1,853,070 research outputs found

    Optimal distributed control of a stochastic Cahn-Hilliard equation

    Get PDF
    We study an optimal distributed control problem associated to a stochastic Cahn-Hilliard equation with a classical double-well potential and Wiener multiplicative noise, where the control is represented by a source-term in the definition of the chemical potential. By means of probabilistic and analytical compactness arguments, existence of an optimal control is proved. Then the linearized system and the corresponding backward adjoint system are analysed through monotonicity and compactness arguments, and first-order necessary conditions for optimality are proved.Comment: Key words and phrases: stochastic Cahn-Hilliard equation, phase separation, optimal control, linearized state system, adjoint state system, first-order optimality condition

    Description of the SSF PMAD DC testbed control system data acquisition function

    Get PDF
    The NASA LeRC in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation, and resource management are being evaluated in the testbed. The SSF EPS control functional allocation between on-board computers and ground based systems is evolving. Initially, ground based systems will perform the bulk of power system control and operation. The EPS control system is required to continuously monitor and determine the current state of the power system. The DC Testbed Control System consists of standard controllers arranged in a hierarchical and distributed architecture. These controllers provide all the monitoring and control functions for the DC Testbed Electrical Power System. Higher level controllers include the Power Management Controller, Load Management Controller, Operator Interface System, and a network of computer systems that perform some of the SSF Ground based Control Center Operation. The lower level controllers include Main Bus Switch Controllers and Photovoltaic Controllers. Power system status information is periodically provided to the higher level controllers to perform system control and operation. The data acquisition function of the control system is distributed among the various levels of the hierarchy. Data requirements are dictated by the control system algorithms being implemented at each level. A functional description of the various levels of the testbed control system architecture, the data acquisition function, and the status of its implementationis presented

    Active distribution power system with multi-terminal DC links

    Get PDF
    A fast power restoration operational scheme and relevant stabilizing control is proposed for active distribution power systems with multi-terminal DC network in replacement of the conventional normal open switches. A 9-feeder benchmark distribution power system is established with a 4-terminal medium power DC system injected. The proposed power restoration scheme is based on the coordination among distributed control among relays, load switches, voltage source converters and autonomous operation of multi-terminal DC system. A DC stabilizer is proposed with virtual impedance method to damp out potential oscillation caused by constant power load terminals. The proposed system and controls are validated by frequency domain state space model and time domain case study with Matlab/Simulink

    A distributed file service based on optimistic concurrency control

    Get PDF
    The design of a layered file service for the Amoeba Distributed System is discussed, on top of which various applications can easily be intplemented. The bottom layer is formed by the Amoeba Block Services, responsible for implementing stable storage and repficated, highly available disk blocks. The next layer is formed by the Amoeba File Service which provides version management and concurrency control for tree-structured files. On top of this layer, the appficafions, ranging from databases to source code control systems, determine the structure of the file trees and provide an interface to the users

    Design optimization of the JPL Phase B testbed

    Get PDF
    Increasingly complex spacecraft will benefit from integrated design and optimization of structural, optical, and control subsystems. Integrated design optimization will allow designers to make tradeoffs in objectives and constraints across these subsystems. The location, number, and types of passive and active devices distributed along the structure can have a dramatic impact on overall system performance. In addition, the manner in which structural mass is distributed can also serve as an effective mechanism for attenuating disturbance transmission between source and sensitive system components. This paper presents recent experience using optimization tools that have been developed for addressing some of these issues on a challenging testbed design problem. This particular testbed is one of a series of testbeds at the Jet Propulsion Laboratory under the sponsorship of the NASA Control Structure Interaction (CSI) Program to demonstrate nanometer level optical pathlength control on a flexible truss structure that emulates a spaceborne interferometer
    corecore