20 research outputs found

    Distributed reactive power feedback control for voltage regulation and loss minimization

    Full text link
    We consider the problem of exploiting the microgenerators dispersed in the power distribution network in order to provide distributed reactive power compensation for power losses minimization and voltage regulation. In the proposed strategy, microgenerators are smart agents that can measure their phasorial voltage, share these data with the other agents on a cyber layer, and adjust the amount of reactive power injected into the grid, according to a feedback control law that descends from duality-based methods applied to the optimal reactive power flow problem. Convergence to the configuration of minimum losses and feasible voltages is proved analytically for both a synchronous and an asynchronous version of the algorithm, where agents update their state independently one from the other. Simulations are provided in order to illustrate the performance and the robustness of the algorithm, and the innovative feedback nature of such strategy is discussed

    Controllo distribuito ed in retroazione della potenza reattiva per la regolazione di tensione e la minimizzazione delle perdite. Distributed reactive power feedback control for voltage regulation and loss minimization

    Get PDF
    Sfruttando i microgeneratori dislocati in una smart grid si forniscono iniezioni di potenza reattiva con l'obiettivo di controllare le tensioni nodali entro un intervallo di tolleranza. Si esaminano alcuni algoritmi presenti in letteratura e viene proposta una strategia di controllo finalizzata in primo luogo alla voltage regulation ed in secondo luogo alla minimizzazione delle perdite di potenza. Le prestazioni degli algoritmi descritti sono analizzate attraverso simulazioni in matla

    Online decentralized tracking for nonlinear time-varying optimal power flow of coupled transmission-distribution grids

    Full text link
    The coordinated alternating current optimal power flow (ACOPF) for coupled transmission-distribution grids has become crucial to handle problems related to high penetration of renewable energy sources (RESs). However, obtaining all system details and solving ACOPF centrally is not feasible because of privacy concerns. Intermittent RESs and uncontrollable loads can swiftly change the operating condition of the power grid. Existing decentralized optimization methods can seldom track the optimal solutions of time-varying ACOPFs. Here, we propose an online decentralized optimization method to track the time-varying ACOPF of coupled transmission-distribution grids. First, the time-varying ACOPF problem is converted to a dynamic system based on Karush-Kuhn-Tucker conditions from the control perspective. Second, a prediction term denoted by the partial derivative with respect to time is developed to improve the tracking accuracy of the dynamic system. Third, a decentralized implementation for solving the dynamic system is designed based on only a few information exchanges with respect to boundary variables. Moreover, the proposed algorithm can be used to directly address nonlinear power flow equations without relying on convex relaxations or linearization techniques. Numerical test results reveal the effectiveness and fast-tracking performance of the proposed algorithm.Comment: 18 pages with 15 figure

    Online Optimization as a Feedback Controller: Stability and Tracking

    Full text link
    This paper develops and analyzes feedback-based online optimization methods to regulate the output of a linear time-invariant (LTI) dynamical system to the optimal solution of a time-varying convex optimization problem. The design of the algorithm is based on continuous-time primal-dual dynamics, properly modified to incorporate feedback from the LTI dynamical system, applied to a proximal augmented Lagrangian function. The resultant closed-loop algorithm tracks the solution of the time-varying optimization problem without requiring knowledge of (time-varying) disturbances in the dynamical system. The analysis leverages integral quadratic constraints to provide linear matrix inequality (LMI) conditions that guarantee global exponential stability and bounded tracking error. Analytical results show that, under a sufficient time-scale separation between the dynamics of the LTI dynamical system and the algorithm, the LMI conditions can be always satisfied. The paper further proposes a modified algorithm that can track an approximate solution trajectory of the constrained optimization problem under less restrictive assumptions. As an illustrative example, the proposed algorithms are showcased for power transmission systems, to compress the time scales between secondary and tertiary control, and allow to simultaneously power re-balancing and tracking of DC optimal power flow points
    corecore