
ABSTRACT

In today’s highly connected world, the number of smart devices worldwide has increased expo-

nentially. These devices generate huge amounts of real-time data, perform complicated computa-

tional tasks, and provide actionable information. Over the past decade, numerous machine learning

approaches have been widely adopted to infer hidden information from this massive and complex

data. Accuracy is not enough when developing machine learning systems for some crucial applica-

tion domains. The safety and reliability guarantees on the underlying learning models are critical

requirements as well. This in turn necessitates that the learned models be robust towards process-

ing corrupted data. Data can be corrupted by adversarial attacks where the attack may consist of

data taking arbitrary values adversely affecting the efficiency of the algorithm. An adversary can

replace samples with erroneous or malicious samples such as false labels or arbitrary inputs. In

this dissertation, we refer to this type of attack as attack on data.

Moreover, with the rapid increase in the volume of the data, storing and processing all this

data at a central location becomes computationally expensive. Therefore, utilizing a distributed

system is warranted to distribute tasks across multiple machines (known as distributed learning).

Improvement of the efficiency of the optimization algorithms with respect to computational and

communication costs along with maintaining a high level of accuracy is critical in distributed

learning. However, an attack can occur by replacing the transmitted data of the machines in the

system with arbitrary values that may negatively impact the performance of the learning task. We

refer to this attack as attack on devices. The aforementioned attack scenarios can significantly

impact the accuracy of the results, thereby, negatively impacting the expected model outcome.

Hence, the development of a new generation of systems that are robust to such adversarial attacks

and provide provable performance guarantees is warranted. The goal of this dissertation is to

develop learning algorithms that are robust to such adversarial attacks.

In this dissertation, we propose learning algorithms that are robust to adversarial attacks under

two frameworks: 1) supervised learning, where the true label of the samples are known; and 2)

unsupervised learning, where the labels are not known.

Although neural networks have gained widespread success, theoretical understanding of their

performance is lacking. Therefore, in the first part of the dissertation (Chapter 2), we try to un-

derstand the inner workings of a neural network. We achieve this by learning the parameters of

the network. In fact, we generalize the estimation procedure by considering the robustness aspect

along with the parameter estimation in the presence of adversarial attacks (attack on data). We

devise a learning algorithm to estimate the parameters (weight matrix and bias vector) of a single-

layer neural network with rectified linear unit activation in the unsupervised learning framework

where each output sample can potentially be an arbitrary outlier with a fixed probability. Our es-

timation algorithm uses gradient descent algorithms along with the median-based filter to mitigate

the effect of the outliers. We further determine the number of samples required to estimate the

parameters of the network in the presence of the outliers.

Combining the use of distributed systems to solve large-scale problems with the recent success

of deep learning, there has been a surge of development in the field of distributed learning. In fact,

the research in this direction has been further catalyzed by the development of federated learn-

ing. Despite extensive research in this area, distributed learning faces the challenge of training a

high-dimensional model in a distributed manner while maintaining robustness against adversarial

attacks. Hence, in the second part of the dissertation (Chapters 3 and 4), we study the problem

of distributed learning in the presence of adversarial nodes (attack on nodes). Specifically, we

consider the worker-server architecture to minimize a global loss function under both the learn-

ing frameworks in the presence of adversarial nodes (Byzantines). Each honest node performs

some computation based only on its own local data, then communicates with the central server

that performs aggregation. However, an adversarial node may send arbitrary information to the

central server. In Chapter 3, we consider robust distributed learning under the supervised learning

framework. We propose a novel algorithm that combines the idea of variance-reduction with a

filtering technique based on vector median to mitigate the effect of the Byzantines. We prove the

convergence of the approach to a first-order stationary point. Further, in Chapter 4, we consider

robust distributed learning under the unsupervised learning framework (robust clustering). We pro-

pose a novel algorithm that combines the idea of redundant data assignment with the paradigm of

distributed clustering. We show that our proposed approaches obtain constant factor approximate

solutions in the presence of adversarial nodes.

ON ROBUST MACHINE LEARNING IN THE PRESENCE

OF ADVERSARIES

By

Saikiran Bulusu
B.Tech., Jawaharlal Nehru Technological University, India, 2009

M.Tech., Indian Institute of Technology Madras, India, 2012

DISSERTATION

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Electrical and Computer Engineering

Syracuse University
August 2023

Copyright © Saikiran Bulusu, 2023

All Rights Reserved

To my parents

ACKNOWLEDGMENTS

“ If I have seen further it is by standing on the shoulders of Giants.”

attributed to Isaac Newton

“ Take up one idea. Make that one idea your life - think of it, dream of it, live on that idea. Let

the brain, muscles, nerves, every part of your body, be full of that idea, and just leave every other

idea alone.”

attributed to Swami Vivekananda

Although words can not do justice, this is my humble attempt at expressing my gratitude

towards all the Giants in my life. To begin with, I am extremely grateful to my advisor

Dr. Pramod K. Varshney for his invaluable guidance along with the continued intellec-

tual and motivational support throughout my doctoral studies. Without his patience and

consistent encouragement, this dissertation would not have been possible. I would also

like to express my deepest appreciation to my co-advisor Dr. Venkata Gandikota for giv-

ing me the opportunity to learn from his deep insights and in-depth knowledge. I have

thoroughly enjoyed discussing with him about research, philosophy, and future. I am

honored to be his first doctoral advisee. I would like to thank them for their continu-

ous support without which my doctoral studies would not be so enjoyable. I am deeply

indebted to Dr. M. Cenk Gursoy, Dr. Sidharth Jaggi, Dr. Geethu Joseph, Dr. Bhavya

Kailkhura, and Dr. Arya Mazumdar, for mentoring me during the course of my gradu-

ate studies. I would also like to express my deepest gratitude to my defense committee

members Dr. Lixin Shen and Dr. Biao Chen for their valuable suggestions.

vii

I would like to extend my sincere thanks to my current and past lab members and

friends, including Adarsh, Alex, Anthony, Arick, Bao, Chen, Hanne, Haodong, Nandan,

Pranay, Prashant, Qunwei, Shan, and Swatantra, for all the helpful technical and philo-

sophical discussions we had during the course of this dissertation. I am thankful to them

for being a constant source of inspiration to carry out my research. Times spent with Ar-

ick, Hanne, Haodong, Manish, Nandan, Pranay, Prashant, Romesh, and Swatantra, will

forever be cherished. I would also like to take this opportunity to thank Mrs. Anju Varsh-

ney who made Syracuse home away from home with her love and warmth. I am also

thankful to the administrative staff at the Department of EECS, Syracuse University. I

also extend my gratitude to Skype and Zoom for my research online.

I am forever grateful to Dr. A. Paulraj, Dr. A. Chockalingam, Dr. Neelesh Mehta,

Dr. Srikrishna Bhashyam, Dr. Arun Pachai Kannu, and Dr. R. Aravind for inspiring me

and teaching me to take baby steps in research. I am also thankful to all my friends at

IISc, who inspired and helped me in one way or another before coming to Syracuse. I am

also grateful to all the professors who taught me during my undergraduate and masters

days. I owe a greater debt to my school teacher, Vinod Kumar, then any other teacher in

my life. A heartfelt thanks to all my undergraduate and masters friends for their support

throughout this journey. I have missed many names here, but they are in my heart.

