3,391 research outputs found

    Outage Performance of Two-Hop OFDM Systems with Spatially Random Decode-and-Forward Relays

    Full text link
    In this paper, we analyze the outage performance of different multicarrier relay selection schemes for two-hop orthogonal frequency-division multiplexing (OFDM) systems in a Poisson field of relays. In particular, special emphasis is placed on decode-and-forward (DF) relay systems, equipped with bulk and per-subcarrier selection schemes, respectively. The exact expressions for outage probability are derived in integrals for general cases. In addition, asymptotic expressions for outage probability in the high signal-to-noise ratio (SNR) region in the finite circle relay distribution region are determined in closed forms for both relay selection schemes. Also, the outage probabilities for free space in the infinite relay distribution region are derived in closed forms. Meanwhile, a series of important properties related to cooperative systems in random networks are investigated, including diversity, outage probability ratio of two selection schemes and optimization of the number of subcarriers in terms of system throughput. All analysis is numerically verified by simulations. Finally, a framework for analyzing the outage performance of OFDM systems with spatially random relays is constructed, which can be easily modified to analyze other similar cases with different forwarding protocols, location distributions and/or channel conditions

    OFDM based Distributed Space Time Coding for Asynchronous Relay Networks

    Full text link
    Recently Li and Xia have proposed a transmission scheme for wireless relay networks based on the Alamouti space time code and orthogonal frequency division multiplexing to combat the effect of timing errors at the relay nodes. This transmission scheme is amazingly simple and achieves a diversity order of two for any number of relays. Motivated by its simplicity, this scheme is extended to a more general transmission scheme that can achieve full cooperative diversity for any number of relays. The conditions on the distributed space time block code (DSTBC) structure that admit its application in the proposed transmission scheme are identified and it is pointed out that the recently proposed full diversity four group decodable DSTBCs from precoded co-ordinate interleaved orthogonal designs and extended Clifford algebras satisfy these conditions. It is then shown how differential encoding at the source can be combined with the proposed transmission scheme to arrive at a new transmission scheme that can achieve full cooperative diversity in asynchronous wireless relay networks with no channel information and also no timing error knowledge at the destination node. Finally, four group decodable distributed differential space time block codes applicable in this new transmission scheme for power of two number of relays are also provided.Comment: 5 pages, 2 figures, to appear in IEEE International Conference on Communications, Beijing, China, May 19-23, 200

    Quasi-orthogonal space-frequency coding in non-coherent cooperative broadband networks

    Get PDF
    © 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.So far, complex valued orthogonal codes have been used differentially in cooperative broadband networks. These codes however achieve less than unitary code rate when utilized in cooperative networks with more than two relays. Therefore, the main challenge is how to construct unitary rate codes for non-coherent cooperative broadband networks with more than two relays while exploiting the achievable spatial and frequency diversity. In this paper, we extend full rate quasi-orthogonal codes to differential cooperative broadband networks where channel information is unavailable. From this, we propose a generalized differential distributed quasi-orthogonal space-frequency coding (DQSFC) protocol for cooperative broadband networks. Our proposed scheme is able to achieve full rate, and full spatial and frequency diversity in cooperative networks with any number of relays. Through pairwise error probability analysis we show that the diversity gain of our scheme can be improved by appropriate code construction and sub-carrier allocation. Based on this, we derive sufficient conditions for the proposed code structure at the source node and relay nodes to achieve full spatial and frequency diversity.Peer reviewe

    Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks

    Get PDF
    In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptively selected by a certain criterion. As a result, the active subcarriers for the same bit stream in the first and second hops can be varied in order to combat slow frequency-selective fading. In this way, the system reliability can be enhanced. Additionally, considering the fact that a relay device is normally a simple node, which may not always be able to perform mapping scheme selection due to limited processing capability, we also propose an alternative adaptive methodology in which the mapping scheme selection is only performed at the source and the relay will simply utilize the selected mapping scheme without changing it. The analyses of average outage probability, network capacity and symbol error rate (SER) are given in closed form for decode-and-forward (DF) relaying networks and are substantiated by numerical results generated by Monte Carlo simulations.Comment: 30 page

    Differential Distributed Space-Time Coding with Imperfect Synchronization

    Full text link
    Differential distributed space-time coding (D-DSTC) has been considered to improve both diversity and data-rate in cooperative communications in the absence of channel information. However, conventionally, it is assumed that relays are perfectly synchronized in the symbol level. In practice, this assumption is easily violated due to the distributed nature of the relay networks. This paper proposes a new differential encoding and decoding process for D-DSTC systems with two relays. The proposed method is robust against synchronization errors and does not require any channel information at the destination. Moreover, the maximum possible diversity and symbol-by-symbol decoding are attained. Simulation results are provided to show the performance of the proposed method for various synchronization errors and the fact that our algorithm is not sensitive to synchronization error.Comment: to appear in IEEE Globecom, 201

    Outage Performance Analysis of Multicarrier Relay Selection for Cooperative Networks

    Full text link
    In this paper, we analyze the outage performance of two multicarrier relay selection schemes, i.e. bulk and per-subcarrier selections, for two-hop orthogonal frequency-division multiplexing (OFDM) systems. To provide a comprehensive analysis, three forwarding protocols: decode-and-forward (DF), fixed-gain (FG) amplify-and-forward (AF) and variable-gain (VG) AF relay systems are considered. We obtain closed-form approximations for the outage probability and closed-form expressions for the asymptotic outage probability in the high signal-to-noise ratio (SNR) region for all cases. Our analysis is verified by Monte Carlo simulations, and provides an analytical framework for multicarrier systems with relay selection
    corecore