15,429 research outputs found

    Heterogeneities in amorphous systems under shear

    Get PDF
    The last decade has seen major progresses in studies of elementary mechanisms of deformation in amorphous materials. Here, we start with a review of physically-based theories of plasticity, going back to the identification of "shear-transformations" as early as the 70's. We show how constructive criticism of the theoretical models permits to formulate questions concerning the role of structural disorder, mechanical noise, and long-ranged elastic interactions. These questions provide the necessary context to understand what has motivated recent numerical studies. We then summarize their results, show why they had to focus on athermal systems, and point out the outstanding questions.Comment: Chapter of "Dynamical Heterogeneities in glasses, colloids and granular materials", Eds.: L. Berthier, G. Biroli, J-P Bouchaud, L. Cipelletti and W. van Saarloos (Oxford University Press, to appear), more info at http://w3.lcvn.univ-montp2.fr/~lucacip/DH_book.ht

    High performance reduced order modeling techniques based on optimal energy quadrature: application to geometrically non-linear multiscale inelastic material modeling

    Get PDF
    A High-Performance Reduced-Order Model (HPROM) technique, previously presented by the authors in the context of hierarchical multiscale models for non linear-materials undergoing infinitesimal strains, is generalized to deal with large deformation elasto-plastic problems. The proposed HPROM technique uses a Proper Orthogonal Decomposition procedure to build a reduced basis of the primary kinematical variable of the micro-scale problem, defined in terms of the micro-deformation gradient fluctuations. Then a Galerkin-projection, onto this reduced basis, is utilized to reduce the dimensionality of the micro-force balance equation, the stress homogenization equation and the effective macro-constitutive tangent tensor equation. Finally, a reduced goal-oriented quadrature rule is introduced to compute the non-affine terms of these equations. Main importance in this paper is given to the numerical assessment of the developed HPROM technique. The numerical experiments are performed on a micro-cell simulating a randomly distributed set of elastic inclusions embedded into an elasto-plastic matrix. This micro-structure is representative of a typical ductile metallic alloy. The HPROM technique applied to this type of problem displays high computational speed-ups, increasing with the complexity of the finite element model. From these results, we conclude that the proposed HPROM technique is an effective computational tool for modeling, with very large speed-ups and acceptable accuracy levels with respect to the high-fidelity case, the multiscale behavior of heterogeneous materials subjected to large deformations involving two well-separated scales of length.Peer ReviewedPostprint (author's final draft

    Pluto: a Monte Carlo simulation tool for hadronic physics

    Get PDF
    Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. The package is entirely based on ROOT, without the need of additional packages, and uses the embedded C++ interpreter of ROOT to control the event production. The generation of events based on a single reaction chain and the storage of the resulting particle objects can be done with a few lines of a ROOT-macro. However, the complete control of the package can be taken over by the steering macro and user-defined models may be added without a recompilation of the framework. Multi-reaction cocktails can be facilitated as well using either mass-dependent or user-defined static branching ratios. The included physics uses resonance production with mass-dependent Breit-Wigner sampling. The calculation of partial and total widths for resonances producing unstable particles is performed recursively in a coupled-channel approach. Here, particular attention is paid to the electromagnetic decays, motivated by the physics program of HADES. The thermal model supports 2-component thermal distributions, longitudinal broadening, radial blast, direct and elliptic flow, and impact-parameter sampled multiplicities. The interface allows angular distribution models (e.g. for the primary meson emission) to be attached by the user as well as descriptions of multi-particle correlations using decay chain templates. The exchange of mass sampling or momentum generation models is also possible. The first feature allows for consistent coupled-channel calculations, needed for a correct description of hadronic interactions. For elementary reactions, angular distribution models for selected channels are already part of the framework, based on parameterizations of existing data. This report gives an overview of the design of the package, the included models and the user interface

    Pluto: A Monte Carlo Simulation Tool for Hadronic Physics

    Full text link
    Pluto is a Monte-Carlo event generator designed for hadronic interactions from Pion production threshold to intermediate energies of a few GeV per nucleon, as well as for studies of heavy ion reactions. This report gives an overview of the design of the package, the included models and the user interface.Comment: XI International Workshop on Advanced Computing and Analysis Techniques in Physics Research, April 23-27 2007, Amsterdam, the Netherland

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Anomalous compliance and early yielding of nanoporous gold

    Full text link
    We present a study of the elastic and plastic behavior of nanoporous gold in compression, focusing on molecular dynamics simulation and inspecting experimental data for verification. Both approaches agree on an anomalously high elastic compliance in the early stages of deformation, along with a quasi immediate onset of plastic yielding even at the smallest load. Already before the first loading, the material undergoes spontaneous plastic deformation under the action of the capillary forces, requiring no external load. Plastic deformation under compressive load is accompanied by dislocation storage and dislocation interaction, along with strong strain hardening. Dislocation-starvation scenarios are not supported by our results. The stiffness increases during deformation, but never approaches the prediction by the relevant Gibson-Ashby scaling law. Microstructural disorder affects the plastic deformation behavior and surface excess elasticity might modify elastic response, yet we relate the anomalous compliance and the immediate yield onset to an atomistic origin: the large surface-induced prestress induces elastic shear that brings some regions in the material close to the shear instability of the generalized stacking fault energy curve. These regions are elastically highly compliant and plastically weak

    A fine-grain time-sharing Time Warp system

    Get PDF
    Although Parallel Discrete Event Simulation (PDES) platforms relying on the Time Warp (optimistic) synchronization protocol already allow for exploiting parallelism, several techniques have been proposed to further favor performance. Among them we can mention optimized approaches for state restore, as well as techniques for load balancing or (dynamically) controlling the speculation degree, the latter being specifically targeted at reducing the incidence of causality errors leading to waste of computation. However, in state of the art Time Warp systems, events’ processing is not preemptable, which may prevent the possibility to promptly react to the injection of higher priority (say lower timestamp) events. Delaying the processing of these events may, in turn, give rise to higher incidence of incorrect speculation. In this article we present the design and realization of a fine-grain time-sharing Time Warp system, to be run on multi-core Linux machines, which makes systematic use of event preemption in order to dynamically reassign the CPU to higher priority events/tasks. Our proposal is based on a truly dual mode execution, application vs platform, which includes a timer-interrupt based support for bringing control back to platform mode for possible CPU reassignment according to very fine grain periods. The latter facility is offered by an ad-hoc timer-interrupt management module for Linux, which we release, together with the overall time-sharing support, within the open source ROOT-Sim platform. An experimental assessment based on the classical PHOLD benchmark and two real world models is presented, which shows how our proposal effectively leads to the reduction of the incidence of causality errors, as compared to traditional Time Warp, especially when running with higher degrees of parallelism
    corecore