6,452 research outputs found

    Distributed Resources Management in Wireless LANs

    Get PDF
    This paper introduces a new radio resource management technique based on distributed dynamic channel assignment, and sharing load among Access Points (AP). Deploying wireless LANs (WLAN) on a large scale is mainly affected by reliability, availability and performance. These parameters will be a concern for most managers who want to deploy WLANs. In order to address these concerns, a new radio resource management technique can be used in a new generation of wireless LAN equipment. This technique would include distributed dynamic channel assignment, and load sharing among Access Points (AP), which improves the network availability and reliability compared to centralized management techniques. In addition, it will help to increase network capacities and improve performance, especially in large-scale WLANs. Analysis results using normal and binomial distribution have been included which indicate an improvement of performance resulting from network balancing when implementing distributed resources management at WLANs. Ā© 2009, IGI Global

    The MobyDick Project: A Mobile Heterogeneous All-IP Architecture

    Get PDF
    Proceedings of Advanced Technologies, Applications and Market Strategies for 3G (ATAMS 2001). Cracow, Poland: 17-20 June, 2001.This paper presents the current stage of an IP-based architecture for heterogeneous environments, covering UMTS-like W-CDMA wireless access technology, wireless and wired LANs, that is being developed under the aegis of the IST Moby Dick project. This architecture treats all transmission capabilities as basic physical and data-link layers, and attempts to replace all higher-level tasks by IP-based strategies. The proposed architecture incorporates aspects of mobile-IPv6, fast handover, AAA-control, and Quality of Service. The architecture allows for an optimised control on the radio link layer resources. The Moby dick architecture is currently under refinement for implementation on field trials. The services planned for trials are data transfer and voice-over-IP.Publicad

    Optical fibre local area networks

    Get PDF

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Real-time cross-layer design for large-scale flood detection and attack trace-back mechanism in IEEE 802.11 wireless mesh networks

    Get PDF
    IEEE 802.11 WMN is an emerging next generation low-cost multi-hop wireless broadband provisioning technology. It has the capability of integrating wired and wireless networks such as LANs, IEEE 802.11 WLANs, IEEE 802.16 WMANs, and sensor networks. This kind of integration: large-scale coverage, decentralised and multi-hop architecture, multi-radios, multi-channel assignments, ad hoc connectivity support the maximum freedom of users to join or leave the network from anywhere and at anytime has made the situation far more complex. As a result broadband resources are exposed to various kinds of security attacks, particularly DoS attacks

    Spectrum Utilization and Congestion of IEEE 802.11 Networks in the 2.4 GHz ISM Band

    Get PDF
    Wi-Fi technology, plays a major role in society thanks to its widespread availability, ease of use and low cost. To assure its long term viability in terms of capacity and ability to share the spectrum efļ¬ciently, it is of paramount to study the spectrum utilization and congestion mechanisms in live environments. In this paper the service level in the 2.4 GHz ISM band is investigated with focus on todays IEEE 802.11 WLAN systems with support for the 802.11e extension. Here service level means the overall Quality of Service (QoS), i.e. can all devices fulļ¬ll their communication needs? A crosslayer approach is used, since the service level can be measured at several levels of the protocol stack. The focus is on monitoring at both the Physical (PHY) and the Medium Access Control (MAC) link layer simultaneously by performing respectively power measurements with a spectrum analyzer to assess spectrum utilization and packet snifļ¬ng to measure the congestion. Compared to traditional QoS analysis in 802.11 networks, packet snifļ¬ng allows to study the occurring congestion mechanisms more thoroughly. The monitoring is applied for the following two cases. First the inļ¬‚uence of interference between WLAN networks sharing the same radio channel is investigated in a controlled environment. It turns out that retry rate, Clear-ToSend (CTS), Request-To-Send (RTS) and (Block) Acknowledgment (ACK) frames can be used to identify congestion, whereas the spectrum analyzer is employed to identify the source of interference. Secondly, live measurements are performed at three locations to identify this type of interference in real-live situations. Results show inefļ¬cient use of the wireless medium in certain scenarios, due to a large portion of management and control frames compared to data content frames (i.e. only 21% of the frames is identiļ¬ed as data frames)
    • ā€¦
    corecore