4,093 research outputs found

    Fusing Censored Dependent Data for Distributed Detection

    Full text link
    In this paper, we consider a distributed detection problem for a censoring sensor network where each sensor's communication rate is significantly reduced by transmitting only "informative" observations to the Fusion Center (FC), and censoring those deemed "uninformative". While the independence of data from censoring sensors is often assumed in previous research, we explore spatial dependence among observations. Our focus is on designing the fusion rule under the Neyman-Pearson (NP) framework that takes into account the spatial dependence among observations. Two transmission scenarios are considered, one where uncensored observations are transmitted directly to the FC and second where they are first quantized and then transmitted to further improve transmission efficiency. Copula-based Generalized Likelihood Ratio Test (GLRT) for censored data is proposed with both continuous and discrete messages received at the FC corresponding to different transmission strategies. We address the computational issues of the copula-based GLRTs involving multidimensional integrals by presenting more efficient fusion rules, based on the key idea of injecting controlled noise at the FC before fusion. Although, the signal-to-noise ratio (SNR) is reduced by introducing controlled noise at the receiver, simulation results demonstrate that the resulting noise-aided fusion approach based on adding artificial noise performs very closely to the exact copula-based GLRTs. Copula-based GLRTs and their noise-aided counterparts by exploiting the spatial dependence greatly improve detection performance compared with the fusion rule under independence assumption

    Minimizing Negative Transfer of Knowledge in Multivariate Gaussian Processes: A Scalable and Regularized Approach

    Full text link
    Recently there has been an increasing interest in the multivariate Gaussian process (MGP) which extends the Gaussian process (GP) to deal with multiple outputs. One approach to construct the MGP and account for non-trivial commonalities amongst outputs employs a convolution process (CP). The CP is based on the idea of sharing latent functions across several convolutions. Despite the elegance of the CP construction, it provides new challenges that need yet to be tackled. First, even with a moderate number of outputs, model building is extremely prohibitive due to the huge increase in computational demands and number of parameters to be estimated. Second, the negative transfer of knowledge may occur when some outputs do not share commonalities. In this paper we address these issues. We propose a regularized pairwise modeling approach for the MGP established using CP. The key feature of our approach is to distribute the estimation of the full multivariate model into a group of bivariate GPs which are individually built. Interestingly pairwise modeling turns out to possess unique characteristics, which allows us to tackle the challenge of negative transfer through penalizing the latent function that facilitates information sharing in each bivariate model. Predictions are then made through combining predictions from the bivariate models within a Bayesian framework. The proposed method has excellent scalability when the number of outputs is large and minimizes the negative transfer of knowledge between uncorrelated outputs. Statistical guarantees for the proposed method are studied and its advantageous features are demonstrated through numerical studies

    Probabilistic Inference from Arbitrary Uncertainty using Mixtures of Factorized Generalized Gaussians

    Full text link
    This paper presents a general and efficient framework for probabilistic inference and learning from arbitrary uncertain information. It exploits the calculation properties of finite mixture models, conjugate families and factorization. Both the joint probability density of the variables and the likelihood function of the (objective or subjective) observation are approximated by a special mixture model, in such a way that any desired conditional distribution can be directly obtained without numerical integration. We have developed an extended version of the expectation maximization (EM) algorithm to estimate the parameters of mixture models from uncertain training examples (indirect observations). As a consequence, any piece of exact or uncertain information about both input and output values is consistently handled in the inference and learning stages. This ability, extremely useful in certain situations, is not found in most alternative methods. The proposed framework is formally justified from standard probabilistic principles and illustrative examples are provided in the fields of nonparametric pattern classification, nonlinear regression and pattern completion. Finally, experiments on a real application and comparative results over standard databases provide empirical evidence of the utility of the method in a wide range of applications

    On the use of the l(2)-norm for texture analysis of polarimetric SAR data

    Get PDF
    In this paper, the use of the l2-norm, or Span, of the scattering vectors is suggested for texture analysis of polarimetric synthetic aperture radar (SAR) data, with the benefits that we need neither an analysis of the polarimetric channels separately nor a filtering of the data to analyze the statistics. Based on the product model, the distribution of the l2-norm is studied. Closed expressions of the probability density functions under the assumptions of several texture distributions are provided. To utilize the statistical properties of the l2-norm, quantities including normalized moments and log-cumulants are derived, along with corresponding estimators and estimation variances. Results on both simulated and real SAR data show that the use of statistics based on the l2-norm brings advantages in several aspects with respect to the normalized intensity moments and matrix variate log-cumulants.Peer ReviewedPostprint (published version

