117 research outputs found

    Integrated Access and Backhaul for 5G and Beyond (6G)

    Get PDF
    Enabling network densification to support coverage-limited millimeter wave (mmWave) frequencies is one of the main requirements for 5G and beyond. It is challenging to connect a high number of base stations (BSs) to the core network via a transport network. Although fiber provides high-rate reliable backhaul links, it requires a noteworthy investment for trenching and installation, and could also take a considerable deployment time. Wireless backhaul, on the other hand, enables fast installation and flexibility, at the cost of data rate and sensitivity to environmental effects. For these reasons, fiber and wireless backhaul have been the dominant backhaul technologies for decades. Integrated access and backhaul (IAB), where along with celluar access services a part of the spectrum available is used to backhaul, is a promising wireless solution for backhauling in 5G and beyond. To this end, in this thesis we evaluate, analyze and optimize IAB networks from various perspectives. Specifically, we analyze IAB networks and develop effective algorithms to improve service coverage probability. In contrast to fiber-connected setups, an IAB network may be affected by, e.g., blockage, tree foliage, and rain loss. Thus, a variety of aspects such as the effects of tree foliage, rain loss, and blocking are evaluated and the network performance when part of the network being non-IAB backhauled is analysed. Furthermore, we evaluate the effect of deployment optimization on the performance of IAB networks.First, in Paper A, we introduce and analyze IAB as an enabler for network densification. Then, we study the IAB network from different aspects of mmWave-based communications: We study the network performance for both urban and rural areas considering the impacts of blockage, tree foliage, and rain. Furthermore, performance comparisons are made between IAB and networks of which all or part of small BSs are fiber-connected. Following the analysis, it is observed that IAB may be a good backhauling solution with high flexibility and low time-to-market. The second part of the thesis focuses on improving the service coverage probability by carrying out topology optimization in IAB networks focusing on mmWave communication for different parameters, such as blockage, tree foliage, and antenna gain. In Paper B, we study topology optimization and routing in IAB networks in different perspectives. Thereby, we design efficient Genetic algorithm (GA)-based methods for IAB node distribution and non-IAB backhaul link placement. Furthermore, we study the effect of routing in the cases with temporal blockages. Finally, we briefly study the recent standardization developments, i.e., 3GPP Rel-16 as well as the\ua0Rel-17 discussions on routing. As the results show, with a proper planning on network deployment, IAB is an attractive solution to densify the networks for 5G and beyond. Finally, we focus on improving the performance of IAB networks with constrained deployment optimization. In Paper C, we consider various IAB network models while presenting different algorithms for constrained deployment optimization. Here, the constraints are coming from either inter-IAB distance limitations or geographical restrictions. As we show, proper network planning can considerably improve service coverage probability of IAB networks with deployment constraints

    Empirical evaluation of 5G and Wi-Fi mesh interworking for integrated access and backhaul networking paradigm

    Get PDF
    The Fifth Generation (5G) of mobile networks and beyond have emerged with ambitions to facilitate the deployment and evolution of a wide spectrum of applications such as Industry 4.0 and 5.0 use cases. Despite this trend of increasing importance to upgrade the networked applications to the next generation, the use of 5G and beyond technologies can be a prohibitive barrier for some business sectors due to the high deployment costs that it can incur. To overcome this obstacle, more cost-effective approaches in networking are entailed. In this work, an innovative approach coupling 5G and Wi-Fi mesh networking is proposed and developed as a promising solution to extend 5G services to the indoor use case scenarios whilst being capable of keeping the capital expenditure of the network infrastructure significantly lower. In order to empirically validate and evaluate this new networking paradigm, a number of experiments have been performed over a testbed with a demanding video application as a representative use case. The experimental results prove the gained benefits from this new approach, especially, video users can be more than twice as far away without compromising the quality of the video consumption experience. Specifically, the results show that users can be 29% further away using a single router, and 100% further away if a second router is added

