamically adjust their communication parameters at the
MAC level to communicate over these frequencies with
minimal adverse effect on the primaries [4], [5]. Conse-
quently, the utilization of the bandwidth can improve
dramatically and new network capacity of commercial value

can be created out of the already allocated but underutilized
spectrum. Commercial network providers can use secondary
access to provide wireless service. For example, providers of
access networks or mesh networks can allow their users to
communicate with access points, base stations, or mesh
networks, or directly among each other through secondary
access (Fig. 1). On the other hand, the primaries need a
financial incentive for this asset sharing. In this regard, each
primary may impose access fees on the secondaries which
depend on the duration of access and the available
communication rate and can be specific to that primary user.
Specifically, a single primary user may also offer different
service rates at different prices to adjust its own revenue and
its own demand. Different primary users may have different
(frequency and space) reusability requirements. For instance,
radio and TV stations are less dependent on reusability than
cellular networks. This can reflect itself in the access costs
that they impose on the secondaries: cellular networks may
impose higher access fees.

Traffic variation of the primaries, movement of the nodes
(secondaries or primaries), and the fluctuations in the
quality of the channels lead to variable available service
rates with respect to different locations and times for
different secondaries. Each secondary session may have a
specific traffic demand and needs to transmit data at a
certain rate to its respective destination(s). The objective of
the network provider(s) is to schedule the access of the users
to the time varying available spectrum so as to minimize the
aggregate time average cost subject to meeting the traffic
demand of the users.

We thus seek to develop scheduling policies that mini-
mize the aggregate time average cost of scheduling subject to
meeting the traffic demand of all of the secondaries
whenever possible, i.e., supporting the stability region of
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the network of the secondaries. Furthermore, the scheduling
policy must not require a priori knowledge of the statistics of
the arrivals or the channels. Toward this objective, a
judicious coordinated decision for each secondary session
has to be made about which primary channels to transmit
over and with what rate, or whether a session should hold off
until a cheaper bandwidth becomes available. This decision
should depend on the prices of the available bandwidths and
the traffic demand of the sessions.

We illustrate the challenges through a simple example.
Suppose that there are two primary channels 1 and 2.
Channel 1 is available (idle) in 1/2 of the time slots and
channel 2 in 1/4. Channels are orthogonal and their
availabilities are mutually independent. Channel 1 and
channel 2, whenever available, respectively, offer 2 and
1 packet per slot (pps) of communication rates and at $3/2
and $1 per pps fees. Suppose that there is a secondary session
with arrival rate equal to 1/4 pps. Now, the question facing
the scheduler is whether the secondary should transmit over
the expensive channel 1 whenever that is the only available
channel, or wait until the cheaper channel 2 becomes
available. These decisions should be such that the time
average of the incurred cost is minimized, while the backlog
of the session does not grow unbounded. Moreover, these
decisions should not depend on the knowledge of the arrival
and channel availability rates, as a secondary user is not
typically aware of them. The scheduling decisions become
even more involved in case there is a network of secondaries
where interference constraints must also be considered, e.g.,
when there are multiple interfering sessions with different
arrival rates.

Our first contribution is to present a joint channel and rate
selection and link scheduling policy that provably attains
minimum time average aggregate cost while guaranteeing
stability for the secondary arrivals inside their capacity
region. Our scheduling policy is dynamic, that is, it does not
require any a priori knowledge about the statistics of arrivals,
usage of the primaries, quality of the channels, or mobility of
the nodes (Section 4). The time required to calculate each
schedule, however, grows exponentially with the size of the
network. This might become problematic in large networks.
Our next contribution is to present a dynamic scheduling
policy that provably attains arbitrary trade-offs between
1) time average aggregate cost subject to stability, and

2) complexity and messaging overhead of each schedule in
each time slot. The developed trade-offs are independent of
the size of the network (Section 5). We discuss in Section 6
how our algorithms can be extended to a multihop network.

The next challenge is to develop a rational basis for
sharing the aggregate scheduling cost among the sessions.
This goal is motivated by the fact that each session is
interested in minimizing its own cost rather than the
aggregate cost of the service, and providing a rational basis
for cost sharing is, therefore, a prerequisite for motivating the
sessions to schedule their transmissions so as to minimize the
aggregate cost. A desirable cost sharing mechanism should
share the aggregate cost among the sessions in accordance
with the amount of stress that each session imposes on the
network resources. For instance, a session should naturally
pay more if it has a higher traffic demand, or has access to
only expensive channels, or is in an area where the
congestion is high. We will establish that naive cost sharing
solutions, such as splitting the aggregate cost equally among
the sessions and charging sessions based on their direct access
cost, are not desirable. Using tools from cooperative game
theory, we present a rational basis for sharing the aggregate
cost among sessions and show that this cost sharing
mechanism satisfies several intuitively appealing properties
(Section 7). The paper is concluded in Section 9 with a
discussion of future research directions.

2 RELATED LITERATURE

In [6] and [7], the authors discuss the practical issues of
spectrum management and present frameworks that ensure
a secondary access that conforms to users’ privileges.
Kloeck et al. [8] propose a secondary access scheme, based
on an auction sequence in a game-theoretical framework,
but does not consider the scheduling constraints. Indeed,
one of the main objectives of this paper is to bridge the gap
between the current research in economical implications of
spectrum sharing and effective MAC scheduling policies.

It should be noted that the optimization problem in our
paper is different from a utility-based optimization in which
the utility is merely a function of the achieved long-term time
average service rates when the arrival rates are outside of the
stability region [9], [10], [11], etc. Here, the time average
scheduling cost depends on specific scheduling decisions in
time slots. The latter has been considered in [12] in the
context of scheduling rewards and in [13] in the context of
energy expenditure. We use the framework of these papers
to develop our dynamic optimal scheduling policy. The time
required to compute the schedule in each time slot in the
policy offered by [13] grows exponentially with the size of
the network. In this paper, we proceed to develop a dynamic
scheduling policy that: 1) attains a time average cost that is
arbitrarily close to the minimum time average cost and 2) has
a computation time that is independent of the size of the
network. Chaporkar and Sarkar [12] seek a similar goal;
however, in that paper, the computation time is reduced at
the expense of huge network delays. In contrast, our
approximate scheduling policy does not affect the network
delay. Also, unlike these two papers which consider iid
arrival and channel statistics, we establish our performance
guarantees for more general statistical models.

Designing an optimal spectrum assignment for second-
aries is considered in [14], [15], [16] among others.
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Fig. 1. (a) A sample single-hop cognitive network demonstrating an
access network with a single provider. Users communicate with access
points using primary channels whenever available (secondary access).
Secondary sessions are between a user and an access point. (b) A
sample cognitive mesh networks with multiple providers. Users
communicate among each other or with the mesh points using
secondary access. An MAC layer session is represented by an arc
between a user and a mesh point or between two users. An end-to-end
session may traverse multiple MAC layer sessions.



However, in all of these works, spectrum bandwidth is
assumed to be free of charge, and thus, other performance
metrics including stability are considered. Moreover, Peng
and coauthors [14] and [15] assume infinite demand for all
secondaries, and Urgaonkar and Neely [16] assume a fixed
transmission rate for all of the channels and a single-hop
access-point-based network.

Approximate dynamic scheduling policies that achieve a
polynomial complexity have been proposed in [17], [18],
[19], [20], [21], [22], [23], [24] among others. All of these
works focus essentially on approximating the stability
region and/or fairness outside of the stability region and
consider networks whose topologies do not change with
time. Kozat et al. [25] consider the power efficiency problem
and present heuristic suboptimal algorithms.

In this paper we develop a dynamic scheduling policy
that for a time-varying network attains arbitrary trade-offs
between: 1) the time average aggregate cost subject to
stability of the secondaries and 2) complexity of the
scheduling in each time slot, without affecting the delay.

3 SYSTEM MODEL

3.1 General Framework

A list of major notations is provided in Table 1. Throughout
the paper, matrices are represented by bold letters and
vectors are specified by vector signs. Also, all of the
comparisons between matrices or vectors are considered
elementwise. Time is slotted and synchronized. This
assumption is justified when clock drifts are negligible at
the time scale of control packet transmission; similar
assumptions have been made in several papers in this
genre (e.g., [10], [11], [12], [13], [14], [16], [19], [24], etc.).
Clock synchronization, however, is a challenging problem
and an area of active research; addressing the relevant
issues is beyond the scope of this paper.

There are M primary channels. Each primary user is the
license owner of a unique set of channels and commu-
nicates over them whenever needed. There are a total of N
wireless secondary users and secondary access points (or
base stations) which we will collectively refer to as nodes.
Let V be the set of the nodes, i.e., V ¼ f1: . . . ; Ng. Also, let
the set of links E be a subset of the ordered triplets ði; j; kÞ,
where i; j 2 V and k 2 f1; . . . ;Mg. The triplet ði; j;mÞ
specifies the link ijm, where i and j are the two end nodes
and m is the channel of the link ijm. The network of the

secondaries is modeled as the graph G ¼ ðV ;EÞ. Note that
up to M links may exist between two nodes.

Packets may randomly arrive to a secondary node
(source) to be transmitted to its individual destination node.
We refer to a source-destination pair as a session. Here, we
consider single-hop communication among secondaries.
Thus, each session can be attributed to a link. The sessions
are indexed from 1 to L, where L is the total number of the
sessions in the network. Let AlðtÞ denote the amount of data
arrival during time slot t for session l. The arrivals are
according to an aperiodic positive-recurrent Markov pro-
cess with a countable set of states f#ð�Þg, where state #ð�Þ
determines the distribution of ~Að�Þ.

During each time slot, the network is randomly in one of
the finitely many states out of set S. We assume that the
network preserves its state during a time slot and possibly
changes its state at the end of a slot. The state of the network
embodies information about the scheduling constraints.
Specifically, it indicates the availability of a link and the
available communication rates over it. This depends on the
usage status of the primary users on their respective channels,
mobility of the nodes, and fluctuations in the quality of the
channels. We assume that the state of the network is also an
aperiodic positive-recurrent Markovian process, and thus,
has a stationary probability distribution. Let the stationary
probability of the state s be denoted by �s.

