13,181 research outputs found

    Cooperative Online Learning: Keeping your Neighbors Updated

    Full text link
    We study an asynchronous online learning setting with a network of agents. At each time step, some of the agents are activated, requested to make a prediction, and pay the corresponding loss. The loss function is then revealed to these agents and also to their neighbors in the network. Our results characterize how much knowing the network structure affects the regret as a function of the model of agent activations. When activations are stochastic, the optimal regret (up to constant factors) is shown to be of order αT\sqrt{\alpha T}, where TT is the horizon and α\alpha is the independence number of the network. We prove that the upper bound is achieved even when agents have no information about the network structure. When activations are adversarial the situation changes dramatically: if agents ignore the network structure, a Ω(T)\Omega(T) lower bound on the regret can be proven, showing that learning is impossible. However, when agents can choose to ignore some of their neighbors based on the knowledge of the network structure, we prove a O(χ‾T)O(\sqrt{\overline{\chi} T}) sublinear regret bound, where χ‾≥α\overline{\chi} \ge \alpha is the clique-covering number of the network

    Adversarial Variational Optimization of Non-Differentiable Simulators

    Full text link
    Complex computer simulators are increasingly used across fields of science as generative models tying parameters of an underlying theory to experimental observations. Inference in this setup is often difficult, as simulators rarely admit a tractable density or likelihood function. We introduce Adversarial Variational Optimization (AVO), a likelihood-free inference algorithm for fitting a non-differentiable generative model incorporating ideas from generative adversarial networks, variational optimization and empirical Bayes. We adapt the training procedure of generative adversarial networks by replacing the differentiable generative network with a domain-specific simulator. We solve the resulting non-differentiable minimax problem by minimizing variational upper bounds of the two adversarial objectives. Effectively, the procedure results in learning a proposal distribution over simulator parameters, such that the JS divergence between the marginal distribution of the synthetic data and the empirical distribution of observed data is minimized. We evaluate and compare the method with simulators producing both discrete and continuous data.Comment: v4: Final version published at AISTATS 2019; v5: Fixed typo in Eqn 1