    Interface Selection in 5G vehicular networks

    Get PDF
    ITA Negli ultimi anni, la quantità di dati condivisa nel mondo è aumentata esponenzialmente grazie alle applicazioni innovative che riguardano la sicurezza (e.g. domotica, smart cities, controllo del traffico stradale, veicoli autonomi) e i servizi di intrattenimento (e.g. audio e video streaming, ricerche web, videogiochi online di massa). Per supportare questo trend, le principali compagnie nell’industria delle telecomunicazioni stanno sviluppando nuovi standard che saranno disponibili agli utenti finali nei prossimi anni e che saranno presentati come la Quinta Generazione di Reti Cellulari (5G). Questi standard prevedono miglioramenti ai precedenti standard 4G (e.g. LTE, WiMax, DSRC) e tecnologie completamente nuove (e.g. onde millimetriche, comunicazione con luce visibile) per permettere la diffusione di nuovi servizi che richiedono un throughput estremamente alto e una latency bassa. Nella maggior parte dei casi, queste tecnologie dovranno cooperare per assicurare una rete affidabile e accessibile in ogni situazione. Una delle applicazioni più promettenti di questa nuova generazione di tecnologie sono le reti veicolari, un insieme di servizi che includono la comunicazione con le infrastrutture, come il download di un film da Internet o la ricezione di informazioni riguardanti l’ambiente circostante (e.g. un semaforo manda un messaggio a un veicolo in avvicinamento per farlo fermare), o la comunicazione direttamente tra veicoli, in questo caso il datarate è tipicamente più basso dato che l’uso più tipico sarà, per esempio, mandare informazioni riguardanti le macchine più vicine per fare in modo di diminuore il numero di incidenti stradali o gestire il traffico. Questa tesi è focalizzata sulle applicazioni per reti veicolari, l’obiettivo è di analizzare le prestazioni del protocollo IEEE 802.11p a diversi datarate in un tipico scenario V2V, e di confrontare LTE e mmWaves usando una comunicazione V2I in diverse circostanze, per mostrare come ogni tecnologia offra vantaggi per determinate applicazioni mentre non è adatta per altre. ENG In the last years, the amount of data shared among the world is increased exponentially thanks to the novel applications for security (e.g. home automation, smart cities, traffic control, autonomous vehicles) and infotainment (e.g. audio and video streaming, web browsing, massive online videogames). To support this trend, the major companies in the telecommunication industry are developing new standards that will be available to the final users in the next years and that will be presented as the Fifth Generation of Cellular Networks (5G). These standards provide improvements to the 4G standards (e.g. LTE, WiMax, DSRC) and brand new technologies (e.g. mmWaves, Visible Light Communication) to enable new services that demand extremely high throughput and low latency. In most cases these technologies will cooperate to ensure a reliable and accessible network in every situation. One of the most promising applications of these new generation technologies is vehicular networks, a set of services that includes the communication with infrastructures, such as the download of a film from the Internet or the reception of information about the surrounding environment (e.g. a traffic light sends a message to an incoming vehicle to make it stop), or the communication between vehicles, in this case the datarate is tipically lower since the typical use will be, for example, to send information about the closest cars in order to decrease the number of accidents or to manage the traffic. This thesis is focalized on the vehicular networks applications, it aims to analyze the performance of IEEE 802.11p protocol at different datarates in a typical V2V scenario, and to compare LTE and mmWaves using a V2I communication in different circumstances to show how each technology offers advantages for some applications while is not suitable for others

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well

    On Integrated Access and Backhaul Networks: Current Status and Potentials

    Get PDF
    In this paper, we introduce and study the potentials and challenges of integrated access and backhaul (IAB) as one of the promising techniques for evolving 5G networks. We study IAB networks from different perspectives. We summarize the recent Rel-16 as well as the upcoming Rel-17 3GPP discussions on IAB, and highlight the main IAB-specific agreements on different protocol layers. Also, concentrating on millimeter wave-based communications, we evaluate the performance of IAB networks in both dense and suburban areas. Using a finite stochastic geometry model, with random distributions of IAB nodes as well as user equipments (UEs) in a finite region, we study the service coverage rate defined as the probability of the event that the UEs' minimum rate requirements are satisfied. We present comparisons between IAB and hybrid IAB/fiber-backhauled networks where a part or all of the small base stations are fiber-connected. Finally, we study the robustness of IAB networks to weather and various deployment conditions and verify their effects, such as blockage, tree foliage, rain as well as antenna height/gain on the coverage rate of IAB setups, as the key differences between the fiber-connected and IAB networks. As we show, IAB is an attractive approach to enable the network densification required by 5G and beyond.Comment: Revised manuscript in IEEE Open Journal of the Communications Societ
    • …
    corecore