Lastly and most importantly, I am grateful to my parents for their unconditional love

and unwavering support at the toughest of times; to Murthy uncle and Ramani aunt for

being there when it was most needed; to Sriram uncle and Sashi aunt for their backing;

to my cousins Divya, Shekhar, my sister-in-law Anusha, and my brother Arun for their

constant support throughout this journey. It is needless to say that this dissertation would

not have been possible without their support and blessings.

viii

TABLE OF CONTENTS

Acknowledgments vii

List of Tables xiii

List of Figures xiv

1 Introduction 1

1.1 Major Contributions . 3

1.2 Organization of the Dissertation . 5

1.3 Notations . 6

1.4 Bibliographic Note . 6

2 Learning Distributions Generated by Single-Layer ReLU Networks 9

2.1 Introduction . 9

2.2 Problem Statement . 11

2.3 Robust Estimation Algorithm . 13

2.4 Error Bounds for Parameter Estimation . 16

2.5 Simulation Results . 21

2.6 Summary . 25

3 Byzantine Resilient Non-Convex SCSG with Distributed Batch Gradient Computa-

tions 26

3.1 Introduction . 26

ix

3.1.1 Related Work . 27

3.1.2 Major Contributions . 30

3.2 System Model . 31

3.3 Byzantine SCSG Algorithm . 32

3.3.1 Byzantine Filtering Step . 33

3.4 Convergence Guarantees in Mean . 35

3.5 Convergence Guarantees in Probability . 36

3.6 Simulation Results . 38

3.6.1 Benchmarking Schemes . 39

3.6.2 Performance and Comparison Results . 40

3.7 Summary . 44

4 Robust Distributed Clustering with Redundant Data Assignment 45

4.1 Introduction . 46

4.1.1 Our Results . 49

4.2 System Model . 50

4.2.1 Preliminaries . 51

4.3 Data Assignment . 52

4.3.1 Straggler-resilient Data Assignment . 53

4.3.2 Byzantine-resilient Data Assignment . 54

4.4 Straggler Resilient Clustering . 55

4.4.1 Straggler-Resilient Distributed k-median Clustering 55

4.4.2 Straggler-Resilient Distributed k-means Clustering 57

4.4.3 Straggler-Resilient Distributed (r,k)-Subspace Clustering 58

4.5 Byzantine Resilient Clustering . 61

4.5.1 Byzantine Resilient Distributed k-Median Clustering 61

4.5.2 Improved Byzantine Resilient Distributed k-Median Clustering 63

4.5.3 Byzantine Resilient k-means Clustering 66

x

4.6 Construction of Data Assignment Matrix . 68

4.6.1 Randomized Construction for Random Byzantines 68

4.6.2 Explicit Construction for Random Byzantines 69

4.6.3 Random Construction for Adversarial Byzantines 70

4.6.4 Explicit Construction for Adversarial Byzantines 71

4.7 Simulation Results . 72

4.7.1 Straggler-resilient Clustering . 73

4.7.2 Byzantine-resilient Clustering . 74

4.8 Summary . 76

5 Conclusion and Future Directions 77

5.1 Summary . 77

5.2 Future Directions . 78

5.2.1 Robust Learning of Multi-layer Neural Network 78

5.2.2 Byzantine-resilient Decentralized Optimization 79

5.2.3 Robust Fair Clustering . 79

A Appendix: Proofs of Various Results 81

A.1 Toolbox . 81

A.2 Proof of Proposition 2.1 . 83

A.3 Proof of Proposition 2.2 . 84

A.4 Proof of Theorem 2.1 . 87

A.5 Proof of Corollary 2.1 . 91

A.6 Proof of Theorem 2.2 . 91

A.7 Additional Simulation Results: Errors vs number of iterations 92

A.8 Proof of Theorem 3.1 . 94

A.9 Useful Lemmas for Proof in Appendix A.8 . 98

A.10 Proof of Corollary 3.1 . 112

xi

A.11 Proof of Theorem 3.2 . 112

A.12 Useful Lemmas for Proof in Appendix A.11 . 115

A.13 Proof of Corollary 3.2 . 117

A.14 Proof of Lemma 4.1 . 118

A.15 Proof of Lemma 4.3 . 119

A.16 Proof of Theorem 4.3 . 121

A.17 Proof of 4.4 . 122

A.18 Proof of Lemma 4.4 . 125

A.19 Proof of Lemma 4.5 . 126

A.20 Proof of Theorem 4.6 . 128

A.21 Proof of Theorem 4.7 . 129

A.22 Proof of Theorem 4.10 . 134

A.23 Proof of Theorem 4.11 . 136

A.24 Proof of Theorem 4.12 . 137

A.25 Proof of Theorem 4.13 . 138

References 140

xii

LIST OF TABLES

2.1 Runtime of various schemes when p = 0.95, N = 20000, and d = 5. 25

4.1 Summary of constructions of data assignment schemes 72

xiii

LIST OF FIGURES

2.1 Comparison of the different GD schemes as a function of p (first row), N (second

row), and d (third row). 22

2.2 Comparison of GD and SGD schemes as a function of p (first row), N (second

row), and d (third row). 24

3.1 System model illustration with one CN and K WNs. 31

3.2 Benchmarking of Byzantine SCSG with other filtering schemes and oracle SCSG. . 42

3.3 Comparison of Byzantine SCSG by varying number of Byzantines with oracle

SCSG in the static scenario. 43

3.4 Comparison of Byzantine SCSG by varying number of Byzantines with oracle

SCSG in the dynamic scenario. 44

4.1 Performance of the proposed Straggler-resilient k-median algorithm with no re-

dundancy. 73

4.2 Performance of the proposed Straggler-resilient k-median algorithm. 74

4.3 Performance of the proposed Byzantine-resilient k-median algorithm with no re-

dundancy. 75

4.4 Performance of the proposed Byzantine-resilient k-median algorithm. 75

A.1 Comparison of the different GD schemes as a function of K for p = 0.95, d = 5,

and N = 20000. 93

A.2 Comparison of GD and SGD schemes as a function of K for p = 0.95, d = 5, and

N = 20000. 93

xiv

1

CHAPTER 1

INTRODUCTION

Traditionally, data fusion techniques were applied to infer about a phenomenon from the infor-

mation acquired from various sources. The assumption was that the statistical model over the

underlying processes is known. However, in today’s highly connected world, the number of smart

devices, equipped with a multitude of sensors, worldwide has increased exponentially. In fact, it

is predicted that the total number of smart devices around the world would rise up to more than 75

billion at the end of 2025 [58, 80]. Moreover, it is anticipated that there will be more than 9 smart

devices per person at the end of 2025 [89]. These devices generate huge amounts of real-time data.

Hence, the assumption of the statistical model being known is no longer feasible in many scenarios

which makes the traditional data fusion techniques restrictive.

This has led to the development of the machine learning approaches to understand the struc-

ture of data and fit that data into models that can be understood and utilized by people. These

approaches provide a principled set of mathematical methods for extracting meaningful features

from the data. Machine learning can be applied for tasks such as classification, regression, data

mining, binning data into distinct and meaningful patterns that can be exploited for decision mak-

ing, state estimation, and forecasting. The goal of machine learning is to build algorithms that

accept data as input and use statistical techniques to predict an output while updating the outputs

when new data is available.

2

Typically, machine learning approaches can be broadly classified into two classes, namely

supervised learning (SL) and unsupervised learning (UL).

Definition 1.1 (Supervised Learning). SL is a learning paradigm that uses labeled data to train

algorithms to predict outcomes accurately. The association between the input examples and the

labels is known.

The labeled data available for the problem under consideration is used to train an appropriate

model. Once it is trained, we can test the model during the testing phase to check if it is able to pre-

dict the right output with new examples. Classification and regression problems fall under the SL

framework. In applications where training data is not available, unsupervised learning approaches

can be employed where they look at complex data to organize it in potentially meaningful ways.

Definition 1.2 (Unsupervised Learning). UL is a learning paradigm that uses unlabeled data to

train algorithms for data exploration or to analyze or generate new data. The association between

the input examples and the labels is not known.