We assume that the secondary nodes are capable of
sensing the local state of the network at the beginning of each
time slot. This assumption follows from the CR capabilities.
For each state s, the collective scheduling decision, denoted
by i, is confined to be chosen from the finitely many members
of the set I s. I s represents the set of all valid scheduling
decisions provided that the state of the network is s and
depends on the interference model as well as the multichannel
transmission capability of nodes and the actual deployment
of the nodes. We say that two links interfere if they cannot be
scheduled concurrently. The choice of i along with the state of
the network determines the offered transmission rate over
each link. Specifically, clmðiðtÞ; sðtÞÞ; iðtÞ 2 I sðtÞ is the offered
transmission rate over link lm during time slot t when the
state of the network is sðtÞ and the scheduling decision is
iðtÞ 2 I sðtÞ. Recall that session l refers to a pair of source-
destination nodes say i and j; thus, link lm is, in fact, a
reference to link ijm. The matrix of the offered rates is
represented by the L�M matrix Cði; sÞ. We assume
bounded offered transmission rates. Specifically,

cmax ¼4 max
l;m;s;i2I s

fclmði; sÞg <1: ð1Þ

Queues evolve according to the following equation:

Qlðtþ 1Þ ¼ QlðtÞ �
X
m

clmðiðtÞ; sðtÞÞ
" #þ

þAlðtÞ: ð2Þ

Let flmðtÞ represent the actual flow over link lm during time
slot t and let fðtÞ be the matrix of the flows over the entire
set of links. Mathematically:

flmðtÞ ¼ min QlðtÞ;
X
m

clmðiðtÞ; sðtÞÞ
( )

:

For a network state s, a flow matrix f is associated with an
access cost determined by the scalar nonnegative function
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Table of Important Notations



rðf ; sÞ. This is the instantaneous aggregate access cost during
time slot t that is incurred by the secondaries by using
primary channels. We have allowed the same flow matrix on
the network to potentially induce different costs, depending
on the state of the network, to preserve its generality.
Function r is nondecreasing with respect to each fmnðtÞ and is
bounded by rmax. As a specific example, the cost function can
be additive, i.e.,

rðf ; sÞ ¼
XL
l¼1

X
m

rlmðflm; sÞ; ð3Þ

where rlmðflm; sÞ is the cost incurred by flow flm of session l
on channel m when the network state is s.

A scheduling policy, denoted by �, is a rule that
determines the scheduling decision i 2 I sðtÞ in each time
slot t.

Definition 1. The aggregate time average cost of a scheduling

policy �, denoted by ��, is defined as follows:

�� ¼ lim sup
t!1

1

t

Xt
�¼1

rðfð�Þ; sð�ÞÞ:

Definition 2. We call a queue stable if

lim sup
t!1

1

t

Xt
�¼1

Qð�Þ <1 w:p:1:

A network is stable if all of the individual queues are stable.

Throughout the paper, the term stability is used to refer to this

definition of stability. The closure of the set of all arrival rate

vectors, ~�, for which there exists a scheduling policy that makes

the network stable is called the stability region of the network and

is denoted by �. Also, let Intð�Þ denote the interior of the set �.

Definition 3. � is �-optimal if and only if for any ~� 2 Intð�Þ:

1. the network is stable and
2. ��ð~�Þ � �minð~�Þ þ � w:p:1.

Let Hð�Þ ¼4 ð#ð�Þ; sð�Þ; ~Qð�ÞÞ. Also, let Hð�Þ represent
the �-field generated by Hð�Þ. Since by assumption, the
arrivals are due to an aperiodic positive-recurrent (hence,
ergodic) Markov chain, for any � and Hð� � T Þ, we have
limT!1E½~Að�Þ j Hð� � T Þ� ¼ ~�. Hence,

8� > 0; 9TAð�Þ <1; s:t: 8T > TAð�Þ; 8� :

E½~Að�Þ j Hð� � T Þ� � ~�þ �~1: ð4Þ

We assume that

A2
max ¼

4
max

l2f1;...;Lg
EA2

l ð�Þ <1: ð5Þ

Similar to (4), for the network states, we have

lim
T!1

E½1sð�Þ¼s j Hð� � T Þ� ¼ �s; ð6Þ

where 1 represents an indicator function.

3.2 A Special Case

Here, we elucidate the above framework by constructing I s
for an important special case. We will focus on this special
network setup in Section 5.2.

We assume that all of the nodes are deployed on a 2D
plane and in the first quadrant. Note that the latter
assumption is made without loss of generality since the
choice of the origin and the coordinates is arbitrary. Let two
nodes be able to communicate if their distance is less than
D, which we assume to be invariant for any channel at any
transmission rate. Also, assume that the M primary
channels are orthogonal to each other. Recall that each link
is represented by a triplet ijm, where i; j designate the end
points and m indicates the channel of the link. During a
time slot t, link ijm is available in the network graph if first,
its two end nodes are within distance D of each other and
second, there is no primary user within distance D of
nodes i or j which is communicating over channel m. At
time slot t, the state of the network sðtÞ is interpreted as the
network graph of the available links in that time slot. The
usage status of the primaries is random and may change
over time slots. Also, both primary and secondary users
may be mobile. Thus, the network graph varies over time.

Now, there can be two different possibilities with respect
to the multichannel transmission capability of the nodes:

1. Each node can communicate over at most one
channel at a time. In this case, two links interfere
whenever a) they are of the same channel, and an
end node of one of them is within distance D of an
end node of the other, or b) the two links have at least
one common end node.

2. Nodes can communicate over different channels
simultaneously and with different nodes. In this
case, two links interfere only whenever they are of
the same channel, and an end node of one of the links
is within distance D of an end node of the other.

We have considered this model since similar transmis-
sion constraints apply in 802.11 protocols. An independent set
is a subset of links in which no two links interfere. Let XðsÞ
be the set of all of independent sets given an instance of the
network graph, which is determined through network state
s. First, consider the case that each primary channel,
whenever available, offers a fixed transmission rate. Now
given the state of the network is sðtÞ, the scheduling
decision at time slot t is translated into selecting an
independent set XðtÞ from XðsðtÞÞ. Thus, we can write
I s ¼ XðsðtÞÞ. More generally, each primary channel, when-
ever available, may offer different transmission rates per
time slot at different prices. Let &m represent the set of all
available offered transmission rates for channel m. Here,
given the state of the network is sðtÞ, the scheduling
decision at time slot t is translated into selecting an
independent set XðtÞ from XðsðtÞÞ and also specifying the
transmission rate on each of the scheduled links. Thus, a
mathematical representation of I s is as follows:

I s ¼
�
ðX;�Þ : X 2 X s;� : X !

Y
ðlmÞ2X

&m

�
;

where � as defined is a vector function from the set of the
links in the independent set X to the set of available rates on
each of the selected links.

Here, we explain the calculation of the instantaneous cost
function in the above framework. Let %ðc;mÞ denote the fee
per time slot of using transmission rate c over channel m.
Thus, the instantaneous access cost during time slot t is
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rðCðiðtÞ; sðtÞÞ; sðtÞÞ ¼
X

ðlmÞ2XðtÞ
%ðfðlmÞ;mÞ;

where fðlmÞ denotes the actual flow on link lm. Note that
this is an example of an additive cost model we briefly
alluded to in (3).

4 DYNAMIC SCHEDULING FOR SINGLE-HOP

NETWORKS AND PERFORMANCE GUARANTEES

In this section, we present an �-optimal dynamic scheduling
policy for the general framework presented in Section 3. This
scheduling policy is dynamic, in that case, it does not require
any a priori knowledge of the statistics of the arrivals or the

channels. The presented dynamic policy features a con-
trollable parameter V which provides a trade-off between
the time average scheduling cost and network delay.

4.1 Dynamic Scheduling �dðV Þ
At the beginning of each time slot, given the state is s, the
scheduling policy �dðV Þ chooses iðtÞ that is the solution of
the following optimization problem:

max
i2I s

�X
l

�
QlðtÞ

X
m

clmði; sÞ
�
� V rðCði; sÞ; sÞ

�
; ð7Þ

where rðCði; sÞ; sÞ is the instantaneous aggregate cost
imposed on the secondaries if the state of the network is s

and the flows in the network are equal to Cði; sÞ.
Intuitively, the backlogs function as feedbacks; the

scheduling policy �dðV Þ assigns the schedule in accordance

with the trade-off between stability and the scheduling cost.
As some queue backlogs build up, the scheduling decision
favors serving them and the effect of the cost becomes less
significant. A larger V tunes the scheduler to favor the cost

of each schedule at the expense of larger delays. Theorem 1
formalizes the performance guarantees of this scheduler.

Theorem 1. For any ~� 2 Intð�Þ and for all V � 0, dynamic

policy �dðV Þ stabilizes the system. Specifically,

lim sup
t!1

1

t

Xt
�¼1

X
l

Qlð�Þ �
W þ V rmax

�max
;

where �max ¼4 	 arg sup�>0
~�þ �~1 2 Intð�Þ for some 	 < 11

and W ¼ LðT̂ þ 1=2ÞðA2
max þ c2

maxÞ, where T̂ is determined

through the proof.

Moreover, 8� > 0, 9V̂ > 0 such that for every V � V̂ ,
�dðV Þ is �-optimal.

Proof. Proof in Appendix A. tu

It becomes clear from the proof that the only reliance on the

Markovian assumption for the arrivals and network states

processes is through properties in (4) and (6), respectively.

Specifically, (4) is used in (23), and (6) is used to develop (28)

and (31). Since (4) and (6) are satisfied for any stationary and

ergodic processes, our performance guarantees hold for any

stationary and ergodic arrivals and networks states processes

that satisfy (1) and (5).

5 IMPERFECT SCHEDULING AND COMPUTATION

SIMPLIFICATION

In the previous section, we presented an �-optimal dynamic
scheduling policy for our general framework. Here, we start
by applying this dynamic scheduling policy to the important
special cases of networks described in Section 3.2. We
discuss the issues that arise about the computation time of
the algorithm and argue that determining each schedule is
an NP-hard problem. In subsequent sections, we take steps
to tackle this issue. In Section 5.1, we present a useful lemma
for the general framework which enables us to develop
approximate scheduling policies that bear less burden of
computation for each schedule. In Section 5.2, we again turn
our attention to the special network setup of Section 3.2.
Inspired by the result of the lemma, we propose a dynamic
scheduling policy and establish that for appropriate choice
of parameters, our policy is �-optimal. As we next argue, the
computation time of each schedule in our algorithm does
not depend on the size of the network.

