3 research outputs found

    Topology Agnostic Methods for Routing, Reconfiguration and Virtualization of Interconnection Networks

    Get PDF
    Modern computing systems, such as supercomputers, data centers and multicore chips, generally require efficient communication between their different system units; tolerance towards component faults; flexibility to expand or merge; and a high utilization of their resources. Interconnection networks are used in a variety of such computing systems in order to enable communication between their diverse system units. Investigation and proposal of new or improved solutions to topology agnostic routing and reconfiguration of interconnection networks are main objectives of this thesis. In addition, topology agnostic routing and reconfiguration algorithms are utilized in the development of new and flexible approaches to processor allocation. The thesis aims to present versatile solutions that can be used for the interconnection networks of a number of different computing systems. No particular routing algorithm was specified for an interconnection network technology which is now incorporated in Dolphin Express. The thesis states a set of criteria for a suitable routing algorithm, evaluates a number of existing routing algorithms, and recommend that one of the algorithms – which fulfils all of the criteria – is used. Further investigations demonstrate how this routing algorithm inherently supports fault-tolerance, and how it can be optimized for some network topologies. These considerations are also relevant for the InfiniBand interconnection network technology. Reconfiguration of interconnection networks (change of routing function) is a deadlock prone process. Some existing reconfiguration strategies include deadlock avoidance mechanisms that significantly reduce the network service offered to running applications. The thesis expands the area of application for one of the most versatile and efficient reconfiguration algorithms available in the literature, and proposes an optimization of this algorithm that improves the network service offered to running applications. Moreover, a new reconfiguration algorithm is presented that supports a replacement of the routing function without causing performance penalties. Processor allocation strategies that guarantee traffic-containment commonly pose strict requirements on the shape of partitions, and thus achieve only a limited utilization of a system’s computing resources. The thesis introduces two new approaches that are more flexible. Both approaches utilize the properties of a topology agnostic routing algorithm in order to enforce traffic-containment within arbitrarily shaped partitions. Consequently, a high resource utilization as well as isolation of traffic between different partitions is achieved

    Simulations and Algorithms on Reconfigurable Meshes With Pipelined Optical Buses.

    Get PDF
    Recently, many models using reconfigurable optically pipelined buses have been proposed in the literature. A system with an optically pipelined bus uses optical waveguides, with unidirectional propagation and predictable delays, instead of electrical buses to transfer information among processors. These two properties enable synchronized concurrent access to an optical bus in a pipelined fashion. Combined with the abilities of the bus structure to broadcast and multicast, this architecture suits many communication-intensive applications. We establish the equivalence of three such one-dimensional optical models, namely the LARPBS, LPB, and POB. This implies an automatic translation of algorithms (without loss of speed or efficiency) among these models. In particular, since the LPB is the same as an LARPBS without the ability to segment its buses, their equivalence establishes reconfigurable delays (rather than segmenting ability) as the key to the power of optically pipelined models. We also present simulations for a number of two-dimensional optical models and establish that they possess the same complexity, so that any of these models can simulate a step of one of the other models in constant time with a polynomial increase in size. Specifically, we determine the complexity of three two-dimensional optical models (the PR-Mesh, APPBS, and AROB) to be the same as the well known LR-Mesh and the cycle-free LR-Mesh. We develop algorithms for the LARPBS and PR-Mesh that are more efficient than existing algorithms in part by exploiting the pipelining, segmenting, and multicasting characteristics of these models. We also consider the implications of certain physical constraints placed on the system by restricting the distance over which two processors are able to communicate. All algorithms developed for these models assume that a healthy system is available. We present some fundamental algorithms that are able to tolerate up to N/2 faults on an N-processor LARPBS. We then extend these results to apply to other algorithms in the areas of image processing and matrix operations

    Distributed Submesh Determination in Faulty Tori and Meshes

    No full text
    Torus/mesh-based machines have received increasing attention. It is natural to identify the maximum healthy submeshes in a faulty torus/mesh so as to lower potential performance degradation, because the time for executing a parallel algorithm tends to depend on the size of the assigned submesh. This paper proposes an efficient approach for identifying all the maximum healthy submeshes present in a faulty torus/mesh. The proposed approach is based on manipulating set expressions, with the search space reduced considerably by taking advantage of the interesting properties of a faulty torus/mesh. 1
    corecore