Clustering and association problems fall under the UL framework. UL approaches are particu-

larly valuable as unlabeled data are more abundant in practice than labeled data.

When developing machine learning systems for some crucial application domains, accuracy is

not sufficient to characterize performance. The safety and reliability guarantees on the underlying

learning models are critical requirements as well. This in turn necessitates that the learned models

be robust in the presence of potentially corrupted data. Data can be corrupted by adversarial attacks

where the attack may consist of arbitrary values adversely affecting the efficiency of the algorithm.

An adversary can replace samples with erroneous or malicious samples such as false labels or

arbitrary inputs. We refer to this type of attack as attack on data.

Moreover, with the rapid increase in the volume of the data, storing and processing all this

data at a central location becomes computationally expensive [107]. Therefore, utilizing a dis-

tributed system is warranted to distribute tasks across multiple worker machines monitored by a

central server (known as distributed learning). Thus, improving the efficiency of the learning al-

3

gorithms with respect to computational and communication costs along with maintaining a high

level of accuracy is critical in distributed learning. However, an attack can occur when the data

transmitted from the machines in the system is replaced by arbitrary values that may negatively

impact the performance of distributed learning. We refer to this type of attack as attack on devices.

The aforementioned attack scenarios can significantly impact the accuracy of the results and thus,

negatively impacting the expected model outcome. Hence, the development of a new generation

of systems that are robust to such adversarial attacks is warranted which provide provable perfor-

mance guarantees. The goal of this dissertation is to develop learning algorithms that are robust

to such adversarial attacks under both the supervised and unsupervised learning frameworks that

provide sufficient performance guarantees for the task at hand and are also simple to implement.

Next, we list the major contributions of the dissertation and discuss the organization of the

dissertation.

1.1 Major Contributions

The goal of this dissertation is to develop machine learning algorithms that are robust to adversarial

attacks under the two learning frameworks. Specifically, we want the proposed algorithms to be

robust to adversarial attacks along with having provable guarantees for convergence. We list the

major contributions of the dissertation as the following.

• Although neural networks (NNs) have seen considerable success, theoretical understanding

of their performance is lacking. One of the approaches to obtain insights into the inner

workings of a NN is to learn the parameters of the NN under supervised as well as unsu-

pervised learning frameworks. An additional challenge is posed when some of the available

data is replaced with arbitrary data by an adversary (attack on data). Under the supervised

learning framework, in [44], the network parameters for a single-layer NN with non-linear

activation where the labels are corrupted by noise were learned. Despite extensive research

in unsupervised learning, the state-of-the-art parameter estimation of a neural network faces

4

the challenge of estimation of the parameters of the NN in the presence of arbitrary data.

To understand the workings of a neural network (opening the black box) and to address the

above problem, we develop an algorithmic framework to estimate the weight matrix and the

bias vector of a single-layer rectified linear unit (ReLU) neural network in the unsupervised

learning framework in the presence of arbitrary outliers. The setting assumes a probabilistic

model where each data sample at the output of the network can be an outlier with fixed prob-

ability and there is no deterministic upper bound on the number of outliers. The key idea to

achieve optimal performance is the combination of techniques from robust statistics [32,33]

and the parameter estimation from truncated Gaussian samples [27]. To our knowledge, this

is the first work that solves the problem of parameter estimation of a NN in the presence of

arbitrary outliers in the unsupervised learning framework.

• In the distributed learning framework, the worker-server architecture is considered to mini-

mize a global loss function or to learn a joint model under supervised as well as unsupervised

learning frameworks. Despite extensive research, the state-of-the-art distributed learning

problems face the challenge of training a high-dimensional model in a distributed manner

while maintaining robustness against adversarial attacks.

– Supervised Learning: Under this framework, we propose a robust variant of the stochas-

tic gradient descent (SGD) algorithm to minimize a non-convex global objective func-

tion where a fraction (< 1/2) of the devices send arbitrary information. We provide

the analysis for the convergence rate of the proposed algorithm that closely matches

the convergence rate results in the literature for the non-convex objective function. Al-

though the computational complexity is less in SGD compared to the gradient descent

algorithm, it may introduce large variance in each step due to stochasticity. A solution

to this problem is variance reduction which is employed to propose the stochastic vari-

ance reduced gradient descent (SVRG) algorithm. However, adversarial attacks under

this framework have received less attention. Therefore, we propose robust variants of

5

the SVRG algorithm to minimize convex and nonconvex objective functions for the

above setting. In particular, we develop a framework that significantly departs from

most of the approaches in the literature, in that the convergence rate of the algorithms

does not depend on the dimension of the problem. This is due to a key design element

of the proposed learning framework which is a filtering technique called the vector me-

dian to identify and prune the devices that exhibit adversarial behavior (also known as

Byzantine devices) so that the convergence rate of the algorithms does not depend on

the dimension of the problem.

– Unsupervised Learning: Unlike the supervised learning framework, a popular method

to learn the structure of the data is clustering under the unsupervised learning frame-

work. We propose robust algorithms for k means and k median clustering. Specifically,

we develop a distributed clustering algorithm for large datasets using coded computa-

tions which is robust to adversarial attacks. A key feature of the framework is the

redundant data assignment scheme such that the information obtained from a subset

of devices is sufficient to compute the desired objective function on the entire dataset

which is especially required when some of the devices are adversarial in nature. To our

knowledge, this is the first work that proposes robust algorithms to solve the distributed

clustering problem in the presence of adversaries.

Below, we discuss the organization of the dissertation.

1.2 Organization of the Dissertation

The dissertation is organized into five chapters. In Chapter 2, we propose a robust algorithm based

on the gradient descent algorithm combined with the median-based filter to mitigate the effect of

the arbitrary outliers for estimating the parameters (weight matrix and bias vector) of the neural

network, assuming the bias vector to be non-negative. We then obtain bounds on the number

of samples and the run time that is sufficient for our algorithm to estimate the neural network

6

parameters. Our analysis provides insights into the training complexity of ReLU NNs in terms of

the probability of outliers and problem dimension.

In Chapter 3, we propose the robust variant of SGD and SVRG algorithms to solve the dis-

tributed stochastic optimization problem in the presence of adversarial nodes. We then provide the

convergence rates of the proposed algorithms that employ a novel filtering rule as a result of which

they are independent of the problem dimension.

In Chapter 4, we propose redundant data assignment schemes that enable us to obtain global

information about the entire dataset to solve the distributed clustering problem, even when some

machines can either be straggling machines that fail to respond within a stipulated time or Byzan-

tines that send arbitrary responses. We then propose robust algorithms to solve the distributed

clustering problem in the presence of stragglers or Byzantines.

Finally, in Chapter 5 we conclude the dissertation with a summary and some possible future

directions we intend to pursue.

Before proceeding further we first discuss the notations we will use in the rest of the disserta-

tion.

1.3 Notations

The probability of an event A and the conditional probability of A given B are denoted by P[A]

and P[A|B], respectively. The expectation of a RV is given by E[·]. The ℓ2-norm is denoted by

∥ · ∥. We use the notation [K] = {1, . . . , K}. 1n denotes a vector of all 1’s of length n, and d(x, y)

denotes the Euclidean distance between two points x, y ∈ Rd.

1.4 Bibliographic Note

Most of the research work appearing in this dissertation has either appeared in the publications

listed below or is under review.

