1,317 research outputs found

    On the Second Order Statistics of the Multihop Rayleigh Fading Channel

    Full text link
    Second order statistics provides a dynamic representation of a fading channel and plays an important role in the evaluation and design of the wireless communication systems. In this paper, we present a novel analytical framework for the evaluation of important second order statistical parameters, as the level crossing rate (LCR) and the average fade duration (AFD) of the amplify-and-forward multihop Rayleigh fading channel. More specifically, motivated by the fact that this channel is a cascaded one and can be modeled as the product of N fading amplitudes, we derive novel analytical expressions for the average LCR and the AFD of the product of N Rayleigh fading envelopes (or of the recently so-called N*Rayleigh channel). Furthermore, we derive simple and efficient closed-form approximations to the aforementioned parameters, using the multivariate Laplace approximation theorem. It is shown that our general results reduce to the corresponding ones of the specific dual-hop case, previously published. Numerical and computer simulation examples verify the accuracy of the presented mathematical analysis and show the tightness of the proposed approximations

    Recovering Multiplexing Loss Through Successive Relaying Using Repetition Coding

    Full text link
    In this paper, a transmission protocol is studied for a two relay wireless network in which simple repetition coding is applied at the relays. Information-theoretic achievable rates for this transmission scheme are given, and a space-time V-BLAST signalling and detection method that can approach them is developed. It is shown through the diversity multiplexing tradeoff analysis that this transmission scheme can recover the multiplexing loss of the half-duplex relay network, while retaining some diversity gain. This scheme is also compared with conventional transmission protocols that exploit only the diversity of the network at the cost of a multiplexing loss. It is shown that the new transmission protocol offers significant performance advantages over conventional protocols, especially when the interference between the two relays is sufficiently strong.Comment: To appear in the IEEE Transactions on Wireless Communication

    DMT Optimal On-Demand Relaying for Mesh Networks

    Get PDF
    This paper presents a new cooperative MAC (Medium Access Control) protocol called BRIAF (Best Relay based Incremental Amplify-and-Forward). The proposed protocol presents two features: on-demand relaying and selection of the best relay terminal. “On-demand relaying” means that a cooperative transmission is implemented between a source terminal and a destination terminal only when the destination terminal fails in decoding the data transmitted by the source terminal. This feature maximizes the spatial multiplexing gain r of the transmission. “Selection of the best relay terminal” means that a selection of the best relay among a set of (m-1) relay candidates is implemented when a cooperative transmission is needed. This feature maximizes the diversity order d(r) of the transmission. Hence, an optimal DMT (Diversity Multiplexing Tradeoff) curve is achieved with a diversity order d(r) = m(1-r) for 0 ≤ r ≤ 1

    Differential Distributed Space-Time Coding with Imperfect Synchronization

    Full text link
    Differential distributed space-time coding (D-DSTC) has been considered to improve both diversity and data-rate in cooperative communications in the absence of channel information. However, conventionally, it is assumed that relays are perfectly synchronized in the symbol level. In practice, this assumption is easily violated due to the distributed nature of the relay networks. This paper proposes a new differential encoding and decoding process for D-DSTC systems with two relays. The proposed method is robust against synchronization errors and does not require any channel information at the destination. Moreover, the maximum possible diversity and symbol-by-symbol decoding are attained. Simulation results are provided to show the performance of the proposed method for various synchronization errors and the fact that our algorithm is not sensitive to synchronization error.Comment: to appear in IEEE Globecom, 201
    • …
    corecore