133 research outputs found

    Distributed formation tracking control of multiple car-like robots

    Get PDF
    In this thesis, distributed formation tracking control of multiple car-like robots is studied. Each vehicle can communicate and send or receive states information to or from a portion of other vehicles. The communication topology is characterized by a graph. Each vehicle is considered as a vertex in the graph and each communication link is considered as an edge in the graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for vehicle kinematics are designed with the aid of graph theory. Two control algorithms are designed based on the chained-form system and its transformation respectively. Both algorithms achieve exponential convergence to the desired reference states. Then vehicle dynamics is considered and dynamic controllers are designed with the aid of two types of kinematic-based controllers proposed in the first section. Finally, a special case of switching graph is addressed considering the probability of vehicle disability and links breakage

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Distributed coordinate tracking control of multiple wheeled mobile robots

    Get PDF
    In this thesis, distributed coordinate tracking control of multiple wheeled-mobile robots is studied. Control algorithms are proposed for both kinematic and dynamic models. All vehicle agents share the same mechanical structure. The communication topology is leader-follower topology and the reference signal is generated by the virtual leader. We will introduce two common kinematic models of WMR and control algorithms are proposed for both kinematic models with the aid of graph theory. Since it is more realistic that the control inputs are torques so dynamic extension is studied following by the kinematics. Torque controllers are designed with the aid of backstepping method so that the velocities of the mobile robots converge to the desired velocities. Because of the fact that in practice, the inertial parameter of WMR maybe not exactly known or even unknown, so both dynamics with and without inertial uncertainties are considered in this thesis

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    Connectivity Preservation in Multi-Agent Systems using Model Predictive Control

    Get PDF
    Flocking of multiagent systems is one of the basic behaviors in the field of control of multiagent systems and it is an essential element of many real-life applications. Such systems under various network structures and environment modes have been extensively studied in the past decades. Navigation of agents in a leader-follower structure while operating in environments with obstacles is particularly challenging. One of the main challenges in flocking of multiagent systems is to preserve connectivity. Gradient descent method is widely utilized to achieve this goal. But the main shortcoming of applying this method for the leader-follower structure is the need for continuous data transmission between agents and/or the preservation of a fixed connection topology. In this research, we propose an innovative model predictive controller based on a potential field that maintains the connectivity of a flock of agents in a leader-follower structure with dynamic topology. The agents navigate through an environment with obstacles that form a path leading to a certain target. Such a control technique avoids collisions of followers with each other without using any communication links while following their leader which navigates in the environment through potential functions for modelling the neighbors and obstacles. The potential field is dynamically updated by introducing weight variables in order to preserve connectivity among the followers as we assume only the leader knows the target position. The values of these weights are changed in real-time according to trajectories of the agents when the critical neighbors of each agent is determined. We compare the performance of our predictive-control based algorithm with other approaches. The results show that our algorithm causes the agents to reach the target in less time. However, our algorithm faces more deadlock cases when the agents go through relatively narrow paths. Due to the consideration of the input costs in our controller, the group of agents reaching the target faster does not necessarily result in the followers consuming more energy than the leader

    Adaptive Formation Control of Cooperative Multi-Vehicle Systems

    Get PDF
    The literature comprises many approaches and results for the formation control of multi-vehicle systems; however, the results established for the cases where the vehicles contain parametric uncertainties are limited. Motivated by the need for explicit characterization of the effects of uncertainties on multi-vehicle formation motions, we study distributed adaptive formation control of multi-vehicle systems in this thesis, focusing on different interrelated sub-objectives. We first examine the cohesive motion control problem of minimally persistent formations of autonomous vehicles. Later, we consider parametric uncertainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect adaptive control approach and exploiting the features of the certainty equivalence principle, we propose control laws to solve maneuvering problem of the formations, robust to parametric modeling uncertainties. Next, as a formation acquisition/closing ranks problem, we study the adaptive station keeping problem, which is defined as positioning an autonomous mobile vehicle AA inside a multi-vehicle network, having specified distances from the existing vehicles of the network. In this setting, a single-integrator model is assumed for the kinematics for the vehicle AA, and AA is assumed to have access to only its own position and its continuous distance measurements to the vehicles of the network. We partition the problem into two sub-problems; localization of the existing vehicles of the network using range-only measurements and motion control of AA to its desired location within the network with respect to other vehicles. We design an indirect adaptive control scheme, provide formal stability and convergence analysis and numerical simulation results, demonstrating the characteristics and performance of the design. Finally, we study re-design of the proposed station keeping scheme for the more challenging case where the vehicle AA has non-holonomic motion dynamics and does not have access to its self-location information. Overall, the thesis comprises methods and solutions to four correlated formation control problems in the direction of achieving a unified distributed adaptive formation control framework for multi-vehicle systems

    A Survey of Resilient Coordination for Cyber-Physical Systems Against Malicious Attacks

    Full text link
    Cyber-physical systems (CPSs) facilitate the integration of physical entities and cyber infrastructures through the utilization of pervasive computational resources and communication units, leading to improved efficiency, automation, and practical viability in both academia and industry. Due to its openness and distributed characteristics, a critical issue prevalent in CPSs is to guarantee resilience in presence of malicious attacks. This paper conducts a comprehensive survey of recent advances on resilient coordination for CPSs. Different from existing survey papers, we focus on the node injection attack and propose a novel taxonomy according to the multi-layered framework of CPS. Furthermore, miscellaneous resilient coordination problems are discussed in this survey. Specifically, some preliminaries and the fundamental problem settings are given at the beginning. Subsequently, based on a multi-layered framework of CPSs, promising results of resilient consensus are classified and reviewed from three perspectives: physical structure, communication mechanism, and network topology. Next, two typical application scenarios, i.e., multi-robot systems and smart grids are exemplified to extend resilient consensus to other coordination tasks. Particularly, we examine resilient containment and resilient distributed optimization problems, both of which demonstrate the applicability of resilient coordination approaches. Finally, potential avenues are highlighted for future research.Comment: 35 pages, 7 figures, 5 table
    corecore