7

Work Included in the Dissertation

Journal Papers:

• S. Bulusu, V. Gandikota, A. Mazumdar, A. S. Rawat, and P. K. Varshney, “Robust Distributed

Clustering with Redundant Data Assignment", submitted to IEEE Trans. on Information

Theory, 2023. (Chapter 4)

• S. Bulusu, P. Khanduri, S. Kafle, P. Sharma, and P. K. Varshney, “Byzantine Resilient Non-

Convex SCSG With Distributed Batch Gradient Computations", IEEE Trans. Signal and

Information Process. over Networks, vol. 7, pp. 754-766, 2021. (Chapter 3)

Conference Papers:

• S. Bulusu, G. Joseph, M. C. Gursoy, and P. K. Varshney, “Learning Distributions Gener-

ated by Single-Layer ReLU Networks in the Presence of Arbitrary Outliers", Thirty-sixth

Conference on Neural Information Processing Systems (NeurIPS), 2022. (Chapter 2)

• S. Bulusu, V. Gandikota, A. Mazumdar, A. S. Rawat, and P. K. Varshney, “Byzantine Re-

silient Distributed Clustering with Redundant Data Assignment", IEEE International Sym-

posium on Information Theory (ISIT), 2021. (Chapter 4)

• S. Bulusu, P. Khanduri, P. Sharma, and P. K. Varshney, “On Distributed Stochastic Gradi-

ent Descent for Nonconvex Functions in the Presence of Byzantines", IEEE International

Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2020. (Chapter 3)

• P. Khanduri, S. Bulusu, P. Sharma, and P. K. Varshney, “Byzantine resilient non-convex

SVRG with distributed batch gradient computations", Optimization for Machine Learning

(OPTML), 2019. (Chapter 3)

• S. Bulusu, Q. Li and P. K. Varshney, “On Convex Stochastic Variance Reduced Gradient

for Adversarial Machine Learning", IEEE Global Conference on Signal and Information

Processing (GlobalSIP), 2019. (Chapter 3)

8

Work not Included in the Dissertation

Journal Papers:

• C. Quan, S. Bulusu, B. Geng, and P. K. Varshney, “Ordered Transmission-based Detection

in Distributed Networks in the Presence of Byzantines", submitted to IEEE Trans. Signal

Process., 2023.

• S. Bulusu, B. Kailkhura, B. Li, P. K. Varshney, and D. Song, “Anomalous Example Detection

in Deep Learning: A Survey", IEEE Access, vol. 8, pp. 132330-132347, 2020.

Under Preparation:

• S. Bulusu, V. Gandikota, A. Grootveld, G. Joseph, and P. K. Varshney, “One-bit Compressed

Sensing with Adversarial Noise", to be submitted to IEEE Trans. Signal Process., 2023.

Conference Papers:

• S. Bulusu, V. Gandikota, and P. K. Varshney, “One-bit Compressed Sensing with Local

Sparsity", IEEE International Symposium on Information Theory (ISIT), 2023.

• N. Sriranga, A. Trezza, S. Bulusu, D. J. Bucci, and P. K. Varshney, “Online Identification of

Recurring Changepoints", Asilomar Conference on Signals, Systems, and Computers, 2022.

Other Publications Prior to SU:

• S. Bulusu, N. B. Mehta, and S. Kalyanasundaram, “Rate Adaptation, Scheduling, and Mode

Selection in D2D Systems With Partial Channel Knowledge", IEEE Trans. on Wireless

Comm., vol. 17, no. 2, pp. 1053-1065, Feb. 2018.

• P. S. Kumar, S. Bulusu, A. P. Kannu, and S. Bhashyam, “Algorithms for change detection

with unknown number of affected sensors,", NCC, 2013.

9

CHAPTER 2

LEARNING DISTRIBUTIONS GENERATED

BY SINGLE-LAYER RELU NETWORKS

In this chapter, we propose a robust algorithm for the estimation of the parameters (weight matrix

and bias vector) of a single-layer neural network (NN) with rectified linear unit (ReLU) activation.

We first introduce a few assumptions and the observations required to design the algorithm. Then,

we provide the intuition for the design of the algorithm. Next, we describe the steps involved in the

proposed algorithm. We then derive the error bounds for the estimates of the parameters given by

the algorithm. We also derive the sample complexity bounds for the proposed approach. Finally,

we present the simulation results and conclude the chapter.

2.1 Introduction

Although NNs achieve state-of-the-art performance in many fields, they have one major drawback.

They are extremely hard to interpret. Typically, a NN consists of multiple interconnected layers of

multiple neurons, each of which applies a mathematical transformation to the received data. We

can observe the data at the input of the networks and also at the output. We can also observe the

individual changes to each neuron and understand all the singular pieces of their inner workings.

10

However, it is difficult to fully understand the end-to-end behavior due to the nonlinear transfor-

mation that these networks apply. Moreover, it is also very difficult to verify which neurons are

important for the result and are not just getting activated due to some relationship learned from the

randomness in the training set. Hence, this black box nature of the NNs has become an impediment

to its adoption in areas where decisions have irreversible consequences.

Therefore, having a theoretical understanding about the inner workings of the NNs is war-

ranted. One possible approach is the estimation of the parameters of the NN under both supervised

and unsupervised learning frameworks using mathematical approaches (optimization or statistics).

The estimation approaches under the supervised learning framework generally rely on the stochas-

tic gradient descent (SGD)-based algorithm [3, 22, 48, 72, 82]; or the gradient descent (GD)-based

approach [19, 34]. Further, some works have considered the sample complexity of a single-layer

NN with ReLU activation in the unsupervised learning framework [78,102]. It is known that when

the bias vector is assumed to be a random vector, the column space of the weight matrix can be re-

covered within an error of O(d) when the output dimension is d [78]. Further, when the bias vector

is assumed to be nonnegative, Õ(1/ϵ2) samples and Õ(d2/ϵ2) iterations are sufficient to estimate

the parameters of the ReLU network within an error of ϵ. However, none of the above works have

considered the problem of corrupted samples. To the best of our knowledge, the estimation of a

neural network in the presence of noise or outliers has been addressed only in the context of su-

pervised learning [5,42,47,79,95,116]. This chapter focuses on the case of unsupervised learning

with corrupted samples wherein we consider a single layer ReLU network.

The NN parameter estimation with corrupted samples is also related to the area of robust statis-

tics. Mathematically, the problem of learning the distribution using a single layer NN is equivalent

to estimating the parameters of a truncated Gaussian distribution. Robust statistics also deals with

the estimation of high dimensional distributions like Gaussian, Gaussian product, and Gaussian

mixture distributions where a fraction of the samples are arbitrary outliers [32, 33, 52, 57, 64, 68].

However, parameter estimation from truncated Gaussian samples in the noisy setting has not been

studied in the robust statistics literature, and we address this literature gap.

11

We present our major contributions as the following.

• Sample Complexity: Our algorithm requires Õ
(

1
p

[
1
p
+ 1

ϵ2

]
log d

δ

)
samples to estimate the

network parameters within an error of ϵ with probability 1 − δ when the probability of a

sample being uncorrupted is p ∈ (2/3, 1] and the output dimension is d. We also characterize

the total variation distance between the estimated and true distributions.

• Lower bound: We derive a lower bound on the sample complexity which says that at least

Ω(1/pϵ2) samples are required to estimate the parameters up to an error of ϵ.

• Empirical validation: We empirically evaluate the performance of our algorithm and show

that it is robust to arbitrary outliers. Also, we observe that the performance of our algorithm

improves with the probability of a sample being uncorrupted and the number of samples,

and it increases slowly as the network output dimension grows. These observations from the

empirical results are consistent with our theoretical results.

Overall, the results obtained show that parameter estimation of a single layer ReLU neural

network is possible using robust gradient descent even in the presence of outliers.

2.2 Problem Statement

Let the weight matrix of the ReLU NN be denoted by W ∈ Rd×m and the bias vector by b ∈ Rd.

