32 research outputs found

    Mobile edge computing in wireless communication networks: design and optimization

    Get PDF
    This dissertation studies the design and optimization of applying mobile edge computing (MEC) in three kinds of advanced wireless networks, which is motivated by three non-trivial but not thoroughly studied topics in the existing MEC-related literature. First, we study the application of MEC in wireless powered cooperation-assisted systems. The technology of wireless power transfer (WPT) used at the access point (AP) is capable of providing sustainable energy supply for resource-limited user equipment (UEs) to support computation offloading, but also introduces the double-near-far effect into wireless powered communication networks (WPCNs). By leveraging cooperation among near-far users, the system performance can be highly improved through effectively suppressing the double-near-far effect in WPCNs. Then, we consider the application of MEC in the unmanned aerial vehicle (UAV)-assisted relaying systems to make better use of the flexible features of UAV as well as its computing resources. The adopted UAV not only acts as an MEC server to help compute UEs' offloaded tasks but also a relay to forward UEs' offloaded tasks to the AP, thus such kind of cooperation between the UAV and the AP can take the advantages of both sides so as to improve the system performance. Last, heterogeneous cellular networks (HetNets) with the coexistence of MEC and central cloud computing (CCC) are studied to show the complementary and promotional effects between MEC and CCC. The small base stations (SBSs) empowered by edge clouds offer limited edge computing services for UEs, whereas the macro base station (MBS) provides high-performance CCC services for UEs via restricted multiple-input multiple-output (MIMO) backhauls to their associated SBSs. With further considering the case with massive MIMO backhauls, the system performance can be further improved while significantly reducing the computational complexity. In the aforementioned three advanced MEC systems, we mainly focus on minimizing the energy consumption of the systems subject to proper latency constraints, due to the fact that energy consumption and latency are regarded as two important metrics for measuring the performance of MEC-related works. Effective optimization algorithms are proposed to solve the corresponding energy minimization problems, which are further validated by numerical results

    Defining and Surveying Wireless Link Virtualization and Wireless Network Virtualization

    Get PDF
    Virtualization is a topic of great interest in the area of mobile and wireless communication systems. However, the term virtualization is used in an inexact manner which makes it difficult to compare and contrast work that has been carried out to date. The purpose of this paper is twofold. In the first place, this paper develops a formal theory for defining virtualization. In the second instance, this theory is used as a way of surveying a body of work in the field of wireless link virtualization, a subspace of wireless network virtualization. The formal theory provides a means for distinguishing work that should be classed as resource allocation as distinct from virtualization. It also facilitates a further classification of the representation level at which the virtualization occurs, which makes comparison of work more meaningful. This paper provides a comprehensive survey and highlights gaps in the research that make for fruitful future work

    Wireless access network optimization for 5G

    Get PDF

    Advanced Technologies for Energy Saving, Wireless Backhaul and Mobility Management in Heterogeneous Networks

    Get PDF
    In recent years, due to the increasing number of existing and new devices and applications, the wireless industry has experienced an explosion of data traffic usage. As a result, new wireless technologies have been developed to address the capacity crunch. Long-Term Evolution-Licensed Assisted Access (LTE-LAA) is developed to provide the tremendous capacity by extending LTE to 5 GHz unlicensed spectrum. Hyper-dense small cells deployment is another promising technique that can provide a ten to one hundred times capacity gain by bringing small cells closer to mobile user equipments [1]. In this thesis, I focus on three problems related to these two techniques. In Chapter 3, I present a novel activation and sleep mechanism for energy efficient small cell heterogeneous networks (HetNets). In the cell-edge area of a macrocell, the coverage area of a sleeping small-cell will be covered by a range of expanded small-cells nearby. In contrast, in areas close to the macrocell, user equipment (UE) associated with a sleeping small cell will be distributed to the macrocell. Furthermore, the enhanced inter-cell interference coordination (eICIC) technique is used to support range-expanded small cells to avoid Quality of Service (QoS) degradation. Under both hexagonal and stochastic geometry based models, it is demonstrated that the proposed sleeping mechanism significantly reduces the energy consumption of the network compared with the conventional methods while guaranteeing the QoS requirements. Small cells are currently connected to limited backhaul to reduce the deployment and operational costs. In Chapter 4, an optimisation scheme is proposed for small cells to utilise the bandwidth of macrocells as wireless backhaul. I provide the numerical analysis of the performance of both the targeted small cell and the whole network. In Chapter 5, the mobility management (MM) of heterogeneous and LTE-LAA networks are investigated. To avoid Ping-Pong handover (PPHO) and reduce handover failure rate in HetNets, a self-optimisation algorithm is developed to change the handover parameters of a base station automagically. Furthermore, the MM of LTE-LAA networks is analysed. A new handover mechanism is proposed for LTE-LAA networks. Compared with the conventional LTE networks, LTE-LAA networks trigger the handover not only by using UE mobility, but also by the availability of the unlicensed band. A comprehensive analysis of the handover triggering event and handover procedure is presented. Simulation results show that by introducing handover triggered by available unlicensed band, the ratio of handover to unlicensed spectrum has a significant improvement. Therefore, a noticeable enhanced throughput of UEs is achievable by LTE-LAA networks
    corecore