170 research outputs found

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions

    Distributed Turbo-Like Codes for Multi-User Cooperative Relay Networks

    Full text link
    In this paper, a distributed turbo-like coding scheme for wireless networks with relays is proposed. We consider a scenario where multiple sources communicate with a single destination with the help of a relay. The proposed scheme can be regarded as of the decode-and-forward type. The relay decodes the information from the sources and it properly combines and re-encodes them to generate some extra redundancy, which is transmitted to the destination. The amount of redundancy generated by the relay can simply be adjusted according to requirements in terms of performance, throughput and/or power. At the destination, decoding of the information of all sources is performed jointly exploiting the redundancy provided by the relay in an iterative fashion. The overall communication network can be viewed as a serially concatenated code. The proposed distributed scheme achieves significant performance gains with respect to the non-cooperation system, even for a very large number of users. Furthermore, it presents a high flexibility in terms of code rate, block length and number of users.Comment: Submitted to ICC 201

    Polar Coding Schemes for Cooperative Transmission Systems

    Get PDF
    : In this thesis, a serially-concatenated coding scheme with a polar code as the outer code and a low density generator matrix (LDGM) code as the inner code is firstly proposed. It is shown that that the proposed scheme provides a method to improve significantly the low convergence of polar codes and the high error floor of LDGM codes while keeping the advantages of both such as the low encoding and decoding complexity. The bit error rate results show that the proposed scheme by reasonable design have the potential to approach a performance close to the capacity limit and avoid error floor effectively. Secondly, a novel transmission protocol based on polar coding is proposed for the degraded half-duplex relay channel. In the proposed protocol, the relay only needs to forward a part of the decoded source message that the destination needs according to the exquisite nested structure of polar codes. It is proved that the scheme can achieve the capacity of the half-duplex relay channel while enjoying low encoding/decoding complexity. By modeling the practical system, we verify that the proposed scheme outperforms the conventional scheme designed by low-density parity-check codes by simulations. Finally, a generalized partial information relaying protocol is proposed for degraded multiple-relay networks with orthogonal receiver components (MRN-ORCs). In such a protocol, each relay node decodes the received source message with the help of partial information from previous nodes and re-encodes part of the decoded message for transmission to satisfy the decoding requirements for the following relay node or the destination node. For the design of polar codes, the nested structures are constructed based on this protocol and the information sets corresponding to the partial messages forwarded are also calculated. It is proved that the proposed scheme achieves the theoretical capacity of the degraded MRN-ORCs while still retains the low-complexity feature of polar codes

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Successive-relaying-aided decode-and-forward coherent versus noncoherent cooperative multicarrier space–time shift keying

    No full text
    Abstract—Successive-relaying-aided (SR) cooperative multi-carrier (MC) space–time shift keying (STSK) is proposed for frequency-selective channels. We invoke SR to mitigate the typical 50% throughput loss of conventional half-duplex relaying schemes and MC code-division multiple access (MC-CDMA) to circumvent the dispersive effects of wireless channels and to reduce the SR-induced interference. The distributed relay terminals form two virtual antenna arrays (VAAs), and the source node (SN) successively transmits frequency-domain (FD) spread signals to one of the VAAs, in addition to directly transmitting to the destination node (DN). The constituent relay nodes (RNs) of each VAA activate cyclic-redundancy-checking-based (CRC) selective decode-and-forward (DF) relaying. The DN can jointly detect the signals received via the SN-to-DN and VAA-to-DN links using a low-complexity single-stream-based joint maximum-likelihood (ML) detector. We also propose a differentially encoded cooperative MC-CDMA STSK scheme to facilitate communications over hostile dispersive channels without requiring channel estimation (CE). Dispensing with CE is important since the relays cannot be expected to altruistically estimate the SN-to-RN links for simply supporting the source. Furthermore, we propose soft-decision-aided serially concatenated recursive systematic convolutional (RSC) and unity-rate-coded (URC) cooperative MC STSK and investigate its performance in both coherent and noncoherent scenarios

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    EXIT charts for system design and analysis

    No full text
    Near-capacity performance may be achieved with the aid of iterative decoding, where extrinsic soft information is exchanged between the constituent decoders in order to improve the attainable system performance. Extrinsic information Transfer (EXIT) charts constitute a powerful semi-analytical tool used for analysing and designing iteratively decoded systems. In this tutorial, we commence by providing a rudimentary overview of the iterative decoding principle and the concept of soft information exchange. We then elaborate on the concept of EXIT charts using three iteratively decoded prototype systems as design examples. We conclude by illustrating further applications of EXIT charts, including near-capacity designs, the concept of irregular codes and the design of modulation schemes

    Low Density Graph Codes And Novel Optimization Strategies For Information Transfer Over Impaired Medium

    Get PDF
    Effective methods for information transfer over an imperfect medium are of great interest. This thesis addresses the following four topics involving low density graph codes and novel optimization strategies.Firstly, we study the performance of a promising coding technique: low density generator matrix (LDGM) codes. LDGM codes provide satisfying performance while maintaining low encoding and decoding complexities. In the thesis, the performance of LDGM codes is extracted for both majority-rule-based and sum-product iterative decoding algorithms. The ultimate performance of the coding scheme is revealed through distance spectrum analysis. We derive the distance spectral for both LDGM codes and concatenated LDGM codes. The results show that serial-concatenated LDGM codes deliver extremely low error-floors. This work provides valued information for selecting the parameters of LDGM codes. Secondly, we investigate network-coding on relay-assisted wireless multiple access (WMA) networks. Network-coding is an effective way to increase robustness and traffic capacity of networks. Following the framework of network-coding, we introduce new network codes for the WMA networks. The codes are constructed based on sparse graphs, and can explore the diversities available from both the time and space domains. The data integrity from relays could be compromised when the relays are deployed in open areas. For this, we propose a simple but robust security mechanism to verify the data integrity.Thirdly, we study the problem of bandwidth allocation for the transmission of multiple sources of data over a single communication medium. We aim to maximize the overall user satisfaction, and formulate an optimization problem. Using either the logarithmic or exponential form of satisfaction function, we derive closed-form optimal solutions, and show that the optimal bandwidth allocation for each type of data is piecewise linear with respect to the total available bandwidth. Fourthly, we consider the optimization strategy on recovery of target spectrum for filter-array-based spectrometers. We model the spectrophotometric system as a communication system, in which the information content of the target spectrum is passed through distortive filters. By exploiting non-negative nature of spectral content, a non-negative least-square optimal criterion is found particularly effective. The concept is verified in a hardware implemen
    corecore