The input to the neural network is denoted by the latent variable z ∈ Rm. We assume that the

variable z is drawn from the standard Gaussian distribution. Thus, the output of the network is the

random vector x ∈ Rd given by

x = ReLU(Wz + b) ∼ D(W , b), (2.1)

where D(W , b) denotes the distribution of x. Our goal is to estimate the unknown parameters

W and b of the distribution D(W , b) using the knowledge of a corrupted set of data samples

12

X =
{
x(n) ∈ Rd

}N
n=1

. Here, we assume that a data sample in X follows Huber’s p-contamination

model [56], i.e., a sample is drawn from D(W , b) with probability p, and it is an arbitrary outlier

drawn from an unknown distribution Dout with probability 1 − p. Hence, a given sample x ∈ X

follows the distribution Dp = pD(W , b) + (1− p)Dout.

We make two observations about the learning problem. Firstly, it is known that when all the

samples are from the true distribution, exponentially large number of samples are required to esti-

mate the bias b, if it can take any value from the set Rd [102] as the following.

Claim 1. For any value ϵ > 0, there exists one-dimensional distributions D(1, b1) and D(1, b2)

such that: (a) |b1 − b2| = ϵ; (b) at least Ω(exp (b21/2)) samples are required to distinguish them.

PROOF: Let us assume b1 < 0 and b2 = b1− ϵ. Firstly, (a) holds. Next, notice that the probability

of observing a positive sample from D(1, b1) is P(ReLU(z − |b1|) > 0) = P(z > |b1|). From the

standard Gaussian tail bound in [98], this probability is upper bounded by exp (−b21/2) . Same is

the case when the sample is from D(1, b2). Hence, to distinguish D(1, b1) and D(1, b2), we need

to observe at least one nonzero sample. This requires Ω(exp (b21/2)) samples.

Naturally, the requirement on the number of samples would be worse in the presence of arbitrary

outliers. Hence, to reduce the number of samples required we assume b to be non-negative. Thus,

we assume the following.

Assumption 1. The entries of b ∈ Rd are all nonnegative.

Secondly, the weight matrix W may not be identifiable from the distributionD(W , b). In par-

ticular, for any unitary matrix Q ∈ Rm×m, we have D(W , b) = D(WQ, b). Since our goal is to

learn the distribution, learning either W or WQ is sufficient. Thus, we focus on the learnability of

the underlying distribution and not the learnability of the neural network parameters. Specifically,

our proposed algorithm estimates WW T ∈ Rd×d and b ∈ Rd.

We tackle the issue of estimating the weight matrix and the bias vector of a NN in the presence

of arbitrary outliers using a new formulation which we discuss next.

13

2.3 Robust Estimation Algorithm

Our algorithm is similar to that in [102] which considers the special case of p = 1 and uses SGD.

For the general case of p ≤ 1, we combine the estimation framework with a robust filter to estimate

the parameters.

To derive the robust estimation algorithm, we first consider a true sample x ∼ D(W , b)

whose i-th element is nonzero. We have xi = ReLU(W T
i z + bi) ∼ N+(bi, ∥W i∥2), where

N+(bi, ∥W i∥2) is the truncated normal distribution obtained by restricting the normal distribution

N (bi, ∥W i∥2) to the set of positive real numbers. Hence, estimation of bi and ∥W i∥ is equivalent

to estimating the parameters of a one-dimensional truncated normal distribution N+(bi, ∥W i∥2)

using positive samples. Therefore, we estimate the parameters in two steps. In the first step, we

estimate the i-th element bi of the bias vector and the norm ∥W i∥ of the i-th row of the weight ma-

trix, for i ∈ [d]. The second step is the estimation of the angle θij between the i-th row W i ∈ Rm

and the j-th row W j ∈ Rm of the matrix W , for i, j ∈ [d]. Then, the (i, j)-th entry of the

symmetric matrix WW T is given by ∥W i∥ ∥W j∥ cos(θij).

The first step of the algorithm estimates the parameters of the univariate distribution given by

N+(bi, ∥W i∥2) using the i-th element of the samples X+
i = {xi : xi > 0,x ∈ X} via maximum

likelihood estimation [27]. Then, the parameter estimates are given by argminµ,σ2 ℓ(µ, σ2) where

ℓ(µ, σ2) is the expected negative log likelihood that xi ∼ N+(µ, σ2) and the expectation is with

respect to the true distribution xi ∼ N+(bi, ∥W i∥2). Further, from [27], ℓ(µ, σ2) is a convex func-

tion of v =

[
1/σ2 µ/σ2

]
∈ R2. Thus, we solve the convex optimization problem of maximizing

ℓ(µ, σ2) over v,

v∗ = argmin
v∈R2

ℓ(v). (2.2)

The optimization problem in Eq. (2.2) can be solved using GD or SGD which is based on the

14

gradient of ℓ(v) given by the relation [27]: ∇ℓ(v) = g − h(v) where

g = Ex∼N+(bi,∥W i∥2)

{[
x2/2 −x

]T}
, (2.3)

h(v) = E
y∼N+

(
v2
v1

, 1
v1

)
{[

y2

2
−y
]T}

=

[
σ2+µ2

2
+ µσϕ(−µ/σ)

2(1−Φ(−µ/σ))
−µ− σϕ(−µ/σ)

1−Φ(−µ/σ)

]T
, (2.4)

where µ = v2/v1, σ2 = 1/v1, and ϕ(·) and Φ(·) denote the probability density function and the

cumulative distribution function of the standard normal distribution, respectively. The relation in

Eq. (2.4) follows directly from the closed form expressions of the first and second moments of the

truncated Gaussian distribution N+
(

v2

v1
, 1
v1

)
, which are functions of v only [62].

We observe that g does not depend on v and only depends on the true distribution parameters

(bi, ∥W i∥2), whereas h(v) does not depend on the true distribution. Therefore, the estimation of

g, which depends on the true distribution, can use the available data samples, and h(v) can be

computed in closed form using the current iterate of v. In other words, we compute the component

of gradient g only once in the GD or SGD algorithm because it does not change across the itera-

tions. This observation motivates us to use the GD algorithm to estimate the parameters instead of

SGD. SGD introduces large variance due to the stochasticity and lower accuracy due to the outliers

in every iteration whereas GD introduces a small error that does not depend on the algorithm iter-

ate. This key observation and the use of Eq. (2.4) to compute the gradient is the main difference

between our algorithm and the algorithm in [102], apart from the robust estimation aspect.

To estimate g, we partition X+
i into batches of size NB and compute the batchwise estimate

g̃(b),

g̃(b) =
1

NB

∑
x∈X+

i,b

[
x2/2 −x

]T
, (2.5)

where X+
i,b ⊂ X

+
i is the b-th batch of samples. We then combine the batchwise estimates using a

well-known filter in the robust statistics literature such as the median or trimmed mean to handle

the outliers.

• Median: The median filter possesses the following robustness property. Typically, a median

15

is the value separating the higher half from the lower half of a given set of points. If more

than half of a given set of points are in [−M,M] for some M > 0, then their median must

be in [−M,M].

• Trimmed Mean: The trimmed mean removes the vectors among the set of Nb vectors with

relatively large and small values and computes the mean of the remaining vectors. Here, we

use a parameter β to indicate the number of vectors to be discarded.

