81 research outputs found

    A simple proof of a recurrence theorem for random walks in Z2\Z^{2}

    Full text link
    In this note, we prove without using Fourier analysis that the symmetric square integrable random walks in Z2\Z^{2} are recurrent.Comment: 2 page

    Near-Optimal Distributed Approximation of Minimum-Weight Connected Dominating Set

    Full text link
    This paper presents a near-optimal distributed approximation algorithm for the minimum-weight connected dominating set (MCDS) problem. The presented algorithm finds an O(logn)O(\log n) approximation in O~(D+n)\tilde{O}(D+\sqrt{n}) rounds, where DD is the network diameter and nn is the number of nodes. MCDS is a classical NP-hard problem and the achieved approximation factor O(logn)O(\log n) is known to be optimal up to a constant factor, unless P=NP. Furthermore, the O~(D+n)\tilde{O}(D+\sqrt{n}) round complexity is known to be optimal modulo logarithmic factors (for any approximation), following [Das Sarma et al.---STOC'11].Comment: An extended abstract version of this result appears in the proceedings of 41st International Colloquium on Automata, Languages, and Programming (ICALP 2014

    Convex hulls of multidimensional random walks

    Get PDF
    Let Sk be a random walk in R d such that its distribution of increments does not assign mass to hyperplanes. We study the probability pn that the convex hull conv(S1, . . . , Sn) of the first n steps of the walk does not include the origin. By providing an explicit formula, we show that for planar symmetrically distributed random walks, pn does not depend on the distribution of increments. This extends the well known result by Sparre Andersen (1949) that a one-dimensional random walk satisfying the above continuity and symmetry assumptions stays positive with a distribution-free probability. We also find the asymptotics of pn as n → ∞ for any planar random walk with zero mean square-integrable increments. We further developed our approach from the planar case to study a wide class of geometric characteristics of convex hulls of random walks in any dimension d ≥ 2. In particular, we give formulas for the expected value of the number of faces, the volume, the surface area, and other intrinsic volumes, including the following multidimensional generalization of the Spitzer–Widom formula (1961) on the perimeter of planar walks: EV1(conv(0, S1, . . . , Sn)) = Xn k=1 ΣkSkk k, where V1 denotes the first intrinsic volume, which is proportional to the mean width. These results have applications to geometry, and in particular, imply the formula by Gao and Vitale (2001) for the intrinsic volumes of special path-simplexes, called canonical orthoschemes, which are finite-dimensional approximations of the closed convex hull of a Wiener spiral. Moreover, there is a direct connection between spherical intrinsic volumes of these simplexes and the probabilities pn. We also prove similar results for convex hulls of random walk bridges, and more generally, for partial sums of exchangeable random vectors

    A functional approach for random walks in random sceneries

    Full text link
    A functional approach for the study of the random walks in random sceneries (RWRS) is proposed. Under fairly general assumptions on the random walk and on the random scenery, functional limit theorems are proved. The method allows to study separately the convergence of the walk and of the scenery: on the one hand, a general criterion for the convergence of the local time of the walk is provided, on the other hand, the convergence of the random measures associated with the scenery is studied. This functional approach is robust enough to recover many of the known results on RWRS as well as new ones, including the case of many walkers evolving in the same scenery.Comment: 23

    Fast Distributed PageRank Computation

    Full text link
    Over the last decade, PageRank has gained importance in a wide range of applications and domains, ever since it first proved to be effective in determining node importance in large graphs (and was a pioneering idea behind Google's search engine). In distributed computing alone, PageRank vector, or more generally random walk based quantities have been used for several different applications ranging from determining important nodes, load balancing, search, and identifying connectivity structures. Surprisingly, however, there has been little work towards designing provably efficient fully-distributed algorithms for computing PageRank. The difficulty is that traditional matrix-vector multiplication style iterative methods may not always adapt well to the distributed setting owing to communication bandwidth restrictions and convergence rates. In this paper, we present fast random walk-based distributed algorithms for computing PageRanks in general graphs and prove strong bounds on the round complexity. We first present a distributed algorithm that takes O\big(\log n/\eps \big) rounds with high probability on any graph (directed or undirected), where nn is the network size and \eps is the reset probability used in the PageRank computation (typically \eps is a fixed constant). We then present a faster algorithm that takes O\big(\sqrt{\log n}/\eps \big) rounds in undirected graphs. Both of the above algorithms are scalable, as each node sends only small (\polylog n) number of bits over each edge per round. To the best of our knowledge, these are the first fully distributed algorithms for computing PageRank vector with provably efficient running time.Comment: 14 page
    corecore