5 research outputs found

    Multimodal forecasting methodology applied to industrial process monitoring

    Get PDF
    IEEE Industrial process modelling represents a key factor to allow the future generation of industrial manufacturing plants. In this regard, accurate models of critical signals need to be designed in order to forecast process deviations. In this work a novel multimodal forecasting methodology based on adaptive dynamics packaging and codification of the process operation is proposed. First, a target signal is decomposed by means of the Empirical Mode Decomposition in order to identify the characteristics intrinsic mode functions. Second, such dynamics are packaged depending on their significance and modelling complexity. Third, the operating condition of the considered process, reflected by available auxiliary signals, is codified by means of a Self-Organizing Map and presented to the modelling structure. The forecasting structure is supported by a set of ensemble ANFIS based models, each one focused on a different set of signal dynamics. The performance and effectiveness of the proposed method is validated experimentally with industrial data from a copper rod manufacturing plant and performance comparison with classical approaches. The proposed method improves performance and generalization versus classical single model approaches.Peer ReviewedPostprint (author's final draft

    Intelligent Feature Extraction, Data Fusion and Detection of Concrete Bridge Cracks: Current Development and Challenges

    Full text link
    As a common appearance defect of concrete bridges, cracks are important indices for bridge structure health assessment. Although there has been much research on crack identification, research on the evolution mechanism of bridge cracks is still far from practical applications. In this paper, the state-of-the-art research on intelligent theories and methodologies for intelligent feature extraction, data fusion and crack detection based on data-driven approaches is comprehensively reviewed. The research is discussed from three aspects: the feature extraction level of the multimodal parameters of bridge cracks, the description level and the diagnosis level of the bridge crack damage states. We focus on previous research concerning the quantitative characterization problems of multimodal parameters of bridge cracks and their implementation in crack identification, while highlighting some of their major drawbacks. In addition, the current challenges and potential future research directions are discussed.Comment: Published at Intelligence & Robotics; Its copyright belongs to author

    A mixture of variational canonical correlation analysis for nonlinear and quality-relevant process monitoring

    Get PDF
    Proper monitoring of quality-related variables in industrial processes is nowadays one of the main worldwide challenges with significant safety and efficiency implications.Variational Bayesian mixture of canonical correlation analysis (VBMCCA)-based process monitoring method was proposed in this paper to predict and diagnose these hard-to-measure quality-related variables simultaneously. Use of Student's t-distribution, rather than Gaussian distribution, in the VBMCCA model makes the proposed process monitoring scheme insensitive to disturbances, measurement noises, and model discrepancies. A sequential perturbation (SP) method together with derived parameter distribution of VBMCCA is employed to approach the uncertainty levels, which is able to provide a confidence interval around the predicted values and give additional control line, rather than just a certain absolute control limit, for process monitoring. The proposed process monitoring framework has been validated in a wastewater treatment plant (WWTP) simulated by benchmark simulation model with abrupt changes imposing on a sensor and a real WWTP with filamentous sludge bulking. The results show that the proposed methodology is capable of detecting sensor faults and process faults with satisfactory accuracy

    Distributed Parallel PCA for Modeling and Monitoring of Large-Scale Plant-Wide Processes With Big Data

    No full text
    corecore