The scheduling policy �dðV Þ must solve the optimiza-
tion problem (7) in every time slot. The computation time of
solving this combinatorial optimization can grow exponen-
tially in the size of the network, since for a general cost
function and scheduling constraints, there is no other way
than to exhaust all of the possible i 2 I sðtÞ. Here, we explain
the structure of the above optimization problem for the
special case network described in Section 3.2. In the
beginning of each time slot, the state of the network is
observed which specifies the network of available links.
Note that by assumption, altering the transmission rates
does not affect the interference constraints of the network.
Thus, in the first step, each link lm in the network graph
determines its optimum weight w�lmðtÞ by individually
solving the following optimization and finding the best
candidate transmission rate over its channel (c�):

w�lmðtÞ ¼ max
c2&m
½QlðtÞc� V %ðc;mÞ�; ð8Þ

and c�lmðtÞ ¼ arg maxc2&m ½QlðtÞc� V %ðc;mÞ�. Note that c ¼ 0,
i.e., refraining from transmission over a link, can be a valid
choice too. In the next step, a maximum-weight-indepen-
dent set of links using w�s as weights is found, which is the
solution of the following NP-hard [26] combinatorial
optimization problem:

X�ðtÞ ¼ arg max
X2X s

X
lm2X

w�lmðtÞ: ð9Þ

Links in X�ðtÞ are scheduled at rates equal to their
respective c�lms. Indeed, as we observe, even for a simple
pairwise and symmetric interference model and when the
cost function is additive over the scheduled links, the
problem is NP-hard, and thus, a solution is impractical to
compute in a large network.

5.1 General Framework

In this section, we prove a key lemma that formally
specifies the effect of a multiplicative suboptimal decision
on the performance guarantees of the scheduling policy.
Lemma 1 has an important implication: It asserts that if in
each time slot, the optimization problem given in (7) can be
approximated arbitrarily closely in the expected value sense,
then both the stability region and the time average cost of
the resulting policy are arbitrarily close to their optimum
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values. The extent of generality presented in inequality (10)
as the necessary condition of the lemma is quite promising.
Next section provides an example in which inequality (10)
is satisfied. In fact, as we will see, this inequality is achieved
pathwise with respect to sðtÞ and ~QðtÞ, and the approxima-
tion is introduced by using graph partitioning (Section 5.2).
For simplicity of exposition, throughout this section, we
assume that the arrivals and network states are iid. Indeed,
these results are easily extendable to Markovian model
using similar arguments as in the proof of Theorem 1.

Lemma 1. Consider a scheduling policy �IdðV Þ that in each time
slot � chooses a (suboptimal) scheduling decision ið�Þ 2 I sð�Þ
that satisfies the following:

E

��X
l

Ql

X
m

clmði�
IdðV Þ;sÞ

�
�V rðCði�IdðV Þ;sÞ;sÞ

�

�ð1�
Þmax
i2I s

E

�X
l

�
Ql

X
m

clmði;sÞ
�
�V rðCði;sÞ;sÞ

�
;

ð10Þ

for some constants 0 � 
 < 1 (the �s are omitted for brevity).
Then, for every V � 0, �IdðV Þ stabilizes the network for all ~�
such that ~�=ð1� 
Þ 2 Intð�Þ. Specifically,

lim sup
t!1

1

t

Xt
�¼1

X
l

Qlð�Þ �
Ŵ þ V ð1� 
Þrmax

�̂max
; ð11Þ

in which Ŵ ¼4 1
2LðA2

max þ c2
maxÞ and �̂max ¼4 	 arg sup�>0ð~�þ

�~1Þ=ð1� 
Þ 2 Intð�Þ for some 	 < 1.2

Moreover, 8� > 0 and for every ~� such that ~�=ð1 �

Þ 2 Intð�Þ, 9V̂ > 0 such that for every V � V̂ we have

��IdðV Þð~�Þ � ð1� 
Þ�minð~�Þ þ �=2þ �ð
Þ;

where �ð
Þ ¼ 
ð1� 
Þ
ffiffiffiffiffiffiffiffiffiffiffi
A2
max

p
rmax=�̂max, a constant inde-

pendent of the size of the network that goes to zero as 
! 0.

Proof. Proof in Appendix B. tu

Note that Lin and Shroff [23] also consider multiplicative
approximate schedulings. However, in that paper, only the
stability region and fairness outside of the stability region
are addressed for a fixed topology network. Here, we
showed that both the stability region and the time average
cost of the scheduling subject to stability can indeed be
approximated arbitrarily closely by multiplicative subopti-
mal schedulings in a wireless network with general time-
varying topology. In a similar problem, Chaporkar and
Sarkar [12] assume a fixed topology network and propose
an additive approximate schedulings policy. The proposed
algorithm achieves lower complexity by using randomiza-
tion without discussing the effect on the network delay.
However, simulation results [27] reveal that randomized
policies impose large delays on the network. On the
contrary, the upperbound on the sum of the queue backlogs
under our approximate scheduling policy is unaffected
provided that we maintain the same distance from the
border of the stability region (inequality (11)).

5.2 Graph Partitioning

Here, we design a scheduling policy that: 1) for any given
� > 0, stabilizes the network for every ~� such that

~�=ð1� �Þ 2 Intð�Þ, 2) the cost it incurs is at most � more
than the minimum time average scheduling cost, and 3) has
a computational complexity that is independent of the size of
the network.

Consider the same network setup described as the special
case in Section 3.2. We further assume that each node is
aware of its own coordinates. We now present the schedul-
ing policy �ðk; V Þ, where k and V are control parameters. An
illustration of the algorithm is provided in Fig. 2.

Scheduling policy �ðk; V Þ. Consider k different grids:
each grid consists of a series of horizontal and vertical lines,
respectively, parallel to x- and y-axes. The distance between
any two consecutive vertical or horizontal lines is kD. Each
grid is specified by its first horizontal and vertical lines. The
first horizontal and vertical lines of the jth grid are x ¼ jD
and y ¼ jD, respectively, for j ¼ 0; . . . ; k� 1. Define LðjÞ to
be the set of links for which at least one end point is within a
distance D=2 of a vertical or a horizontal line of the jth grid.
Let GðjÞ represent the remainder of the graph after removing
all of the links in LðjÞ. Note that GðjÞ comprises a series of
decoupled subsets of links such that the links in a
component do not interfere with links in any other
component. At the beginning of each time slot, scheduling
policy �ðk; V Þ performs the following:

1. Every link selects a j 2 0; . . . ; k� 1 with probability
1=k. Links share the same random seed in their
pseudorandom number generators, and hence, will
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Fig. 2. Step by step illustration of the �ðk; V Þ scheduling policy. Here,
k ¼ 3 and there are two channels (i.e., m ¼ 2). (a) Geometric graph of
the available links during time slot t. (b) Depiction of the three grids
associated with j ¼ 0; 1; 2. Links choose each grid with probability 1/3.
(c) Here, the grid for j ¼ 0 is selected. Bold links construct the set L0 and
the rest of the links comprise Gð0Þ. Each link in Gð0Þ calculates its optimal
weight and finds its best transmission rate over its channel (12), (13).
(d) Then, independently in each component of Gð0Þ, a maximum-weight-
independent set of links is scheduled at each link’s individual calculated
best transmission rate.



select the same number. Upon selection of j, links
LðjÞ are removed.

2. Each link lm in the graph GðjÞ finds its optimum
weight w�lmðtÞ by individually solving the following
optimization and finding the best candidate trans-
mission rate over its channel:

w�lmðtÞ ¼ max
c2&m
½QlðtÞc� V %ðc;mÞ�; ð12Þ

c�lmðtÞ ¼ arg max
c2&m
½QlðtÞc� V %ðc;mÞ�: ð13Þ

3. Within each component of GðjÞ, the maximum-
weight-independent set is scheduled using the
calculated optimal weights. Links in each selected
independent set are scheduled at rates equal to their
respective c�s.

Here, we explain the intuition how this algorithm yields a
controllable trade-off between computational complexity
and optimality. At each time slot, a set of the links in
the network of the secondaries is deactivated such that the
remainder is a set of decoupled components where the
scheduling decision in each component is performed
independently of (and thus, in parallel with) other compo-
nents. The complexity and messaging overhead of the
scheduling decisions depend only on the size of the largest
component. However, in order to construct smaller compo-
nents, more links need to be deactivated, which implies that
the scheduling decision deviates more from the optimal. We
formally present these trade-offs and establish bounds for
suboptimality versus complexity.

5.2.1 Performance Guarantees

Theorem 2. For every V � 0, scheduling policies �ðk; V Þ stabilize
the network for all ~� such that ~�=ð1� �=kÞ 2 Intð�Þ, where

constant � ¼ 120 for case 1 and� ¼ 96 for case 2, both described
in Section 3.2. Specifically,

lim sup
t!1

1

t

Xt
�¼1

X
l

Qlð�Þ �
Ŵ þ V ð1� �=kÞrmax

�̂max
; ð14Þ

in which Ŵ ¼4 1
2LðA2

max þ c2
maxÞ and �̂max ¼

4
	 arg sup�>0ð~�þ

�~1Þ=ð1� �=kÞ 2 Intð�Þ for some 	 < 1.

Moreover, 8� > 0 and for every ~� such that ~�=ð1 �
�=kÞ 2 Intð�Þ, 9V̂ > 0 such that for every V � V̂ , we have

��ðk;V Þð~�Þ � ð1� �=kÞ�minð~�Þ þ �=2þ �̂ðkÞ;

where �̂ðkÞ is achieved constant independent of the size of the

network and that goes to zero as k goes to infinity.

Proof. Proof in Appendix C. tu

Theorem 2 and Lemma 1 imply that for any given � > 0,
�ðk; V Þ is �-optimal for a large enoughV and k. Our analysis in
Section 5.2.2 shows that the complexity of �ðk; V Þdepends on
k and the maximum degree of a node, but is indeed
independent of the size of the network.

5.2.2 Discussion of Complexity

Finding the maximum-weight-independent set in different

components can be performed in parallel. Hence, the

computation time depends only on the size of the

components (and not on the size of the entire network).

