153 research outputs found

    A Survey on Wireless Security: Technical Challenges, Recent Advances and Future Trends

    Full text link
    This paper examines the security vulnerabilities and threats imposed by the inherent open nature of wireless communications and to devise efficient defense mechanisms for improving the wireless network security. We first summarize the security requirements of wireless networks, including their authenticity, confidentiality, integrity and availability issues. Next, a comprehensive overview of security attacks encountered in wireless networks is presented in view of the network protocol architecture, where the potential security threats are discussed at each protocol layer. We also provide a survey of the existing security protocols and algorithms that are adopted in the existing wireless network standards, such as the Bluetooth, Wi-Fi, WiMAX, and the long-term evolution (LTE) systems. Then, we discuss the state-of-the-art in physical-layer security, which is an emerging technique of securing the open communications environment against eavesdropping attacks at the physical layer. We also introduce the family of various jamming attacks and their counter-measures, including the constant jammer, intermittent jammer, reactive jammer, adaptive jammer and intelligent jammer. Additionally, we discuss the integration of physical-layer security into existing authentication and cryptography mechanisms for further securing wireless networks. Finally, some technical challenges which remain unresolved at the time of writing are summarized and the future trends in wireless security are discussed.Comment: 36 pages. Accepted to Appear in Proceedings of the IEEE, 201

    On the Role of 5G and Beyond Sidelink Communication in Multi-Hop Tactical Networks

    Full text link
    This work investigates the potential of 5G and beyond sidelink (SL) communication to support multi-hop tactical networks. We first provide a technical and historical overview of 3GPP SL standardization activities, and then consider applications to current problems of interest in tactical networking. We consider a number of multi-hop routing techniques which are expected to be of interest for SL-enabled multi-hop tactical networking and examine open-source tools useful for network emulation. Finally, we discuss relevant research directions which may be of interest for 5G SL-enabled tactical communications, namely the integration of RF sensing and positioning, as well as emerging machine learning tools such as federated and decentralized learning, which may be of great interest for resource allocation and routing problems that arise in tactical applications. We conclude by summarizing recent developments in the 5G SL literature and provide guidelines for future research.Comment: 6 pages, 4 figures. To be presented at 2023 IEEE MILCOM Workshops, Boston, M

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Mission-Critical Communications from LMR to 5G: a Technology Assessment approach for Smart City scenarios

    Get PDF
    Radiocommunication networks are one of the main support tools of agencies that carry out actions in Public Protection & Disaster Relief (PPDR), and it is necessary to update these communications technologies from narrowband to broadband and integrated to information technologies to have an effective action before society. Understanding that this problem includes, besides the technical aspects, issues related to the social context to which these systems are inserted, this study aims to construct scenarios, using several sources of information, that helps the managers of the PPDR agencies in the technological decisionmaking process of the Digital Transformation of Mission-Critical Communication considering Smart City scenarios, guided by the methods and approaches of Technological Assessment (TA).As redes de radiocomunicações são uma das principais ferramentas de apoio dos órgãos que realizam ações de Proteção Pública e Socorro em desastres, sendo necessário atualizar essas tecnologias de comunicação de banda estreita para banda larga, e integra- las às tecnologias de informação, para se ter uma atuação efetiva perante a sociedade . Entendendo que esse problema inclui, além dos aspectos técnicos, questões relacionadas ao contexto social ao qual esses sistemas estão inseridos, este estudo tem por objetivo a construção de cenários, utilizando diversas fontes de informação que auxiliem os gestores destas agências na tomada de decisão tecnológica que envolve a transformação digital da Comunicação de Missão Crítica considerando cenários de Cidades Inteligentes, guiado pelos métodos e abordagens de Avaliação Tecnológica (TA)

    Connectivity, throughput, and end-to-end latency in infrastructureless wireless Networks with beamforming-enabled devices

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.Cataloged from PDF version of thesis.Includes bibliographical references (p. 181-188).Infrastructureless wireless networks are an important class of wireless networks best fitted to operational situations with temporary, localized demand for communication ability. These networks are composed of wireless communication devices that autonomously form a network without the need for pre-deployed infrastructure such as wireless base-stations and access points. Significant research and development has been devoted to mobile ad hoc wireless networks (MANETs) in the past decade, a particular infrastructureless wireless network architecture. While MANETs are capable of autonomous network formation and multihop routing, the practical adoption of this technology has been limited since these networks are not designed to support more than about thirty users or to provide the quality of service (QoS) assurance required by many of the envisioned driving applications for infrastructureless wireless networks. In particular, communication during disaster relief efforts or tactical military operations requires guaranteed network service capabilities for mission-critical, time-sensitive data and applications. MANETs may be frequently disconnected due to device mobility and mismatches between routing and transport layer protocols, making them unsuitable for these scenarios. Network connectivity is fundamentally important to a network designed to provide QoS guarantees to the end-user. Without network connectivity, at least one pair of devices in the network experiences zero sustainable data rate and infinite end-to-end message delay, a catastrophic condition during a search and rescue mission or in a battlefield. We consider the use of wireless devices equipped with beamforming-enabled antennas to expand deployment regimes in which there is a high probability of instantaneous connectivity and desirable network scalability. Exploiting the increased communication reach of directional antennas and electronic beam steering techniques in fixed rate systems, we characterize the probability of instantaneous connectivity for a finite number of nodes operating in a bounded region and identify required conditions to achieve an acceptably high probability of connectivity. Our analysis shows significant improvements to highly-connected regimes of operation with added antenna directivity. Following the characterization of instantaneous network connectivity, we analyze the achievable network throughput and scalability of both fixed and variable rate beamforming-enabled power-limited networks operating in a bounded region. Our study of the scaling behavior of the network is concerned with three QoS metrics of central importance for a system designed to provide service assurance to the end-user: achievable throughput, end-to-end delay (which we quantify as the number of end-to-end hops), and network energy consumption. We find that the infrastructureless wireless network can achieve scalable performance that is independent of end-user device density with high probability, as well as identify the existence of a system characteristic hopping distance for routing schemes that attain this scaling-optimal behavior. Our results also reveal achievable QoS performance gains from the inclusion of antenna directivity. Following these insights, we develop a scalable, heuristic geographic routing algorithm using device localization information and the characteristic hopping distance guideline that achieves sub-optimal but high network throughput in simulation.by Matthew F. Carey.S.M
    corecore