The median filter mitigates the effect of outliers by ensuring that if more than half of the

batchwise estimates lie in an interval around the true value g, then their median also lies in the

same interval. Similarly, the trimmed mean prunes the outliers by removing the vectors with

relatively large and small values (controlled by its parameter) and computes the estimate of g as

the mean of the remaining vectors. Therefore, we obtain the gradient estimate g̃ − h(v) as

g̃ − h(v) = filter
(
g̃(1), g̃(2), . . . , g̃(|X

+
i |/NB)

)
− h(v), (2.6)

where the function filter(·) is either median or trimmed mean, and h(v) is given in Eq. (2.4). Using

the gradient estimate, the robust GD algorithm updates the k-th iterate v(k) as

v(k) = P (v(k − 1)− γ(k − 1) [g̃ − h(v(k − 1))]) , (2.7)

where γ(k) > 0 is the diminishing step size and P (·) projects the iterate into a bounded region Dr

as

Dr =
{
v ∈ R2 : 1/r ≤ v1 ≤ r, 0 ≤ v2 ≤ r

}
(2.8)

P (v) =

[
min{max{v1, 1/r}, r} min{max{v2, 0}, r}

]
. (2.9)

The projection ensures that the expected negative log-likelihood ℓ(v) is a strongly convex function

of v, and the parameter r controls the strong-convexity [27] (see Section 2.4 for more details). The

16

robust GD algorithm is summarized in Algorithm 2. The role of r is further discussed in Section

2.4. This completes the first step of our algorithm based on robust GD which is summarized in

Algorithm 2.

Finally, using the estimates obtained via the robust GD algorithm, we estimate θ̂ij similar

to [102] using [101, Lemma 6.7]. Specifically, we have

θ̂ij = π − 2π

[
1

N

N∑
n=1

1

(
x
(n)
i > b̂i

)
1

(
x
(n)
j > b̂j

)]
, (2.10)

where 1(·) is the indicator function and b̂ is the output of the robust GD algorithm. The overall

distribution learning algorithm is given in 1 where Σ̂ denotes the estimate of WW T.

Algorithm 1: ReLU network estima-

tion
Input: Samples X =

{
x(n) ∈ Rd

}N
n=1

1 for i ∈ [d] do
2 X+

i ← {xi : x ∈ X and xi > 0}
3 Compute v̂ using 2 with input as X+

i

4 Σ̂i,i ← 1/v̂1

5 b̂i ← max{0, v̂2/v̂1}

6 for i < j ∈ [d] do
7 Compute θ̂ij using Eq. (2.10)

8 Σ̂i,j ←
√

Σ̂i,iΣ̂j,j cos(θ̂ij)

9 Σ̂j,i ← Σ̂i,j

Output: Σ̂ ∈ Rd×d and b̂ ∈ Rd

Algorithm 2: Robust GD
Input: Positive samples X+ ⊂ R+

Parameters: IterationsK, step

size γ(k), projection parameter r,

batch size NB

1 B ← |X+| /NB

2 Compute {g̃(b)}Bb=1 from X+ using

Eq. (2.5)

3 g̃ ← filter
(
g̃(1), g̃(2), . . . , g̃(B)

)
4 v(0)← 0

5 for k = 1, 2, . . . , K do
6 µ← v2(k−1)

v1(k−1)
; σ2 ← 1

v1(k−1)

7 Compute h(v(k − 1)) using Eq.

(2.4)

8 Update v(k) using Eq. (2.7)

Output: v(K) ∈ R2

2.4 Error Bounds for Parameter Estimation

This section provides our main result which characterizes the sample complexity for robust estima-

tion of neural network parameters. The analysis of distributed learning in the presence of arbitrary

outliers is studied in [24,112]. They assume that the available samples are split into a fixed number

17

of batches and a constant fraction (<1/2) of batches are outliers. However, our setting assumes a

probabilistic model where each data sample can be an outlier with probability 1−p and there is no

deterministic upper bound on the number of outliers. Consequently, each batch can have a mixture

of true samples and outliers, and it is critical to choose the right batch size NB (see Proposition 2.2

and its discussion for details).

We rely on two propositions to arrive at the main results. The propositions establish the prop-

erties of the objective function of the optimization problem in Eq. (2.2) and the error bounds for

the robust GD algorithm presented in Algorithm 2.

Proposition 2.1. There exist positive constants L and η that depend only on the projection param-

eter r ≥ 1 of Algorithm 2 such that the objective function ℓ(v) in Eq. (2.2) is an η−strongly convex

and L−smooth function of v when v ∈ Dr defined in Eq. (2.8). Here, L is an increasing function

of r whereas η is a decreasing function of r.

PROOF: See Appendix A.2.

Proposition 2.1 proves that the projection parameter r controls the strong-convexity and smooth-

ness parameters of the objective function. If r takes a large value, it leads to a small strong-

convexity parameter η and a large smoothness parameter L. We use this property to interpret the

role of parameter r in the algorithm performance using the next result that presents the error bounds

of the robust GD algorithm. To this end, we make the following assumptions to derive the error

bounds:

Assumption 2. The projection parameter r ≥ 1 is such that the minimizer of Eq. (2.2), v∗ ∈ Dr

where Dr is defined in Eq. (2.8).

Assumption 3. The step size of the robust GD algorithm in Algorithm 2 is fixed across the itera-

tions, i.e., γ(k) = γ, for k = 1, 2, . . . , K.

A large value of r ensures that the first assumption is satisfied. However, if any prior knowledge

about the true parameters is known, the parameter r can accordingly take smaller values. The

18

second assumption is a guideline on how to choose the step size of the robust GD algorithm for the

analysis. Under the above assumptions, the error bound for the robust GD algorithm is as follows.

Proposition 2.2. Consider the robust GD algorithm in Algorithm 2 based on the median filter,

which solves Eq. (2.2) with input as X+. Let p+ ∈ (1/2, 1] be the probability that a given

sample in X+ follows the true distribution N+ (v∗
2/v

∗
1, 1/v

∗
1). Assume that there exist ϵ ∈ (0, 1),

δ ∈ (0, 1/2), and ζ ∈ (0, 1− 2δ) such that the batch size NB satisfies

NB = Õ

(
1

ϵ2
log

1

δ

)
and NB ≤

1

log(1/p+)
log

2(1− δ)

1 + ζ
. (2.11)

Then, under Assumptions 1,2,3, the output v(K) of our algorithm satisfies ∥v(K)− v∗∥ ≤ ϵ, with

probability at least 1−δ if |X+| = Ω
(

NB

ζ2
log 1

δ

)
and K = Ω(log 1

ϵ
). Here, all the order constants,

the step size γ = 1/L in Assumption 3, and the linear convergence rate L
η+L

< 1 depend only on

the projection parameter r. Also, η, L > 0 are defined in Proposition 2.1.

PROOF: See Appendix A.3.

The above result indicates the role and suitable choices of the parameters: K, γ(k), r, and

NB as discussed next. The result states the number of iterations K scales logarithmically with the

inverse of the error ϵ. Also, Assumption 3 shows that the result holds when the step size is the

same across all the iterations. Finally, r should be large enough to satisfy Assumption 2. However,

a large r leads to slower convergence because the rate of convergence is an increasing function

of r. Finally, the algorithm gives an upper and lower bound on the batch size NB. We note that

for GD, the estimation error depends on the error in the first term of the gradient in Eq. (2.6),

which is estimated using the batchwise gradient estimate in Eq. (2.5). The error in the batchwise

gradient estimate is contributed by the outliers and the finite sample error (the difference between

the sample moments computed using a finite number of samples from a distribution and the true

moment of the distribution). With large batch size, the number of batches without any outliers is

also small. Since the outliers are drawn from an arbitrary distributionDout, even if a batch contains

one outlier, the error in the batchwise gradient estimate can be large. This observation explains the

19

upper bound on the batch size which depends on p+. It is important to note that when there are

no outliers (i.e., p+ = 1), there is no upper bound on the batch size. Similarly, if the batch size is

small, the batchwise gradient computed using batches without outliers incurs a large finite sample

error. This observation intuitively explains the lower bound on the batch size which is independent

of p+. In short, the upper and lower bounds on NB balances the tradeoff between the error due to

the outliers and the finite sample error. Further, we note that the upper and lower bounds can be

simultaneously achieved by choosing ϵ to be large enough.