Each component in GðjÞ has OðD2
Gk

2Þ links of the same

channel [24], where DG is the maximum degree of that

channel in the network graph. In case 2, the maximum-

weight-independent set problem can be broken into

M decoupled problems for each channel, and thus, can

potentially be performed in parallel. Thus, the complexity

is the same as when there were only a single channel,

which is OðD2
Gk

2ÞOðk
2Þ [24] if each node has M processors,

and is MOðD2
Gk

2ÞOðk
2Þ if each node has only one processor.

For case 1, the maximum-weight-independent set problem

must be considered for all frequencies jointly, and thus, the

computation time is OðMD2
Gk

2ÞOðk
2Þ.

6 MULTIHOP NETWORKS

Assume that there are N secondary nodes and there are

M different channels. As before, we represent each link by a
triplet xyz which shows a link from node x to node y over

channel z. Assume now that data can be routed over
multihop paths. We refer to all of the data that originates

from a particular node and is destined for another particular
node as a commodity (or a class). Hence, each commodity

pertains to a certain source-destination pair. We use ð�Þ to
represent commodity �. Assume that there are K different

commodities in the network. We defineAð�Þn to be the amount
of data of commodity c exogenously entering node n during

time slot t. Let Qð�Þn ðtÞ be the amount of data of commodity c
buffered at node n at time t. f ð�ÞxyzðtÞ is the flow of commodity �

over link xyz during time slot t, which is the amount of data
served fromQð�Þn ðtÞ over link xyz during time slot t. fðtÞ is the

matrix of such flows during time slot t. For each network
state s, the scheduler can select j from a set of scheduling
decisions J s, each of which corresponds to a specific offered

transmission rate. j also indicates that on each link, which
commodity is the bandwidth allocated to.

Let cð�ÞxyzðjðtÞ; sðtÞÞ represent the offered transmission rate
over link xyz to the data of commodity � at node x during
time slot t. CðjðtÞ; sðtÞÞ is the matrix of the offered

transmission rates during time slot t. As before we assume
that the cost function also depends on the state of the

network and we represent the cost function by rðfðtÞ; sðtÞÞ.
The network is called stable if and only if each of queues

Qð�Þn is stable. The closure of the set of all ~� for which there
exists a scheduling policy that stabilizes the network is
called the (multihop) stability region and is denoted by �.
For simplicity of the analysis, we assume that the arrivals
and network states are all iid. The definition of the
throughput and the �-optimal scheduling is the same as
was defined for the single-hop network. We now present a
dynamic joint routing and scheduling policy which we
prove to be �-optimal.

Multihop dynamic scheduling �d.

1. At the beginning of each time slot and for each link ijk,
find the commodity ð�Þ 2 f1 . . .Kg that maximizes
Q
ð�Þ
i ðtÞ �Q

ð�Þ
j ðtÞ. Call it ð��ijkðtÞÞ and define

W �
ijkðtÞ ¼

4
Q
ð��ijkðtÞÞ
i ðtÞ �Qð�

�
ijkðtÞÞ

j ðtÞ:
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Note that both ð��ijkðtÞÞ and W �
ijkðtÞ do not change

for a fixed i; j and different ks.
2. Observe the state of the channel sðtÞ. Out of the

set I s, select iðtÞ ¼ i which solves the following
optimization:

max
i2I s

X
a;b;m

W �
abmcabmði; sÞ � V rðCði; sÞ; sÞ

" #
:

�-optimality of the above scheduling policy can be
obtained as a special case of Theorem (3) by taking 
 ¼ 0.

We now consider the issue of imperfect scheduling. As
before, we first consider a general framework and state a
useful lemma, and then, focus on our special network setup
and present a scheduling that, given � > 0, stabilizes the
network for every ~� such that ~�=ð1� �Þ 2 Intð�Þ incurs a cost
that is at most � more than the minimum time average
scheduling cost for any given � > 0 and its complexity is
independent of the size of the network.

6.1 General Framework

Lemma 2. Consider a scheduling policy �Id that in each time slot
� chooses a (suboptimal) scheduling decision ið�Þ 2 I sð�Þ that
satisfies the following:

E

�X
a;b;m

X
ðcÞ

c
ð�Þ
abm

	
Qð�Þa �Q

ð�Þ
b



� V rðCðj; sÞ; sÞ

�

� ð1� 
ÞmaxE

�X
a;b;m

X
ð�Þ

c
ð�Þ
abm

	
Qð�Þa �Q

ð�Þ
b



� V rðCðj; sÞ; sÞ

�
;

for some constants 0 � 
 < 1 (�s are omitted for brevity).
Then, for every V � 0, �Id stabilizes the network for all ~�
such that ~�=ð1� 
Þ 2 Intð�Þ. Specifically,

lim sup
t!1

1

t

Xt
�¼1

X
n;ð�Þ

Qð�Þn ð�Þ �
Ŵ þ V ð1� 
Þrmax

�̂max
;

in which Ŵ¼4 1
2NK½ðAmaxþcinmaxÞ

2þðcoutmaxÞ
2�, where A2

max¼
4

maxn;ð�ÞEðA�
nÞ

2 and

coutmax ¼
4

max
fn;s;j2Jsg

X
b;m

cnbmðj; sÞ

and cinmax ¼
4

maxn;s;j2Js

P
a;m canmðj; sÞ. Also , �̂max ¼4 	

arg sup�>0ð~�þ �~1Þ=ð1� 
Þ 2 Intð�Þ for some 	 < 1.3

Moreover, 8� > 0 and for every ~� such that ~�=ð1� 
Þ 2
Intð�Þ, 9V̂ > 0 such that for every V � V̂ , we have

��Idð~�Þ � ð1� 
Þ�minð~�Þ þ �=2þ �ð
Þ;

where �ð
Þ is a constant independent of the size of the network
and that goes to zero as 
! 0.

6.2 Graph Partitioning

The setup is the same as in Section 5. The scheduling is
quite similar. The only difference is in the last two steps:

Scheduling Policy �ðk; V Þ and Multihop version.

1. Every link selects a j 2 0; . . . ; k� 1 with probability
1=k. Links share the same random seed in their

pseudorandom number generators, and hence, will
select the same number. Upon selection of j, links LðjÞ

are removed.
2.

a. First, each link xyz specifies its candidate
commodity by individually solving for ��xyzðtÞ
and its respective best backpressure B�xyz:

B�xyzðtÞ ¼ max
ð�Þ

	
Qð�Þx ðtÞ �Qð�Þy ðtÞ



;

c�xyzðtÞ ¼ arg max
ð�Þ

	
Qð�Þx ðtÞ �Qð�Þy ðtÞ



:

b. Then, each link lm in the graph GðjÞ finds its
optimum weight w�lmðtÞ by individually solving
the following optimization and finding the best
candidate transmission rate over its channel:

w�xyzðtÞ ¼ max
c2&m
½B�xyzðtÞc� V %ðc;mÞ�;

�xyz ¼ arg max
c2&m
½B�xyzðtÞc� V %ðc;mÞ�:

3. Within each component of GðjÞ, the maximum-
weight-independent set is found using the calcu-
lated optimal weights. A link xyz in each selected
independent set is scheduled for data of commodity
��xyzðtÞ at rate �xyzðtÞ.

Theorem 3. For every V � 0, scheduling policies �ðk; V Þ
stabilize the network for all ~� such that ~�=ð1� �=kÞ 2
Intð�Þ, where constant � is the same constant as in the single-
hop case. Specifically,

lim sup
t!1

1

t

Xt
�¼1

X
l

Qlð�Þ �
W þ V ð1� �=kÞrmax

�̂max
;

in which Ŵ ¼4 NKðAmax þ cinmaxÞ
2 þ coutmax. Also, �̂max ¼4

	 arg sup�>0ð~�þ �~1Þ=ð1� �=kÞ 2 Intð�Þ for some 	 < 1.
Moreover, 8� > 0 and for every ~� such that ~�=ð1� �=kÞ 2

Intð�Þ, 9V̂ > 0 such that for every V � V̂ , we have

��ðk;V Þð~�Þ � ð1� �=kÞ�minð~�Þ þ �=2þ �̂ðkÞ;

where �̂ðkÞ ¼ 

ffiffiffiffiffiffiffiffiffiffiffi
A2
max

p
rmax=�̂max, a constant independent of

the size of the network and that goes to zero as k goes to infinity.

The proofs of Lemma 2 and Theorem 3 follow by using
similar techniques used for the single-hop network model,
and thus, are included in our technical report [28].

7 COST SHARING AND SHAPLEY VALUE

We have developed �-optimal dynamic scheduling policies
that arbitrarily closely approximate the aggregate time
average cost of the scheduling subject to supporting the
stability region of the network. We now focus on developing
a rational basis for sharing the aggregate cost between: 1) the
different sessions, or 2) the different providers in case there
are more than one providing service. Our investigation is
motivated by the fact that each user (provider or session) is
interested in minimizing its own cost rather than the
aggregate cost of the service, and providing a rational basis
for cost sharing is, therefore, a prerequisite for motivating
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them to schedule their transmissions so as to minimize the
aggregate cost. We develop this rational basis using
principles from cooperative game theory, more specifically,
the notion of Shapley value, which satisfies several intuitively
appealing properties for a rational cost sharing solution. The
framework we present can easily consider both the above
cases, but has been stated for only case 1): The aggregate
time average cost is shared among the sessions.

We first point out the deficiencies of two naive cost
sharing mechanisms: 1) equal splitting and 2) direct cost. As
the name suggests, equal splitting splits the cost equally
among all sessions. The second, direct cost, assumes that the
cost structure is additive (3) and charges session i the time
average of the additive cost (i.e., its direct cost) it imposes on
the system. Specifically, if session l uses flow flm over
channel m for �lm;s fraction of time when the system is in
state s, then it incurs a cost of

P
s �s

P
m �lm;srlmðflm; sÞ.

Intuitively, the cost sharing mechanism should be such that
the cost incurred by a session depends on 1) its traffic
demand, 2) the access fees imposed by the primary
channels available to that session, and 3) the traffic demand
of the sessions which interfere with it. We demonstrate,
using simple examples, that the above naive cost sharing
mechanisms do not consider the above.