    ON ROBUST MACHINE LEARNING IN THE PRESENCE OF ADVERSARIES

    Get PDF
    In today\u27s highly connected world, the number of smart devices worldwide has increased exponentially. These devices generate huge amounts of real-time data, perform complicated computational tasks, and provide actionable information. Over the past decade, numerous machine learning approaches have been widely adopted to infer hidden information from this massive and complex data. Accuracy is not enough when developing machine learning systems for some crucial application domains. The safety and reliability guarantees on the underlying learning models are critical requirements as well. This in turn necessitates that the learned models be robust towards processing corrupted data. Data can be corrupted by adversarial attacks where the attack may consist of data taking arbitrary values adversely affecting the efficiency of the algorithm. An adversary can replace samples with erroneous or malicious samples such as false labels or arbitrary inputs. In this dissertation, we refer to this type of attack as attack on data. Moreover, with the rapid increase in the volume of the data, storing and processing all this data at a central location becomes computationally expensive. Therefore, utilizing a distributed system is warranted to distribute tasks across multiple machines (known as distributed learning). Improvement of the efficiency of the optimization algorithms with respect to computational and communication costs along with maintaining a high level of accuracy is critical in distributed learning. However, an attack can occur by replacing the transmitted data of the machines in the system with arbitrary values that may negatively impact the performance of the learning task. We refer to this attack as attack on devices. The aforementioned attack scenarios can significantly impact the accuracy of the results, thereby, negatively impacting the expected model outcome. Hence, the development of a new generation of systems that are robust to such adversarial attacks and provide provable performance guarantees is warranted. The goal of this dissertation is to develop learning algorithms that are robust to such adversarial attacks. In this dissertation, we propose learning algorithms that are robust to adversarial attacks under two frameworks: 1) supervised learning, where the true label of the samples are known; and 2) unsupervised learning, where the labels are not known. Although neural networks have gained widespread success, theoretical understanding of their performance is lacking. Therefore, in the first part of the dissertation (Chapter 2), we try to understand the inner workings of a neural network. We achieve this by learning the parameters of the network. In fact, we generalize the estimation procedure by considering the robustness aspect along with the parameter estimation in the presence of adversarial attacks (attack on data). We devise a learning algorithm to estimate the parameters (weight matrix and bias vector) of a single-layer neural network with rectified linear unit activation in the unsupervised learning framework where each output sample can potentially be an arbitrary outlier with a fixed probability. Our estimation algorithm uses gradient descent algorithms along with the median-based filter to mitigate the effect of the outliers. We further determine the number of samples required to estimate the parameters of the network in the presence of the outliers. Combining the use of distributed systems to solve large-scale problems with the recent success of deep learning, there has been a surge of development in the field of distributed learning. In fact, the research in this direction has been further catalyzed by the development of federated learning. Despite extensive research in this area, distributed learning faces the challenge of training a high-dimensional model in a distributed manner while maintaining robustness against adversarial attacks. Hence, in the second part of the dissertation (Chapters 3 and 4), we study the problem of distributed learning in the presence of adversarial nodes (attack on nodes). Specifically, we consider the worker-server architecture to minimize a global loss function under both the learning frameworks in the presence of adversarial nodes (Byzantines). Each honest node performs some computation based only on its own local data, then communicates with the central server that performs aggregation. However, an adversarial node may send arbitrary information to the central server. In Chapter 3, we consider robust distributed learning under the supervised learning framework. We propose a novel algorithm that combines the idea of variance-reduction with a filtering technique based on vector median to mitigate the effect of the Byzantines. We prove the convergence of the approach to a first-order stationary point. Further, in Chapter 4, we consider robust distributed learning under the unsupervised learning framework (robust clustering). We propose a novel algorithm that combines the idea of redundant data assignment with the paradigm of distributed clustering. We show that our proposed approaches obtain constant factor approximate solutions in the presence of adversarial nodes

    Efficient Node Selection in Private Personalized Decentralized Learning

    Full text link
    Personalized decentralized learning is a promising paradigm for distributed learning, enabling each node to train a local model on its own data and collaborate with other nodes to improve without sharing any data. However, this approach poses significant privacy risks, as nodes may inadvertently disclose sensitive information about their data or preferences through their collaboration choices. In this paper, we propose Private Personalized Decentralized Learning (PPDL), a novel approach that combines secure aggregation and correlated adversarial multi-armed bandit optimization to protect node privacy while facilitating efficient node selection. By leveraging dependencies between different arms, represented by potential collaborators, we demonstrate that PPDL can effectively identify suitable collaborators solely based on aggregated models. Additionally, we show that PPDL surpasses previous non-private methods in model performance on standard benchmarks under label and covariate shift scenarios

    Playing Stackelberg Opinion Optimization with Randomized Algorithms for Combinatorial Strategies

    Full text link
    From a perspective of designing or engineering for opinion formation games in social networks, the "opinion maximization (or minimization)" problem has been studied mainly for designing subset selecting algorithms. We furthermore define a two-player zero-sum Stackelberg game of competitive opinion optimization by letting the player under study as the first-mover minimize the sum of expressed opinions by doing so-called "internal opinion design", knowing that the other adversarial player as the follower is to maximize the same objective by also conducting her own internal opinion design. We propose for the min player to play the "follow-the-perturbed-leader" algorithm in such Stackelberg game, obtaining losses depending on the other adversarial player's play. Since our strategy of subset selection is combinatorial in nature, the probabilities in a distribution over all the strategies would be too many to be enumerated one by one. Thus, we design a randomized algorithm to produce a (randomized) pure strategy. We show that the strategy output by the randomized algorithm for the min player is essentially an approximate equilibrium strategy against the other adversarial player
    • …
    corecore