29,731 research outputs found

    A constraint programming approach to the hospitals/residents problem

    Get PDF
    An instance I of the Hospitals/Residents problem (HR) involves a set of residents (graduating medical students) and a set of hospitals, where each hospital has a given capacity. The residents have preferences for the hospitals, as do hospitals for residents. A solution of I is a <i>stable matching</i>, which is an assignment of residents to hospitals that respects the capacity conditions and preference lists in a precise way. In this paper we present constraint encodings for HR that give rise to important structural properties. We also present a computational study using both randomly-generated and real-world instances. We provide additional motivation for our models by indicating how side constraints can be added easily in order to solve hard variants of HR

    Finding large stable matchings

    Get PDF
    When ties and incomplete preference lists are permitted in the stable marriage and hospitals/residents problems, stable matchings can have different sizes. The problem of finding a maximum cardinality stable matching in this context is known to be NP-hard, even under very severe restrictions on the number, size, and position of ties. In this article, we present two new heuristics for finding large stable matchings in variants of these problems in which ties are on one side only. We describe an empirical study involving these heuristics and the best existing approximation algorithm for this problem. Our results indicate that all three of these algorithms perform significantly better than naive tie-breaking algorithms when applied to real-world and randomly-generated data sets and that one of the new heuristics fares slightly better than the other algorithms, in most cases. This study, and these particular problem variants, are motivated by important applications in large-scale centralized matching schemes

    Local search for stable marriage problems

    Full text link
    The stable marriage (SM) problem has a wide variety of practical applications, ranging from matching resident doctors to hospitals, to matching students to schools, or more generally to any two-sided market. In the classical formulation, n men and n women express their preferences (via a strict total order) over the members of the other sex. Solving a SM problem means finding a stable marriage where stability is an envy-free notion: no man and woman who are not married to each other would both prefer each other to their partners or to being single. We consider both the classical stable marriage problem and one of its useful variations (denoted SMTI) where the men and women express their preferences in the form of an incomplete preference list with ties over a subset of the members of the other sex. Matchings are permitted only with people who appear in these lists, an we try to find a stable matching that marries as many people as possible. Whilst the SM problem is polynomial to solve, the SMTI problem is NP-hard. We propose to tackle both problems via a local search approach, which exploits properties of the problems to reduce the size of the neighborhood and to make local moves efficiently. We evaluate empirically our algorithm for SM problems by measuring its runtime behaviour and its ability to sample the lattice of all possible stable marriages. We evaluate our algorithm for SMTI problems in terms of both its runtime behaviour and its ability to find a maximum cardinality stable marriage.For SM problems, the number of steps of our algorithm grows only as O(nlog(n)), and that it samples very well the set of all stable marriages. It is thus a fair and efficient approach to generate stable marriages.Furthermore, our approach for SMTI problems is able to solve large problems, quickly returning stable matchings of large and often optimal size despite the NP-hardness of this problem.Comment: 12 pages, Proc. COMSOC 2010 (Third International Workshop on Computational Social Choice

    The Stable Roommates problem with short lists

    Get PDF
    We consider two variants of the classical Stable Roommates problem with Incomplete (but strictly ordered) preference lists (sri) that are degree constrained, i.e., preference lists are of bounded length. The first variant, egald-sri, involves finding an egalitarian stable matching in solvable instances of sri with preference lists of length at most d. We show that this problem is NP-hard even if d = 3. On the positive side we give a 2d+372d+37-approximation algorithm for d ∈{3,4,5} which improves on the known bound of 2 for the unbounded preference list case. In the second variant of sri, called d-srti, preference lists can include ties and are of length at most d. We show that the problem of deciding whether an instance of d-srti admits a stable matching is NP-complete even if d = 3. We also consider the “most stable” version of this problem and prove a strong inapproximability bound for the d = 3 case. However for d = 2 we show that the latter problem can be solved in polynomial time

    Locally Stable Marriage with Strict Preferences

    Full text link
    We study stable matching problems with locality of information and control. In our model, each agent is a node in a fixed network and strives to be matched to another agent. An agent has a complete preference list over all other agents it can be matched with. Agents can match arbitrarily, and they learn about possible partners dynamically based on their current neighborhood. We consider convergence of dynamics to locally stable matchings -- states that are stable with respect to their imposed information structure in the network. In the two-sided case of stable marriage in which existence is guaranteed, we show that the existence of a path to stability becomes NP-hard to decide. This holds even when the network exists only among one partition of agents. In contrast, if one partition has no network and agents remember a previous match every round, a path to stability is guaranteed and random dynamics converge with probability 1. We characterize this positive result in various ways. For instance, it holds for random memory and for cache memory with the most recent partner, but not for cache memory with the best partner. Also, it is crucial which partition of the agents has memory. Finally, we present results for centralized computation of locally stable matchings, i.e., computing maximum locally stable matchings in the two-sided case and deciding existence in the roommates case.Comment: Conference version in ICALP 2013; to appear in SIAM J. Disc Mat