    Heterogeneous Sensor Signal Processing for Inference with Nonlinear Dependence

    Get PDF
    Inferring events of interest by fusing data from multiple heterogeneous sources has been an interesting and important topic in recent years. Several issues related to inference using heterogeneous data with complex and nonlinear dependence are investigated in this dissertation. We apply copula theory to characterize the dependence among heterogeneous data. In centralized detection, where sensor observations are available at the fusion center (FC), we study copula-based fusion. We design detection algorithms based on sample-wise copula selection and mixture of copulas model in different scenarios of the true dependence. The proposed approaches are theoretically justified and perform well when applied to fuse acoustic and seismic sensor data for personnel detection. Besides traditional sensors, the access to the massive amount of social media data provides a unique opportunity for extracting information about unfolding events. We further study how sensor networks and social media complement each other in facilitating the data-to-decision making process. We propose a copula-based joint characterization of multiple dependent time series from sensors and social media. As a proof-of-concept, this model is applied to the fusion of Google Trends (GT) data and stock/flu data for prediction, where the stock/flu data serves as a surrogate for sensor data. In energy constrained networks, local observations are compressed before they are transmitted to the FC. In these cases, conditional dependence and heterogeneity complicate the system design particularly. We consider the classification of discrete random signals in Wireless Sensor Networks (WSNs), where, for communication efficiency, only local decisions are transmitted. We derive the necessary conditions for the optimal decision rules at the sensors and the FC by introducing a hidden random variable. An iterative algorithm is designed to search for the optimal decision rules. Its convergence and asymptotical optimality are also proved. The performance of the proposed scheme is illustrated for the distributed Automatic Modulation Classification (AMC) problem. Censoring is another communication efficient strategy, in which sensors transmit only informative observations to the FC, and censor those deemed uninformative . We design the detectors that take into account the spatial dependence among observations. Fusion rules for censored data are proposed with continuous and discrete local messages, respectively. Their computationally efficient counterparts based on the key idea of injecting controlled noise at the FC before fusion are also investigated. In this thesis, with heterogeneous and dependent sensor observations, we consider not only inference in parallel frameworks but also the problem of collaborative inference where collaboration exists among local sensors. Each sensor forms coalition with other sensors and shares information within the coalition, to maximize its inference performance. The collaboration strategy is investigated under a communication constraint. To characterize the influence of inter-sensor dependence on inference performance and thus collaboration strategy, we quantify the gain and loss in forming a coalition by introducing the copula-based definitions of diversity gain and redundancy loss for both estimation and detection problems. A coalition formation game is proposed for the distributed inference problem, through which the information contained in the inter-sensor dependence is fully explored and utilized for improved inference performance

    Hypothesis Testing Using Spatially Dependent Heavy-Tailed Multisensor Data

    Get PDF
    The detection of spatially dependent heavy-tailed signals is considered in this dissertation. While the central limit theorem, and its implication of asymptotic normality of interacting random processes, is generally useful for the theoretical characterization of a wide variety of natural and man-made signals, sensor data from many different applications, in fact, are characterized by non-Gaussian distributions. A common characteristic observed in non-Gaussian data is the presence of heavy-tails or fat tails. For such data, the probability density function (p.d.f.) of extreme values decay at a slower-than-exponential rate, implying that extreme events occur with greater probability. When these events are observed simultaneously by several sensors, their observations are also spatially dependent. In this dissertation, we develop the theory of detection for such data, obtained through heterogeneous sensors. In order to validate our theoretical results and proposed algorithms, we collect and analyze the behavior of indoor footstep data using a linear array of seismic sensors. We characterize the inter-sensor dependence using copula theory. Copulas are parametric functions which bind univariate p.d.f. s, to generate a valid joint p.d.f. We model the heavy-tailed data using the class of alpha-stable distributions. We consider a two-sided test in the Neyman-Pearson framework and present an asymptotic analysis of the generalized likelihood test (GLRT). Both, nested and non-nested models are considered in the analysis. We also use a likelihood maximization-based copula selection scheme as an integral part of the detection process. Since many types of copula functions are available in the literature, selecting the appropriate copula becomes an important component of the detection problem. The performance of the proposed scheme is evaluated numerically on simulated data, as well as using indoor seismic data. With appropriately selected models, our results demonstrate that a high probability of detection can be achieved for false alarm probabilities of the order of 10^-4. These results, using dependent alpha-stable signals, are presented for a two-sensor case. We identify the computational challenges associated with dependent alpha-stable modeling and propose alternative schemes to extend the detector design to a multisensor (multivariate) setting. We use a hierarchical tree based approach, called vines, to model the multivariate copulas, i.e., model the spatial dependence between multiple sensors. The performance of the proposed detectors under the vine-based scheme are evaluated on the indoor footstep data, and significant improvement is observed when compared against the case when only two sensors are deployed. Some open research issues are identified and discussed
    • …
    corecore