Assume that there are only two interfering sessions with
arrival rates equal to 1 and 2 pps, respectively. The
aggregate time average scheduling cost is $3 per slot (ps)
where session 1 is responsible for $1 ps and session 2 for
$2 ps. But equal splitting will charge each session 1.5 ps.
Next, consider a network consisting of two noninterfering
sessions with identical arrival rates equal to 1 pps. Assume
that there are two available channels. Session 1 has access to
the expensive channel 1 which offers 1 pps transmission rate
and imposes $1, i.e., $1 pps. Session 2 has access to cheap
channel 2 which offers 4 pps and imposes $2 per instance of
access, i.e., $0.5 pps. Thus, the aggregate time average cost
is $1.5 ps, where sessions are responsible for 1 and $0.5 ps,
respectively. However, again, equal splitting charges each
session 0.75 ps. These two examples show that equally
splitting the aggregate cost among sessions is not desirable.

We now present an example to demonstrate the deficien-
cies of the direct mechanism. Suppose that there are two
interfering secondary sessions each with an arrival rate equal
to 0.75 pps. Also, suppose that there are two primary channels
that both offer 1 pps transmission rates but charge 2 and $4
per access, respectively. Suppose that the first session has
access to both channels and the second session has access only
to the cheaper channel. The scheduling cost of each of the
sessions if they were the only session to be scheduled is
$1.5 ps. However, when they are both present, the direct
access costs of the first and second sessions are $2.5 and
$1.5 ps, respectively. Hence, the first session might argue that
it is charged excessively in favor of the second session, and
thus, feels unfairly treated. This example shows that charging
the sessions based on their direct cost is not desirable as well,
and a careful design should also take these subtle mutual
effects into account and share the aggregate cost accordingly.

We now provide a rational basis for splitting the aggregate
time average scheduling cost between different sessions.
First, let us introduce the notations that are used in this
section. Let Z denote the set of all secondary sessions, i.e.,
Z ¼ f1; . . . ; Lg, and let Y be an arbitrary subset of Z, with
arrival rate vector equal to ~�Y . Note that ~�Z is simply ~�. Let

vðY Þ represent the aggregate time average cost of scheduling
the sessions in Y subject to their stability, when only sessions
in Y are present in the network. The value of v clearly
depends on the scheduling policy. For our �-optimal
scheduling policies, we have vðY Þ ¼ Uð~�Y Þ, where Uð~�Y Þ is
given by the optimization problem defined in (17), (18), (19),
and (20). This follows from Lemma 5 and Theorems 1 and 2.
Now, the problem is to devise a rule for splitting vðZÞ among
sessions of Z. Assume that the assignment of the time
average costs to the sessions of the setZ is represented by the
vector function ~
ðZÞ ¼ ð
1ðZÞ; . . . ; 
LðZÞÞ and is defined for
any Z and any kZk ¼ L. We assume that ~
ð;Þ ¼ 0. Also, we
assume that the total cost is shared among the sessions, i.e.,PL

i 
iðZÞ ¼ vðZÞ. We refer to this condition as feasibility.
Trivially, ~
ðfigÞ ¼ vðfigÞ, where i is a single session. Now, let
L � 2 and consider two distinct sessions i and j. Suppose that

jðZÞ � 
jðZ n figÞ > 0, then session j would pay less if
session i were not present in the network. Thus, session j
might object that ~
 is an unfair assignment, unless session i
can counterobject that it is at least as much disadvantaged
due to the presence of session j, and vice versa.4 This results
in the following condition for the assignment function:

8L > 0 : 
iðZÞ � 
iðZ n fjgÞ ¼ 
jðZÞ � 
jðZ n figÞ; ð15Þ

which is known as the balanced contributions property.
It is known [30] that there is only one assignment

function ~
 that satisfies both feasibility and balanced
contributions properties and is called the Shapley Value,
which is defined as follows:

’iðZÞ ¼
X

Y�Znfig

kY k!ðL� kY k � 1Þ!
L!

½vðY [ figÞ � vðY Þ�: ð16Þ

The Shapley value has an interesting intuitive interpreta-
tion: suppose that all of the sessions are arranged in a random
order. Whenever a session with nonzero demand is added to
the network, the aggregate time average cost of the schedul-
ing increases. The incremental cost of scheduling a session i
depends on the specific order, and thus, is a random variable.
Assume that all permutations are assigned equal probabil-
ities. Now, the Shapley value of a session i is the expectation
of these cost increments due to addition of that session under
the above probability distribution for the random ordering.

Now, as an example, let us calculate the Shapley value of

each of the sessions in our three simple examples. In the first

example, we have vðf1; 2gÞ ¼ $3, vðf1gÞ ¼ $1, and vðf2gÞ ¼
$2 ps. Thus, the Shapley values are as follows: ’1ð~�Þ ¼ 1 and

’2ð~�Þ ¼ $2 ps. Note that other things being identical, the

session that has higher arrival rate incurs a higher cost. In the

second example, vðf1; 2gÞ ¼ 1:5, vðf1gÞ ¼ 1, and vðf2gÞ ¼
$0:5 ps. Thus, ’1ð~�Þ ¼ 1 and ’2ð~�Þ ¼ $0:5 ps. Thus, other

things being identical, the session that has access to the

cheaper channel incurs lower cost. Finally, in the third

example, we have vðf1; 2gÞ ¼ 4 and vðf1gÞ ¼ 1:5 and vðf2gÞ ¼
$1:5 ps. Thus, ’ið~�Þ ¼ $2:5 and ’2ð~�Þ ¼ $2:5 ps. We see that

now none of the sessions can unilaterally argue that it is

disadvantaged due to the presence of the other session.
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4. A similar argument can be constructed when 
jðZÞ � 
jðZ n figÞ < 0
[29, pp. 170-171].



In our first approach, we started from feasibility and
balanced contributions (15) properties and reached the
Shapley value function. Alternatively, it can be shown [30]
that the Shapley value ’ðZÞ is the unique assignment
function that satisfies feasibility along with the following
three axioms:

1. Symmetry: If for every subset Y that includes i but not
j, we have vððY nfigÞ [ fjgÞ¼vðY Þ, then
iðZÞ¼
jðZÞ.

2. Dummy player: If for every Y , we have vðY [ figÞ �
vðY Þ ¼ vðfigÞ, then 
iðZÞ ¼ vðfigÞ.

3. Additivity: If for every Y , a new cost function u is
defined as the sum of the two separate cost functions
v and w, i.e., if for every Y , uðY Þ ¼ wðY Þ þ vðY Þ, then
for all i 2 Z, we have 
ui ðZÞ ¼ 
wi ðZÞ þ 
vi ðZÞ, where

vi ðZÞ is the assignment to the player i when the cost
function is v, etc.

These axioms have interesting interpretations in the
context of our problem. Symmetry guarantees that if two
sessions impose identical incremental costs irrespective of
the set of sessions, they are scheduled with, then they are
charged the same. Dummy player says that a session i pays
exactly vðfigÞ when the increment in cost of scheduling is
vðfigÞ irrespective of the set of sessions that i is scheduled
with. For example, a session is a dummy player if it does not
interfere with other sessions or when its arrival rate is zero. In
the latter case, Shapley value guarantees that sessions with
zero arrival rate are not charged. Finally, additivity ensures
that the cost incurred by the session for two different types of
service is the sum of the costs incurred for each service.

Note that in order to be able to calculate the Shapley
values, we now require knowledge of stationary statistics of
the arrivals and the channels; however, this should not
impose a significant problem. It is because billing the
sessions, unlike scheduling the sessions, is not delay-
sensitive, and thus, can be performed after sufficient data
about the statistics of the network are collected.

8 SIMULATION RESULTS

In this section, we apply both the dynamic scheduling policy
�dðV Þ (Section 4) and the graph-partitioning approximation
algorithm �ðk; V Þ (Section 5) to a sample network. Particu-
larly, we are interested to see how sensitive the algorithms
are to the choice of parameters V and kwhen they take values
much smaller than what the theorems prescribe.

First, we consider 25 nodes located on a square grid of
5� 5 nodes, where the distance between every pair of
adjacent nodes on the grid isD. The communication is single-
hop and there is a session between every two adjacent nodes
on the grid; thus, there are a total of 40 sessions to be
scheduled. The topology of the network does not change
over the duration of simulation, which is T ¼ 10;000 slots.
There are two orthogonal channels and the nodes have
multiradio capability, i.e., they can communicate over
different channels simultaneously. We use the same inter-
ference model described in case 2 in Section 3.2.

The arrivals to each session are according to an ON/OFF
Markovian source and are independent of other sessions.
We consider a symmetric arrival vector, i.e., the same arrival
rate for all sessions. The transition from ON to ON state in
the arrival generating Markov chain is set to 0.7 to model the
bursty nature of the data. The ON state represents arrival of
a packet. The transition between the OFF to OFF state is

chosen so as to yield the desired arrival rate (denoted here
by a) as an input parameter. The first channel has capacity 1
and the second channel has capacity 2 packets per slot. The
access fee for channel one is 1 unit per slot and for channel
two is 4 units per slot. Both channels are always connected.

We first apply the �dðV Þ algorithm developed in Section 4.
We observe that the scheduling policy �dðV Þ stabilizes the
network for all the symmetric arrival rates less than
0.35 packets per slot. The time average aggregate cost of the
scheduling is depicted in Fig. 3. For V ¼ 0, �dðV Þ treats the
two channels as if there was one channel of sum of their
capacities, and is completely blind to the access fees. We
observe that even for a small V , i.e., V ¼ 5, the algorithm
yields a substantial improvement over fee-blind access to
both channels, and the time average aggregate cost improves
only slightly by further increase in V . Recall from Theorem 1
(Section 4) that a larger V translates into a higher bound on
the sum of backlogs. Thus, our experiments show that, in
practice, we can choose a small V and thereby attain the
minimum time average aggregate cost without suffering
from increased backlogs/network delays.

In Fig. 4, we have gradually increased the symmetric
arrival rate (a) and depict the proportion of frequency of
access to channel 2 (the more expensive channel) to channel 1.
It clearly shows that as the arrival rates increase, the relative
frequency of accessing the expensive channel increases. This
is because the algorithm is required to stabilize the queues,
and thus, has to resort to the expensive channel to prevent
growing backlogs.

