125 research outputs found

    A Survey of Physical Layer Security Techniques for 5G Wireless Networks and Challenges Ahead

    Get PDF
    Physical layer security which safeguards data confidentiality based on the information-theoretic approaches has received significant research interest recently. The key idea behind physical layer security is to utilize the intrinsic randomness of the transmission channel to guarantee the security in physical layer. The evolution towards 5G wireless communications poses new challenges for physical layer security research. This paper provides a latest survey of the physical layer security research on various promising 5G technologies, including physical layer security coding, massive multiple-input multiple-output, millimeter wave communications, heterogeneous networks, non-orthogonal multiple access, full duplex technology, etc. Technical challenges which remain unresolved at the time of writing are summarized and the future trends of physical layer security in 5G and beyond are discussed.Comment: To appear in IEEE Journal on Selected Areas in Communication

    Cooperative Jamming for Secure Communications in MIMO Relay Networks

    Full text link
    Secure communications can be impeded by eavesdroppers in conventional relay systems. This paper proposes cooperative jamming strategies for two-hop relay networks where the eavesdropper can wiretap the relay channels in both hops. In these approaches, the normally inactive nodes in the relay network can be used as cooperative jamming sources to confuse the eavesdropper. Linear precoding schemes are investigated for two scenarios where single or multiple data streams are transmitted via a decode-and-forward (DF) relay, under the assumption that global channel state information (CSI) is available. For the case of single data stream transmission, we derive closed-form jamming beamformers and the corresponding optimal power allocation. Generalized singular value decomposition (GSVD)-based secure relaying schemes are proposed for the transmission of multiple data streams. The optimal power allocation is found for the GSVD relaying scheme via geometric programming. Based on this result, a GSVD-based cooperative jamming scheme is proposed that shows significant improvement in terms of secrecy rate compared to the approach without jamming. Furthermore, the case involving an eavesdropper with unknown CSI is also investigated in this paper. Simulation results show that the secrecy rate is dramatically increased when inactive nodes in the relay network participate in cooperative jamming.Comment: 30 pages, 7 figures, to appear in IEEE Transactions on Signal Processin

    Physical Layer Service Integration in 5G: Potentials and Challenges

    Full text link
    High transmission rate and secure communication have been identified as the key targets that need to be effectively addressed by fifth generation (5G) wireless systems. In this context, the concept of physical-layer security becomes attractive, as it can establish perfect security using only the characteristics of wireless medium. Nonetheless, to further increase the spectral efficiency, an emerging concept, termed physical-layer service integration (PHY-SI), has been recognized as an effective means. Its basic idea is to combine multiple coexisting services, i.e., multicast/broadcast service and confidential service, into one integral service for one-time transmission at the transmitter side. This article first provides a tutorial on typical PHY-SI models. Furthermore, we propose some state-of-the-art solutions to improve the overall performance of PHY-SI in certain important communication scenarios. In particular, we highlight the extension of several concepts borrowed from conventional single-service communications, such as artificial noise (AN), eigenmode transmission etc., to the scenario of PHY-SI. These techniques are shown to be effective in the design of reliable and robust PHY-SI schemes. Finally, several potential research directions are identified for future work.Comment: 12 pages, 7 figure

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    To Harvest and Jam: A Paradigm of Self-Sustaining Friendly Jammers for Secure AF Relaying

    Get PDF
    This paper studies the use of multi-antenna harvest-and-jam (HJ) helpers in a multi-antenna amplify-and-forward (AF) relay wiretap channel assuming that the direct link between the source and destination is broken. Our objective is to maximize the secrecy rate at the destination subject to the transmit power constraints of the AF relay and the HJ helpers. In the case of perfect channel state information (CSI), the joint optimization of the artificial noise (AN) covariance matrix for cooperative jamming and the AF beamforming matrix is studied using semi-definite relaxation (SDR) which is tight, while suboptimal solutions are also devised with lower complexity. For the imperfect CSI case, we provide the equivalent reformulation of the worst-case robust optimization to maximize the minimum achievable secrecy rate. Inspired by the optimal solution to the case of perfect CSI, a suboptimal robust scheme is proposed striking a good tradeoff between complexity and performance. Finally, numerical results for various settings are provided to evaluate the proposed schemes.Comment: 16 pages (double column), 8 figures, submitted for possible journal publicatio

    Spatially Selective Artificial-Noise Aided Transmit Optimization for MISO Multi-Eves Secrecy Rate Maximization

    Full text link
    Consider an MISO channel overheard by multiple eavesdroppers. Our goal is to design an artificial noise (AN)-aided transmit strategy, such that the achievable secrecy rate is maximized subject to the sum power constraint. AN-aided secure transmission has recently been found to be a promising approach for blocking eavesdropping attempts. In many existing studies, the confidential information transmit covariance and the AN covariance are not simultaneously optimized. In particular, for design convenience, it is common to prefix the AN covariance as a specific kind of spatially isotropic covariance. This paper considers joint optimization of the transmit and AN covariances for secrecy rate maximization (SRM), with a design flexibility that the AN can take any spatial pattern. Hence, the proposed design has potential in jamming the eavesdroppers more effectively, based upon the channel state information (CSI). We derive an optimization approach to the SRM problem through both analysis and convex conic optimization machinery. We show that the SRM problem can be recast as a single-variable optimization problem, and that resultant problem can be efficiently handled by solving a sequence of semidefinite programs. Our framework deals with a general setup of multiple multi-antenna eavesdroppers, and can cater for additional constraints arising from specific application scenarios, such as interference temperature constraints in interference networks. We also generalize the framework to an imperfect CSI case where a worst-case robust SRM formulation is considered. A suboptimal but safe solution to the outage-constrained robust SRM design is also investigated. Simulation results show that the proposed AN-aided SRM design yields significant secrecy rate gains over an optimal no-AN design and the isotropic AN design, especially when there are more eavesdroppers.Comment: To appear in IEEE Trans. Signal Process., 201

    Optimising multiple antenna techniques for physical layer security

    Get PDF
    Wireless communications offer data transmission services anywhere and anytime, but with the inevitable cost of introducing major security vulnerabilities. Indeed, an eavesdropper can overhear a message conveyed over the open insecure wireless media putting at risk the confidentiality of the wireless users. Currently, the way to partially prevent eavesdropping attacks is by ciphering the information between the authorised parties through complex cryptographic algorithms. Cryptography operates in the upper layers of the communication model, bit it does not address the security problem where the attack is suffered: at the transmission level. In this context, physical layer security has emerged as a promising framework to prevent eavesdropping attacks at the transmission level. Physical layer security is based on information-theoretic concepts and exploits the randomness and the uniqueness of the wireless channel. In this context, this thesis presents signal processing techniques to secure wireless networks at the physical layer by optimising the use of multiple-antennas. A masked transmission strategy is used to steer the confidential information towards the intended receiver, and, at the same time, broadcast an interfering signal to confuse unknown eavesdroppers. This thesis considers practical issues in multiple-antenna networks such as limited transmission resources and the lack of accurate information between the authorised transmission parties. The worst-case for the security, that occurs when a powerful eavesdropper takes advantage of any opportunity to put at risk the transmission confidentiality, is addressed. The techniques introduced improve the security by offering efficient and innovative transmission solutions to lock the communication at the physical layer. Notably, these transmission mechanisms strike a balance between confidentiality and quality to satisfy the practical requirements of modern wireless networks
    corecore