7 research outputs found

    Time-Energy Optimal Cluster Space Motion Planning for Mobile Robot Formations

    Get PDF
    The motions of a formation of mobile robots along predetermined paths are optimized according to a tunable time-energy cost function using the cluster space approach to multiagent system specification and control. Upon path-parameterizing cluster state variables describing the geometry and pose of a multirobot group, an optimal control problem is formulated that incorporates formation dynamics and state constraints. The optimal trajectory is derived numerically via a gradient search, iterating over the initial value of one costate. A multirobot formation control simulation is then used to demonstrate the effectiveness of the technique. Results indicate that a substantial tradeoff is made between energy expenditure and motion time when considered as minimization criteria in varying proportions, allowing the operator to tailor mission trajectories according to desired levels of each

    Adaptable underwater networks: The relation between autonomy and communications

    Get PDF
    This paper discusses requirements for autonomy and communications in maritime environments through two use cases which are sourced from military scenarios: Mine Counter Measures (MCM) and Anti-Submarine Warfare (ASW). To address these requirements, this work proposes a service-oriented architecture that breaks the typical boundaries between the autonomy and the communications stacks. An initial version of the architecture has been implemented and its deployment during a field trial done in January 2019 is reported. The paper discusses the achieved results in terms of system flexibility and ability to address the MCM and ASW requirements

    Розвиток методів енергозбереження в мобільних сенсорних мережах

    Get PDF
    Для досягнення мети в даній роботі вирішуються наступні завдання: - аналіз існуючих способів заощадження електроенергії при роботі датчика БСМ; - опис методу розподіленого кодування джерела; - математичне модулювання модифікованої схеми роботи датчика; - аналіз результатів математичного моделювання та порівняння енергоефективності з іншими схемами роботи датчика.To achieve the goal, the following tasks are solved in this work: - analysis of existing ways of saving electricity during the operation of the BSM sensor; - description of the method of distributed coding of the source; - mathematical modulation of the modified sensor operation scheme; - analysis of the results of mathematical modeling and comparison of energy efficiency with other schemes of sensor operation

    A Highly Reliable, Low Power Consumption, Low-Cost Multisensory Based System For Autonomous Navigational Mobile Robot

    Get PDF
    There has been remarkable growth in most real-time systems in the area of autonomous mobile robots. Collision-free path planning is one of the critical requirements in designing mobile robot systems since they all featured some obstacle detection techniques. This work focuses on the collaborations of low cost multi-sensor system to produce a complementary collision-free path for mobile robots. The proposed algorithm is used with a new model to produce the shortest, and most energy-efficient path from a given initial point to a goal point. Multiple sensors are utilized together, so the benefits of one compensate for the limitations of the other. The experimental results demonstrate that the robot is capable of measuring different distances to obstacles in unknown environments. Moreover, this work aims to minimize the energy consumption of a wheeled mobile robot in dynamic environments. The total energy consumption is evaluated in multiple directions, where both motional energy and operational energy are considered, while the robot is moving in dynamic environments and avoiding collisions. A time complexity analysis and a comparison of the proposed model, and states-of-arts methods are presented by using required resources and the overall performance of the proposed model. The proposed model is characterized by its low cost, low power consumption, and its efficiencies to follow the shortest path while avoiding collisions

    Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots

    Full text link
    Safe robot navigation is a fundamental research field for autonomous robots including ground mobile robots and flying robots. The primary objective of a safe robot navigation algorithm is to guide an autonomous robot from its initial position to a target or along a desired path with obstacle avoidance. With the development of information technology and sensor technology, the implementations combining robotics with sensor network are focused on in the recent researches. One of the relevant implementations is the sensor network based robot navigation. Moreover, another important navigation problem of robotics is safe area search and map building. In this report, a global collision-free path planning algorithm for ground mobile robots in dynamic environments is presented firstly. Considering the advantages of sensor network, the presented path planning algorithm is developed to a sensor network based navigation algorithm for ground mobile robots. The 2D range finder sensor network is used in the presented method to detect static and dynamic obstacles. The sensor network can guide each ground mobile robot in the detected safe area to the target. Furthermore, the presented navigation algorithm is extended into 3D environments. With the measurements of the sensor network, any flying robot in the workspace is navigated by the presented algorithm from the initial position to the target. Moreover, in this report, another navigation problem, safe area search and map building for ground mobile robot, is studied and two algorithms are presented. In the first presented method, we consider a ground mobile robot equipped with a 2D range finder sensor searching a bounded 2D area without any collision and building a complete 2D map of the area. Furthermore, the first presented map building algorithm is extended to another algorithm for 3D map building
    corecore