We now demonstrate the benefits of the approximate
scheduling policy by considering a large network. With the
same channel and interference settings, we consider a grid
of 100� 100 nodes. The implementation of the �dðV Þ
scheduling policy is thus clearly impractical as there are
19,800 links (sessions) in the network, and an exponentially
large number of independent sets. However, graph-parti-
tioning technique allows us to perform an approximate
scheduling over the whole network. We specifically choose
k ¼ 7, which renders the largest size of the subgraphs 5� 5.
As before, we run the simulation for T ¼ 10;000 slots. As is
clear from Fig. 5, even for V as small as 5, we witness a
significant improvement compared with the case of V ¼ 0,
and minor sensitivity to further increasing of V .

9 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we studied the problem of spectrum access for
a network of secondaries where the primaries impose access
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Fig. 3. Time average aggregate cost of �dðV Þ scheduling policy versus
V for different symmetric arrival rates.



fees. We developed a dynamic scheduling policy that,
without knowledge of arrivals’ and channels’ statistics,
1) supports the stability region of the network of the
secondaries and 2) attains a time average cost that is
arbitrarily close to its minimum. We used a Lyapunov drift
technique to establish these performance guarantees for a
Markovian arrival and network statistics. Next, we consid-
ered the issue of the computation time required for
calculation of each schedule and proceeded to develop an
approximate scheme that attains arbitrary trade-offs be-
tween: 1) the complexity of the schedules and 2) the time
average access cost subject to stability. The design of the
approximate scheme relied on a combination of Lyapunov
drift and graph partitioning. We also showed that our results
are extendable to multihop networks. Next, we proposed a
cost sharing policy based on the concept of the Shapley value
that attains a set of desirable properties. Our paper provides
a formal framework to the problem of dynamic wireless
scheduling with economical consideration. The results in our
paper are rigorously proved based on a general Markov
chain model of the states of the network and arrivals, from
which the i.i.d. case follows as a special case.

The problem of effectively sharing the scheduling cost
can open doors to new investigations of this kind. For
instance, by introducing new objectives such as variations of
fairness and/or collusion prevention from cooperative game
theory, other interesting cost sharing policies can be
developed. Another interesting direction of research is the
issue of pricing: we started with a given set of access fees by
primaries. The choice of these costs by each primary will
determine the rate of their revenue. In a more advanced
model, the announced access fees may also affect the
demands of the secondaries. Now, since more than one
primary can be present in the network, possibility of
competition, co-operation, and collusion can be investi-
gated. Inspired by works on pricing the Internet (e.g., [31]),
new pricing mechanisms may be developed to achieve a set
of desirable properties and potentially engineer the conges-
tion in a multichannel wireless network in the presence of
such dynamics.

APPENDIX A

PROOF OF THEOREM 1

Here, we provide a brief overview of the proof: We establish
the existence of a stationary randomized scheduler, ��ð~�Þ,

which provably attains minimum time average cost subject
to stability of the network for any arrival rate in the stability
region of the network (Lemmas 3, 4, and 5). Next, we
compare the performance of our dynamic scheduling policy
(�dðV Þ) against the stationary scheduler, and hence, deduce
our results.

Before we get to the proof of Theorem 1, we state four
lemmas which we later use. Consider the following optimiza-
tion problem which we will refer to as MCð~�Þ, where the
variables are !si :

Uð~�Þ ¼ min
f!g

X
s

�s
X
i2I s

r Cði; sÞ; sð Þ!si ; ð17Þ

s:t:
X
s

�s
X
m

X
i2I s

clmði; sÞ!si ¼ �l 8l 2 f1; . . . ; Lg; ð18ÞX
i

!si ¼ 1 8s 2 S; ð19Þ

!si � 0 8s; i 2 I s: ð20Þ

Lemma 3. MCð~�Þ is feasible for all ~� 2 Intð�Þ.
Lemma 4. For any ~� 2 Intð�Þ, �minð~�Þ � Uð~�Þ.

In words, any scheduling policy that stabilizes ~� has an
aggregate time average cost at least Uð~�Þ.

Minimum cost stationary single-hop scheduling policy.

Let !� be the minimizer of theMCð~�Þ. During each time slot,
observe the state of the network SðtÞ ¼ s and choose
scheduling decision i 2 Is with probability !s�i . We refer to
this scheduling policy as ��ð~�Þ.
Lemma 5. For any ~� 2 Intð�Þ and any � > 0, there exists a

� > 0 such that

���ð~�þ�~1Þ � Uð~�þ �~1Þ � �minð~�Þ þ � w:p:1:

Also, �! 0 as �! 0.

Lemma 6. If for nonnegative real variables X;Y ; Z;W , we have

X � ½Y � Z�þ þW , then the following inequality holds:

X2 � Y 2 þ Z2 þW 2 � 2Y ðZ �WÞ.
Lemmas 3, 4, and 5 follow by similar arguments used in

[13] and are relegated to our technical report [28]. The only
significant difference in the assumptions is that in [13],
energy consumption is associated with allocation of
transmission rates. In contrast, we attribute cost only to
the actual transmitted flows. Lemma 6 is a simple algebraic
relation which can be found in [32, p. 54].
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Fig. 4. Time average fraction of access to channel 2 over channel 1
in �dðV Þ scheduling policy for different symmetric arrival rates and
different values of V .

Fig. 5. Time average aggregate cost of partitioning algorithm �ðk; V Þ for
k ¼ 7 versus V for different symmetric arrival rates in the graph of 100�
100 nodes.



Proof of Theorem 1. Throughout the proof, ~Qð�Þ is the
vector of the secondary queue backlogs at time � under
the �dðV Þ scheduling policy. We also assume that the
network starts at � ¼ 1 with finite queue backlogs.

Define Lð�Þ ¼4 1
2

P
l Q

2
l ð�Þ. Also, define �ðLð�Þ; �Þ ¼4

E½Lð� þ 1Þ � Lð�Þ� in which the expectation is taken with
respect to the joint distribution of HðtÞ; t ¼ 1; . . . ; � þ 1
and possibly any randomization used in the scheduling
policy. For brevity, we abuse the notation and use c�

lmð�Þ
to represent the offered transmission rate assigned to
link lm during time slot � by scheduling policy �, which
is, in fact, equal to clmði�ð�Þ; sð�ÞÞ. Also, whenever ClmðtÞ
is used without superscript, it pertains to the �dðV Þ
scheduling policy. Applying Lemma 6 to the network
dynamics equation (2) yields:

�ðLð�Þ; �Þ � 1

2

X
l

E
	
Q2
l ð�Þ



þ 1

2

X
l

E
	
A2
l ð�Þ




þ 1

2

X
l

E
X
m

clmð�Þ
 !2
2
4

3
5

�
X
l

E Ql

X
m

clmð�Þ �Alð�Þ
 !" #

� 1

2

X
l

E
	
Q2
l ð�Þ




� Ŵ �
X
l

E Ql

X
m

clmð�Þ �Alð�Þ
 !" #

;

where Ŵ ¼4 1
2 ½A2

maxLþ ðcmaxÞ
2L�. The last inequality

follows from (1) and (5). Adding VE½rðCð�Þ; sð�ÞÞ� to
both sides, we obtain

�ðLð�Þ; �Þ þ V E½rðCð�Þ; sð�ÞÞ�

� Ŵ � E
X
l

Qlð�Þ
X
m

clmð�Þ
 !

� V rðCð�Þ; sð�ÞÞ
" #

þ
X
l

E½Qlð�ÞAlð�Þ�:

ð21Þ

Now, note that by the law of iterated expectations, we have

E½Qlð�ÞAlð�Þ� ¼ E½E½Qlð�ÞAlð�Þ j Hð� � T Þ��:

Clearly, Qlð�Þ � Qlð� � T Þ þ
P��1

�¼��T Alð�Þ. Thus,

E½Qlð�ÞAlð�Þ� � E½E½Qlð� � T ÞAlð�Þ j Hð� � T Þ��
þ TA2

max:
ð22Þ

Since Qlð� � T Þ 2 Hð� � T Þ, we have

E½Qlð� � T ÞAlð�Þ j Hð� � T Þ� ð23Þ
¼ Qlð� � T ÞE½Alð�Þ j Hð� � T Þ�: ð24Þ

Hence, by using inequality (4) in (22), forT > TAð�Þ, we get

E½Qlð�ÞAlð�Þ� � ð�l þ �ÞE½Qlð� � T Þ� þ TA2
max:

Applying the above inequality in (21) yields

�ðLð�Þ; �Þ þ V E½rðCð�Þ; sð�ÞÞ�

� Ŵ � E
X
l

Qlð�Þ
X
m

clmð�Þ
 !

� V rðCð�Þ; sð�ÞÞ
" #

þ ð�l þ �Þ
X
l

E½Qlð� � T Þ� þ TLA2
max:

ð25Þ

Now, note that the following inequality holds pathwise in
~Qð�Þ and sð�Þ:

X
l

Qlð�Þ
X
m

clmð�Þ
 !