We also note the restriction on p+ which is not surprising. This is because the median-based

methods work only if the number of outliers are smaller than that of the uncorrupted data samples,

which naturally restricts the probability of outliers.

We next present our main theorem that discusses the overall complexity of our algorithm.

Theorem 2.1. Consider the learning algorithm in Algorithm 1 that uses the median-based ro-

bust GD. Let p ∈ (2/3, 1] be the probability that a given sample follows the true distribution

D
(
WW T, b

)
. Assume that there exist ϵ ∈ (0, 1), δ ∈ (0, 1/2), and ζ ∈ (0, 1 − 2δ) such that the

batch size NB of Algorithm 2 satisfies

NB = Õ

(
1

ϵ2
log

1

δ

)
and NB ≤

1

log(2/p)
log

2(1− δ)

1 + ζ
. (2.12)

Then, under Assumptions 1,2,3, the outputs Σ̂ and b̂ of Algorithm 1 satisfy

∥∥∥Σ̂−WW T
∥∥∥ ≤ [ϵ+ (1− p)] ∥W ∥2 and

∥∥∥b̂− b
∥∥∥ ≤ ϵ ∥W ∥ , (2.13)

with probability at least 1 − δ if the number of samples N = Õ
(

1
p

[
1
p
+ 1

ζ2ϵ2

]
log d

δ

)
. The algo-

rithm runs in time Õ
(

d2

p

[
1
p
+ 1

ζ2ϵ2

]
log d

δ

)
and space Õ

(
d
p

[
1
p
+ 1

ζ2ϵ2

]
log d

δ
+ d2

)
. All the order

constants and the step size γ in Assumption3 depend only on the algorithm parameter r.

PROOF: See Appendix A.4.

With no outliers (p = 1), our result is the same as the existing error bounds from [102, Theorem

20

1]. Specifically, for SGD in [102] with no outliers, the number of samples N = Õ
(

1
ϵ2
log d

δ

)
is

sufficient to achieve

∥Σ̂−WW T∥ ≤ ϵ∥W ∥2 and ∥b̂− b∥ ≤ ϵ∥W ∥. (2.14)

with probability at least 1 − δ for any ϵ, δ ∈ (0, 1), In our case, when p = 1, there is no upper

bound on NB and we choose NB = N = Ω
(

1
ϵ2
log3 d

δ

)
to achieve Eq. (2.14) with probability 1−δ.

Thus, the time and space complexities of our algorithm are identical to those of SGD in [102]. We

next bound the total variation distance between the estimated distribution and the true distribution

under the restriction that W is a full-rank square matrix.

Corollary 2.1. Consider the learning algorithm in Algorithm 1 that uses the median-based robust

GD. Suppose that W ∈ Rd×d is full-rank with d > 1 and let κ be the condition number of WW T.

Let p > 1− 1
2κd

be the probability that a given sample follows the true distribution D
(
WW T, b

)
.

Assume that there exist ϵ ∈ (κd(1− p), 1/2], δ ∈ (0, 1/2), and ζ ∈ (0, 1− 2δ) such that the batch

size NB of Algorithm 2 satisfies NB = Õ
(

κ2d2

(ϵ−κd(1−p))2
log 1

δ

)
and NB ≤ 1

log(2/p)
log 2(1−δ)

1+ζ
. Then,

under Assumptions 1,2,3, the outputs Σ̂ and b̂ of Algorithm 1 satisfy

TV
(
D
(
Σ̂

1/2
, b̂
)
,D (W , b)

)
≤ ϵ, (2.15)

with probability at least 1 − δ if the number of samples N = Õ
(

1
p

[
1
p
+ κ2d2

ζ2(ϵ−κd(1−p))2

]
log d

δ

)
.

Here, TV(·) denotes the total variation distance between the argument distributions. All the order

constants and the step size γ in Assumption 3 depend only on the algorithm parameter r.

PROOF: See Appendix A.5.

We note that when d > 1, we have 1 − 1
2κd
≥ 1/4 and the bound on p in Theorem 2.1 is

automatically satisfied.

The last result of this section gives a lower bound on sample complexity of the problem of

learning ReLU NN. We restrict the analysis to a specific class of ReLU distributions where W is

21

a scaled identity matrix.

Theorem 2.2. Consider the ReLU parameter estimation problem with p as the probability that

a given sample follows the true distribution. Suppose that the true distribution belongs to C =

{D (W , b) : W = σI, b ∈ Rd, bi > 0∀i}, where σ = O(1). Then, any algorithm that learns C to

satisfy
∥∥∥b̂− b

∥∥∥ ≤ ϵ ∥W ∥ with success probability at least 2/3 requires Ω
(

1
pϵ2

)
samples.

PROOF: See Appendix A.6.

Comparing the sample complexity achieved by our algorithm (Theorem 2.1) and the above lower

bound, we can see that the second term of our sample complexity matches the derived bound up to

log factors. However, there is a gap between the sample complexity of our algorithm and the lower

bound due to the first term that varies as 1/p2 (ignoring the log factors). This is an interesting

direction for future work to see if there are better bounds.

2.5 Simulation Results

In this section, we provide numerical results to verify the performance of our algorithm. In our

simulation setup, the columns of W are chosen as the left singular vectors of random matrices

from the standard Gaussian distribution. For b, we use a random vector from the standard normal

distribution whose negative values are replaced with zeros. The mixture of samples are generated

such that a sample comes from D(W , b) with probability p and from Dout with probability 1− p.

The outlier distribution Dout = N (5, 1) and the algorithm hyper-parameters are r = 3 and γ(k) =

1
0.1k

. We use the batch-splitting approach to compute the gradient, inducing randomization. Also,

from our experiments, we observe that the errors flatten certain number of iterations (see Figs. A.1

and A.2) around 1/100-th of the number of positive output samples which is chosen as the number

of GD and SGD iterations K. We compute two error metrics from the estimated parameters and the

ground truth, ∥Σ̂−WW T∥F/∥W ∥2F and ∥b̂− b∥2/∥W ∥F . Further, we compare our algorithm

with two other schemes: the oracle schemes (estimation using the true samples only) and schemes

22

without a filter. Our results are shown in Figs. 2.1, 2.2, and Fig. 2.1, and the observations from

them are as follows.

0.8 0.85 0.9 0.95 1

Probability of true samples (p)

0

0.5

1

1.5

E
rr

o
r

in
 b

ia
s
 v

e
c

to
r

0.8 0.85 0.9 0.95 1

Probability of true samples (p)

0

0.5

1

1.5

2

E
rr

o
r

in
 w

e
ig

h
ts

(a) d = 5 and N = 20000.

0 0.5 1 1.5 2

No.of samples (N) 105

0.05

0.1

0.15

0.2

0.25

0.3

0.35

E
rr

o
r

in
 b

ia
s
 v

e
c
to

r

0 0.5 1 1.5 2

No.of samples (N) 10
5

10
-2

10
-1

10
0

E
rr

o
r

in
 w

e
ig

h
t

m
a
tr

ix

(b) p = 0.95 and d = 5.

0 100 200 300 400 500

Dimension (d)

0

0.1

0.2

0.3

0.4

E
rr

o
r

in
 b

ia
s
 v

e
c
to

r

0 100 200 300 400 500

Dimension (d)

0

0.5

1

1.5

2

E
rr

o
r

in
 w

e
ig

h
t

m
a
tr

ix

(c) p = 0.95 and N = 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

GD w/o Filter GD with Median GD with Trimmed Mean Oracle GD

(d)

Fig. 2.1: Comparison of the different GD schemes as a function of p (first row), N (second row),

and d (third row).