    Efficient algorithms for optimal matching problems under preferences

    Get PDF
    In this thesis we consider efficient algorithms for matching problems involving preferences, i.e., problems where agents may be required to list other agents that they find acceptable in order of preference. In particular we mainly study the Stable Marriage problem (SM), the Hospitals / Residents problem (HR) and the Student / Project Allocation problem (SPA), and some of their variants. In some of these problems the aim is to find a stable matching which is one that admits no blocking pair. A blocking pair with respect to a matching is a pair of agents that prefer to be matched to each other than their assigned partners in the matching if any. We present an Integer Programming (IP) model for the Hospitals / Residents problem with Ties (HRT) and use it to find a maximum cardinality stable matching. We also present results from an empirical evaluation of our model which show it to be scalable with respect to real-world HRT instance sizes. Motivated by the observation that not all blocking pairs that exist in theory will lead to a matching being undermined in practice, we investigate a relaxed stability criterion called social stability where only pairs of agents with a social relationship have the ability to undermine a matching. This stability concept is studied in instances of the Stable Marriage problem with Incomplete lists (smi) and in instances of hr. We show that, in the smi and hr contexts, socially stable matchings can be of varying sizes and the problem of finding a maximum socially stable matching (max smiss and max hrss respectively) is NP-hard though approximable within 3/2. Furthermore we give polynomial time algorithms for three special cases of the problem arising from restrictions on the social network graph and the lengths of agents’ preference lists. We also consider other optimality criteria with respect to social stability and establish inapproximability bounds for the problems of finding an egalitarian, minimum regret and sex equal socially stable matching in the sm context. We extend our study of social stability by considering other variants and restrictions of max smiss and max hrss. We present NP-hardness results for max smiss even under certain restrictions on the degree and structure of the social network graph as well as the presence of master lists. Other NP-hardness results presented relate to the problem of determining whether a given man-woman pair belongs to a socially stable matching and the problem of determining whether a given man (or woman) is part of at least one socially stable matching. We also consider the Stable Roommates problem with Incomplete lists under Social Stability (a non-bipartite generalisation of smi under social stability). We observe that the problem of finding a maximum socially stable matching in this context is also NP-hard. We present efficient algorithms for three special cases of the problem arising from restrictions on the social network graph and the lengths of agents’ preference lists. These are the cases where (i) there exists a constant number of acquainted pairs (ii) or a constant number of unacquainted pairs or (iii) each preference list is of length at most 2. We also present algorithmic results for finding matchings in the spa context that are optimal with respect to profile, which is the vector whose ith component is the number of students assigned to their ith-choice project. We present an efficient algorithm for finding a greedy maximum matching in the spa context — this is a maximum matching whose profile is lexicographically maximum. We then show how to adapt this algorithm to find a generous maximum matching — this is a matching whose reverse profile is lexicographically minimum. We demonstrate how this approach can allow additional constraints, such as lecturer lower quotas, to be handled flexibly. We also present results of empirical evaluations carried out on both real world and randomly generated datasets. These results demonstrate the scalability of our algorithms as well as some interesting properties of these profile-based optimality criteria. Practical applications of spa motivate the investigation of certain special cases of the problem. For instance, it is often desired that the workload on lecturers is evenly distributed (i.e. load balanced). We enforce this by either adding lower quota constraints on the lecturers (which leads to the potential for infeasible problem instances) or adding a load balancing optimisation criterion. We present efficient algorithms in both cases. Another consideration is the fact that certain projects may require a minimum number of students to become viable. This can be handled by enforcing lower quota constraints on the projects (which also leads to the possibility of infeasible problem instances). A technique of handling this infeasibility is the idea of closing projects that do not meet their lower quotas (i.e. leaving such project completely unassigned). We show that the problem of finding a maximum matching subject to project lower quotas where projects can be closed is NP-hard even under severe restrictions on preference lists lengths and project upper and lower quotas. To offset this hardness, we present polynomial time heuristics that find large feasible matchings in practice. We also present ip models for the spa variants discussed and show results obtained from an empirical evaluation carried out on both real and randomly generated datasets. These results show that our algorithms and heuristics are scalable and provide good matchings with respect to profile-based optimalit

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201
    corecore