� V rðCð�Þ; sð�ÞÞ

�
X
l

Qlð�Þ
X
m

c
��ð:Þ
lm ð�Þ

 !
� V rðC��ð:Þð�Þ; sð�ÞÞ:

ð26Þ

The inequality follows because referring to the definition
of the scheduling policy �dðV Þ, at each time slot � , it
observes ~Qð�Þ and sðtÞ and maximizes the left-hand side
over any possible scheduling decisions, including those
made by any ��ð:Þ. Taking the expectation of both sides of
(26) and applying the result in inequality (25), we obtain

�ðLð�Þ; �Þ þ VE½rðCð�Þ; sð�ÞÞ� � Ŵ þ TLA2
max

� E
X
l

Qlð�Þ
X
m

c
��ð:Þ
lm ð�Þ

" #
þ VE rðC��ð:Þð�Þ; sð�ÞÞ

h i
þ ð�l þ �Þ

X
l

E½Qlð� � T Þ�:

ð27Þ

Consider the scheduling policy ��ð~�þ �~1Þ, where
~�þ �~1 2 Intð�Þ. According to Lemma 3, MCð~�þ �~1Þ is

feasible. The stationary probability of the network state s is

�s. Hence, from (6) and following constraint (18) of

MCð~�þ �~1Þ and the definition of ��ð~�þ �~1Þ, we conclude

8� > 0; 9TCð�Þ <1; s:t:8T > TCð�Þ; 8� :

E
X
m

~c��ð~�þ�~1Þ
m ð�Þ j Hð� � T Þ

" #
� ~�þ �~1� �~1; ð28Þ

where ~cl ¼4 ðcl1; . . . ; clmÞ. Clearly, Qlð�Þ � Qlð� � T Þ �
cmaxT . Therefore,

E Qlð�Þ
X
m

c
��ð~�þ�~1Þ
lm ð�Þ

" #

¼ E½E½Qlð�Þ
X
m

c
��ð~�þ�~1Þ
lm ð�Þ j Hð��T Þ��

� E
	
Qlð��T ÞE

	
c

��ð~�þ�~1Þ
lm ð��T Þ j Hð��T Þ




� c2

maxT :

ð29Þ

From (27), (28), and (29), for T > maxfTAð�Þ; TCð�Þg, we
have

�ðLð�Þ; �Þ þ VE½rðCð�Þ; sð�ÞÞ� �W
� ð�� 2�Þ

X
l

E½Qlð� � T Þ� þ VE½rðC�� ð�Þ; sð�ÞÞ�; ð30Þ

where

W ¼4 Ŵ þ TLA2
max þ TLc2

max ¼ LðT þ 1=2Þ
�
A2
max þ c2

max

�
:

Stability. We can ignore the second term in the left-
hand side of the inequality (30), i.e., VE½rðCð�Þ; sð�ÞÞ�, for
it is nonnegative for all � . Also, note that ~�þ �max 2
Intð�Þ; thus, (30) holds for �max:

1

2

X
l

EQ2
l ð� þ 1Þ � 1

2

X
l

EQ2
l ð�Þ

�W � ð�max � 2�Þ
X
l

EQlð� � T Þ þ V rmax:
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This inequality holds for every � > 0. Summation of

these inequalities for � ¼ T þ 1; . . . ; tþ T and simplify-

ing the telescopic sum and reordering yield:

1

2

X
l

EQ2
l ðtþ T þ 1Þ � 1

2

X
l

EQ2
l ðT þ 1Þ

þ ð�max � 2�Þ
Xt
�¼1

X
l

EQlð�Þ � tW þ tV rmax:

Note that 1=2
P

l EQ
2
l ðtþ T þ 1Þ � 0; hence, we can

remove it from the inequality. Now, we take the

lim supt!1
1
t of both sides . Note the fact that

1=2
P

l EQ
2
l ðT þ 1Þ <1, therefore, as long as � < �max=2,

we have

lim sup
t!1

1

t

Xt
�¼1

X
l

EQlð�Þ �
ðW þ V rmaxÞ
�max � 2�

:

Hence, for instance, for � ¼ �max=4, we obtain

lim sup
t!1

1

t

Xt
�¼1

X
l

EQlð�Þ �
2ðW þ V rmaxÞ

�max
;

where the value of T̂ in calculation of W is thus equal
to maxfTAð�max=4Þ; TCð�max=4Þg. We notice that under
the �dðV Þ scheduling policy, the random process Hð�Þ
is a countably infinite-state discrete time Markov chain.
We conclude from the above lim sup inequality that the
Markov chain of Hð�Þ is positive-recurrent. Hence, the
inequality is valid in almost sure sense as well:

lim sup
t!1

1

t

Xt
�¼1

X
l

Qlð�Þ �
1

�max
ðW þ V rmaxÞ w:p:1;

concluding the result for stability.
Time average cost. Note that by definition ofUð~�þ �~1Þ,

we have

Uð~�þ �~1Þ ¼
X
s

�s
X
i2I s

r Cði; sÞ; sð Þ!��ð~�þ�~1Þ
s :

Thus, from (6) and the definition of ��ð~�þ �~1Þ, we have

8� > 0; 9TUð�Þ <1; s:t: 8T > TUð�Þ; 8� :

E
	
rðC��ð~�þ�~1Þð�Þ; sð�ÞÞ j Hð� � T Þ



� Uð~�þ �~1Þ þ �:

ð31Þ

Using (31) in inequality (30), for T > maxfTUð�Þ;
TAð�Þ; TCð�Þg, we obtain

�ðLð�Þ; �Þ þ V E½rðCð�Þ; sð�ÞÞ� �W

� ð�� 2�ÞE
X
l

Qlð� � T Þ
" #

þ V Uð~�þ �~1Þ þ V �:

As long as � � �=2, we can ignore the term E½
P

l Qlð� �
T Þ� in the right-hand side of the inequality. Hence,

1

2

X
l

EQ2
l ð� þ 1Þ � 1

2

X
l

EQ2
l ð�Þ þ V ErðCð�Þ; sð�ÞÞ

�W þ V Uð~�þ �~1Þ þ V �:

This inequality holds for every � > 0. Summing up the

inequalities for � ¼ 1 . . . t and simplifying the telescopic

sum yield:

1

2

X
l

EQ2
l ðtþ 1Þ � 1

2

X
l

EQ2
l ð1Þ þ V

Xt
�¼1

ErðCð�Þ; sð�ÞÞ

� tW þ tV Uð~�þ �~1Þ þ tV �:

We can ignore the term 1=2
P

l EQ
2
l ðtþ 1Þ on the left-

hand side as it is nonnegative. Dividing both sides by t

and taking the lim sup as t go to infinity, noting the fact

that 1=2
P

l EQ
2
l ð1Þ <1, we obtain

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ �W
V
þ Uð~�þ �~1Þ þ �:

Since ~� is strictly interior to �, following Lemma 4, for

any given � > 0, we can find a � > 0 such that Uð~� þ
�~1Þ � �minð~�Þ þ �=4. Thus, for such � and � � minf�=2;
�=4g, we get

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ �W
V
þ �minð~�Þ þ �=2:

Thus, for every choice of V � V̂ � 2W=�, we have

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ � �minð~�Þ þ �: ð32Þ

Now, to relate the left-hand side of the inequality to
��dðV Þð~�Þ, we first note that due to nondecreasing
property of the r function, the following holds:

lim sup
t!1

1

t

Xt
�¼1

rðfð�Þ; sð�ÞÞ � lim sup
t!1

1

t

Xt
�¼1

rðCð�Þ; sð�ÞÞ: ð33Þ

Also, note that under �dðV Þ, HðtÞ is a discrete-time

Markov chain process with countably infinite states. By

establishing the stability of the queues, we indeed

showed that this Markov chain is positive-recurrent.

Hence, any bounded function defined on the HðtÞ almost

surely converges to its mean:

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ ¼ E0rðCðtÞ; sðtÞÞ w:p:1; ð34Þ

where the last expectation is taken with respect to the

stationary distribution of HðtÞ. Following the same

argument, we conclude

lim sup
t!1

1

t

Xt
�¼1

rðCð�Þ; sð�ÞÞ ¼ E0rðCðtÞ; sðtÞÞ w:p:1: ð35Þ

The result follows from (32), (33), (34), and (35). tu

APPENDIX B

PROOF OF LEMMA 1

Proof. Throughout the proof, ~Qð�Þ is the queue backlogs

under the �IdðV Þ scheduling policy. Also, C�ð�Þ is used

to refer to Cði�ð�Þ; sð�ÞÞ and those without superscript

pertain to �IdðV Þ. Following the same steps as in the

proof of Theorem 1 until inequality (21), we obtain
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�ðLð�Þ; �Þ þ V ErðCð�Þ; sð�ÞÞ

� Ŵ � E
X
l

Qlð�Þ
X
m

clmð�Þ � V rðCð�Þ; sð�ÞÞ
" #

þ
X
l

E½Qlð�ÞAlð�Þ�:

ð36Þ

From the iid assumption of the arrivals, we get

E½Qlð�ÞAlð�Þ� ¼ EQlð�Þ�l: ð37Þ
Applying (37) in (36) yields:

�ðLð�Þ; �Þ þ V ErðCð�Þ; sð�ÞÞ

� Ŵ � E
X
l

Qlð�Þ
X
m

clmð�Þ � V rðCð�Þ; sð�ÞÞ
" #

þ �l
X
l

EQlð�Þ�Ŵ�ð1�
Þ
(
E

"X
l

Qlð�Þ
X
m

c
��ð:Þ
lm ð�Þ

#

� VErðC��ð:Þð�Þ; sð�ÞÞ
)
þ �l

X
l

EQlð�Þ:

ð38Þ

Inequality (38) is obtained from inequality (10) which
defines the scheduling policy �IdðV Þ. Now, note that
scheduling policies ��ð:Þ make their scheduling deci-
sions independent of the queue lengths. Moreover, due
to the assumption of iid network states, ~Qð�Þ is
independent of sð�Þ. Therefore,

E Qlð�Þ
X
m

c
��ð:Þ
lm ð�Þ

" #
¼ EQlð�ÞE

X
m

c
��ð:Þ
lm ð�Þ

" #
: ð39Þ

Stability. Consider the policy ��ðð~�þ �̂max~1Þ=ð1� 
ÞÞ.
Since ð~�þ �̂max~1Þ=ð1� 
Þ 2 Intð�Þ, according to Lemma 3,

MCðð~�þ �̂max~1Þ=ð1� 
ÞÞ is feasible. Note that constraint

(18) of MCðð~�þ �̂max~1Þ=ð1� 
ÞÞ and the iid assumption

of the states guarantee that

E
X
m

c
��ðð~�þ�̂max~1Þ=ð1�
ÞÞ
lm ð�Þ

" #
¼ �l=ð1� 
Þ þ �̂max=ð1� 
Þ:

Hence, by referring to (39) and (38) and canceling the
common terms, we obtain

�ðLð�Þ; �Þ þ VErðCð�Þ; sð�ÞÞ � Ŵ � �̂max
X
l

EQlð�Þ

þ ð1� 
ÞV Er
�
C��

�
ð~�þ�̂max~1Þ
ð1�
Þ

�
ð�Þ; sð�ÞÞ

� Ŵ � �̂max
X
l

Qlð�Þ þ ð1� 
ÞV rmax:

Following similar steps as in the proof of Theorem 1 after
(30), we reach the following relation:

lim sup
t!1

1

t

Xt
�¼1

X
l

EQlð�Þ �
ðŴ þ ð1� 
ÞV rmaxÞ

�̂max
: ð40Þ

Under �IdðV Þ, ~QðtÞ is a Discrete-time Markov chain
process with countably infinite states. We conclude from
the above lim sup inequality that the Markov chain of
~QðtÞ is positive-recurrent. Hence, the inequality in almost
sure sense is also implied:

lim sup
t!1

1

t

Xt
�¼1

X
l

Qlð�Þ �
ðŴ þ ð1� 
ÞV rmaxÞ

�̂max
w:p:1:

Time average cost. Since ~� 2 Intð�Þ, Lemma 3 guaran-
tees that MCð~�Þ is feasible. Also, note that

ErðC��ð~�Þð�Þ; sð�ÞÞ ¼
X
s

�s
X
i2I s

!s�i rðCði; sÞ; sÞ ¼ Uð~�Þ:

This follows by the iid assumption of the network states

and the definition of Uð~�Þ. Also, referring to constraint

(18) of MCð~�Þ and the iid assumption of the states, we

have: E½
P

m c
��ð~�Þ
lm ð�Þ� ¼ �l. Hence, from (38) and (39):

�ðLð�Þ; �Þ þ VErðCð�Þ; sð�ÞÞ
� Ŵ þ 


X
l

�lEQlð�Þ þ ð1� 
ÞV Uð~�Þ:

Taking similar steps as in the proof of Theorem 1 after

(31), we achieve the following:

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ � Ŵ
V

þ 


V
lim sup
t!1

1

t

Xt
�¼1

X
l

�lEQlð�Þ þ ð1� 
ÞUð~�Þ:

Note that from Cauchy-Schwartz inequality,

�l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EA2

l ðtÞ
q

:

Thus, by applying inequality (40), we obtain

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ � Ŵ
V

þ 

ffiffiffiffiffiffiffiffiffiffiffi
A2
max

p
V

ðŴ þ ð1� 
ÞV rmaxÞ
�̂max

þ ð1� 
ÞUð~�Þ:

Since ~� 2 Intð�Þ, following Lemma 4, we have Uð~�Þ �
�minð~�Þ. Therefore,

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ � Ŵ
V

þ 

ffiffiffiffiffiffiffiffiffiffiffi
A2
max

p
V

ðŴ þ ð1� 
ÞV rmaxÞ
�̂max

þ ð1� 
Þ�minð~�Þ:
ð41Þ

Thus, by choosing a large enough V , we can have

lim sup
t!1

1

t

Xt
�¼1

ErðCð�Þ; sð�ÞÞ � 
ð1� 
Þ
ffiffiffiffiffiffiffiffiffiffiffi
A2
max

p
rmax

�̂max

þ ð1� 
Þ�minð~�Þ þ �=2:

Following a similar argument as in the proof of
Theorem 1, we can conclude that the inequality for
lim sup holds in almost sure sense as well. Hence, the
result follows with �ð
Þ ¼ 
ð1� 
Þ

ffiffiffiffiffiffiffiffiffiffiffi
A2
max

p
rmax=�̂max. tu

APPENDIX C

PROOF OF THEOREM 2

Proof. Note that by assumption, altering the transmission
rates does not affect the interference constraints of the
network. Therefore, at time slot t, w�lmðtÞ is indeed the
weight that any solution of the optimization problem in
(9) chooses for link lm if that link is a part of X�ðtÞ.
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Let �ðtÞ be the integer selected by links at the
beginning of time slot t. Define

BðtÞ ¼4 arg max
X2XðsðtÞÞ
X�Lð�ðtÞÞ

X
lm2X

w�lmðtÞ:

For any given ~QðtÞ and sðtÞ, the following identity is

obvious:
P

lm2X� w
�
lm ¼

P
lm2X�\GðjÞ w

�
lm þ

P
lm2X�\LðjÞ w

�
lm.

Thus, from the definition of BðtÞ and �ðk; V Þ, we have

X
lm2X�ðk;V ÞðtÞ

w�lmðtÞ �
X

lm2X�ðtÞ
w�lmðtÞ �

X
lm2BðtÞ

w�lmðtÞ; ð42Þ

where X�ðk;V ÞðtÞ is the independent set selected by the

scheduling policy �ðk; V Þ at time slot t. Now,

E
X

lm2BðtÞ
w�lmðtÞ j ~QðtÞ; sðtÞ

2
4

3
5

¼
Xk�1

j¼0

P ð�ðtÞ ¼ j j ~QðtÞ; sðtÞÞ
(
E

" X
lm2BðtÞ

w�lmðtÞ j ~QðtÞ; sðtÞ; �ðtÞ ¼ j
#)

¼ ð1=kÞ
Xk�1

j¼0

max
X2XðsðtÞÞ
X�LðjÞ

X
lm2X

w�lmðtÞ:

ð43Þ

The above inequality holds for any instance of network

graph and queue backlogs, i.e., holds pathwise in sðtÞ
and ~QðtÞ.

We now bound the right-hand side of the inequality
(43). Let ~! be an arbitrary vector of nonnegative real
weights for the links in an instance of the network graph.
Let Slm be the set of links that if scheduled will interfere
with link lm. For any link lm, !lm �

P
i2X�\Slm !i, since,

otherwise, X� could be improved by instead selecting
lm and deselecting the other links in Slm \X�. Let
X0; . . . ; Xk�1 be k-arbitrary-independent sets such that
Xj � LðjÞ, for j ¼ 0; . . . ; k� 1. Let �

ðjÞ
lm ¼
4 kXj \ Slmk. Thus,X

lm2Xj

!lm �
X
lm2Xj

X
i2X�\Slm

!i ¼
X
i2X�

X
lm2Xj\Si

!i ð44Þ

¼
X
lm2X�

�
ðjÞ
lm!lm; ð45Þ

where the equality in (44) follows from pairwise and

symmetric property of the interference model, and in

equality (45), we have used the definition of �
ðjÞ
lm along

with a change of indexing. Thus,

Xk�1

j¼0

X
lm2Xj

!lm �
X
lm2X�

Xk�1

j¼0

�
ðjÞ
lm

 !
!lm: ð46Þ

Let the supergrid be the set of all lines of all grids.
Then, the supergrid is a grid where the distance between
any two consecutive horizontal (vertical) lines is D.

Let  lm ¼4 fj : lm 2 LðjÞg. Then, k lmk � 4, since an end
node of link lm can be within a distance D=2 from at most
two horizontal and two vertical lines. Now, let  ̂lm ¼4
fj : lm 62 LðjÞ & Slm \ LðjÞ 6¼ ;g. Then, k ̂lmk � 8. This

is because, lm can interfere with a link in LðjÞ but not be
member of it, only if one of its end nodes is within a
distance of 5D=2 from a horizontal or a vertical line of grid j
and none of its end nodes are within D=2 distance of any
line of grid j. This can occur at most four times for vertical
lines and four times for horizontal lines of supergrid.
Therefore, �

ðjÞ
lm > 0 for at most 4þ 8 ¼ 12 different js in

f0; . . . ; k� 1g.
Now, for each cases 1 and 2, we upperbound the value

of �
ðjÞ
lm . Since each Xj is an independent set, for all j 2  lm,

we have �
ðjÞ
lm ¼ 1. Now, let us focus on the js in ^psilm. In

case 2, as channels are assumed orthogonal, only links of
the same channel can interfere with each other. Hence, for
any lm 2 X�, the maximum number of the links that
interfere with lm but do not interfere with each other is 8
[18]. In case 1, similarly, we can have up to eight links of the
same channel that interfere with lm but not with each
other. In addition, up to two extra links of dissimilar
channels can have a common end node with lm, and thus,
by description of case 1, interfere with lm. (Note that for the
special case ofM ¼ 2, only one such extra link is possible.)

We can now upperbound
Pk�1

j¼0 �
ðjÞ
lm . Following the

above observations, for any lm 2 X�,
Pk�1

j¼0 �
ðjÞ
lm < 4þ 8�

10 ¼ 84 in case 1 and
Pk�1

j¼0 �
ðjÞ
lm < 4þ 8� 8 ¼ 68 in case 2.

Applying these inequalities in (46), we obtain

Xk�1

j¼0

X
lm2Xj

!lm � �
X
lm2X�

!lm; ð47Þ

where � ¼ 84 in case 1 and � ¼ 68 in case 2. Considering
the relations (42), (43), and (47), we obtain

E
X

lm2X�ðk;V Þ

w�lmðtÞ j ~QðtÞ; sðtÞ
" #

� ð1� �ÞE
X
lm2X�

w�lmðtÞ j ~QðtÞ; sðtÞ
" #

:

Now, since the inequality holds pathwise in sðtÞ and ~QðtÞ,
we can take the expectation of both sides w.r.t. sðtÞ, ~QðtÞ
to obtain:

E
X

lm2X�ðk;V Þ

w�lmðtÞ
" #

� ð1� �=kÞE
X
lm2X�

w�lmðtÞ
" #

:

Comparing the above inequality with (8) and (9) implies
that scheduling policies �ðk; V Þ satisfy inequality (10), as
the necessary condition of Lemma 1 for 
 ¼ �=k, where
� ¼ 84 for case 1 and � ¼ 68 for case 2. Thus, the
performance guarantees of Lemma 1 hold with the
respective 
s, and where

�̂ðkÞ ¼ �=kð1� �=kÞ
ffiffiffiffiffiffiffiffiffiffiffi
A2
max

q
rmax=�̂max:

ut

Remarks on graph partitioning. Note that condition 0 �

 < 1 requires k > �. If in the scheduling policy �ðk; V Þ, the
grids are kD distanced, where  � 1 is an integer constant,
then � in inequality (47) decreases as  is increased from 1.
The best upperbound is realized for  ¼ 6 where � ¼ 20 and
16 for cases 1 and 2, respectively. This can be established by
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showing that now k lmk þ k ̂lmk � 2. The details are

straightforward and are omitted for brevity. Also, note that

similar performance guarantees can be obtained for a 3D

network, where grids are replaced with 3D lattices and each

lattice is specified by its first three planes. The calculations

of the constants are quite identical to the 2D case and are

omitted for brevity. Finally, note that our graph-partitioning

analysis is not specific to the interference model assumed in

this paper and is readily extendable to any other pairwise

symmetric interference model.
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