23

Effect of the filters: From Fig. 2.2, the GD schemes perform better than the corresponding SGD

schemes. Also from Figs. 2.1 and 2.2, we infer that using filters along with GD or SGD reduces

the effect of the outliers, and the curves are closer to the oracle schemes. We also infer that the

median-based approach performs slightly better than the trimmed mean-based approach.

Dependence on the probability of a sample being uncorrupted p: From Figs. 2.1(a) and 2.2(a),

the performance of all the schemes except the oracle schemes improves with p because the fraction

of outliers in the observed samples decreases with increasing p. However, the schemes without

filters show a considerable difference in performance as they are not able to handle the outliers

effectively. The performance of oracle schemes does not change with p as they assume the knowl-

edge of true samples. Further, all the schemes converge to the corresponding oracle schemes when

p = 1.

Dependence on the number of samples N and dimension d: Figs. 2.1(b) and 2.2(b) show that

the estimation performance of the oracle schemes and the schemes with the filter improves with

the number of samples N . However, the schemes without a filter do not always improve with N

because the number of outliers also increases with N , which are not handled by the algorithm. In

Figs. 2.1(c) and 2.2(c), we varied the dimensions up to 500 and observed that there is a slight in-

crease in the errors as the dimension increases for our proposed schemes as well as oracle schemes.

We also observe that the errors increase as d increases for GD without filter due to the presence of

arbitrary outliers.

24

0.8 0.85 0.9 0.95 1

Probability of true samples (p)

0

0.5

1

1.5

2

2.5

3

E
rr

o
r

in
 b

ia
s
 v

e
c

to
r

0.8 0.85 0.9 0.95 1

Probability of true samples (p)

0

0.5

1

1.5

2

2.5

3

3.5

E
rr

o
r

in
 w

e
ig

h
ts

(a) d = 5 and N = 20000.

0 0.5 1 1.5 2

No.of samples (N) 10
5

0

0.1

0.2

0.3

0.4

E
rr

o
r

in
 b

ia
s

 v
e

c
to

r

0 0.5 1 1.5 2

No.of samples (N) 10
5

10
-1

10
0

E
rr

o
r

in
 w

e
ig

h
t

m
a

tr
ix

(b) p = 0.95 and d = 5.

0 100 200 300 400 500

Dimension (d)

0

0.1

0.2

0.3

0.4

0.5

E
rr

o
r

in
 b

ia
s
 v

e
c
to

r

0 100 200 300 400 500

Dimension (d)

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

in
 w

e
ig

h
t

m
a
tr

ix

(c) p = 0.95 and N = 20000.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

SGD with Median GD with Median Oracle SGD Oracle GD

(d)

Fig. 2.2: Comparison of GD and SGD schemes as a function of p (first row), N (second row), and

d (third row).

Comparison of runtimes: From Table 2.1, the SGD schemes run faster as SGD utilizes only

one sample for the gradient, whereas GD utilizes all the samples. The filter-based schemes have

25

higher computation times than the ones without filters, and the runtimes of the trimmed mean-

based schemes are significantly higher than those of the median-based schemes.

Table 2.1: Runtime of various schemes when p = 0.95, N = 20000, and d = 5.

Scheme Oracle Without Filter With Median With Trimmed Mean

GD 16.95 s 17.73 s 34.44 s 60.78 s

SGD 1.24 s 1.60 s 2.11 s 3.62 s

Overall, the median-based GD algorithm is the most effective approach to estimating the NN

parameters in the presence of the outliers and is faster than the trimmed mean-based GD algorithm.

Also, the median-based scheme is parameter-free and enjoys solid theoretical guarantees.

2.6 Summary

In this chapter, we proposed an algorithm for the estimation of the parameters of a single-layer

ReLU neural network from the truncated Gaussian samples where each sample was assumed to be

an arbitrary outlier with a fixed probability. Our only assumption was that the bias vector was non-

negative. We analyzed the sample and time complexities of the GD-based estimation algorithm

combined with median-based filter to handle the outliers. The efficacy of our approach was also

demonstrated using numerical experiments.

26

CHAPTER 3

BYZANTINE RESILIENT NON-CONVEX

SCSG WITH DISTRIBUTED BATCH

GRADIENT COMPUTATIONS

In this chapter, we propose a robust algorithm based on variance-reduction technique to solve the

distributed stochastic optimization problem in the presence of adversarial nodes. We first introduce

the assumptions and the definitions required to design the robust algorithm. Next, we describe the

steps involved in designing the algorithm along with the description of the crucial vector median

filter. We then prove the convergence of the proposed algorithm to a first-order stationary point.

We also show that the convergence does not depend on the dimension of the problem due to the

novel filtering technique. Finally, we present the simulation results and conclude the chapter.

3.1 Introduction

With rapid growth of data centric applications, current machine learning algorithms have to con-

sistently deal with very large size datasets [76]. The use of distributed systems to solve large-scale

problems has increased the need for distributed learning architectures to speed up such machine

27

learning algorithms [96]. A distributed learning architecture consists of a central node (CN) and

multiple worker nodes (WNs) that jointly perform the learning task [83, 84]. In a distributed net-

work, the computational load at the CN is distributed among the WNs by allowing the WNs to

perform the heavy computations at their end [31, 54, 86, 117]. Due to the distributed nature, the

network is vulnerable to adversarial attacks on some WNs (attack on nodes), also known as Byzan-

tines [69]. Note that the Byzantines may transmit arbitrary values and can adversely affect the

convergence performance of the learning algorithm. Hence, robust variants of distributed learning

algorithms and sufficient convergence guarantees are warranted. In this chapter, we propose one

such robust variant of a distributed learning algorithm where α-fraction of WNs in the network are

Byzantines with α ∈ [0, 1/2).

In [1, 9, 24, 86, 91, 105, 106, 111, 113], the problem of distributed learning in the presence of

Byzantines was considered. However, only in [9, 105, 106, 111, 113], the objective function was

considered to be nonconvex. In this chapter, we consider a nonconvex optimization problem and

develop robust first order algorithms in the presence of Byzantines. Gradient descent (GD) based

first order algorithms require computations of gradients of all the available samples from the dataset

which is prohibitive for large datasets. To overcome this limitation, stochastic gradient descent

(SGD) has been proposed where only a small batch of data samples are used to compute the

gradients. Note that the batch size can be as small as one. However, due to the stochasticity,

variance of the gradients can be large which leads to slow convergence of SGD. Therefore, variance

reduced algorithms have been proposed which lead to improved convergence [63, 71, 87]. In the

literature, a number of robust variants of GD and SGD algorithms have been explored which are

discussed below.

3.1.1 Related Work

Gradient Descent: In [24], a robust variant of the GD algorithm was proposed to minimize a

strongly convex objective function. The authors employed robust mean estimation to counter the

presence of Byzantines and provide convergence to a point in the neighborhood of the optimum.

28

The size of the neighborhood depends on the problem dimension and the number of Byzantines.

The analysis was extended in [91] for the case when the number of sample functions available

at the WNs is much smaller than the problem dimension. In [111, 113], Byzantine resilient GD

algorithms for nonconvex objective function minimization were proposed. In [113], the authors

proposed median and trimmed mean based filters for aggregating the gradients sent by the WNs.

In [111], the aggregation rules in [113] were used to propose a robust algorithm which escapes from

saddle points and incorrect local minima. The authors showed convergence to an approximate local

minimum with low iteration complexity.

Moreover, in [9], the authors constructed a distance based filtering rule to identify the Byzan-

tines. This filtering rule was used to propose a robust GD algorithm for nonconvex objective

functions. In [105], the authors used coordinate-wise trimmed mean to remove the Byzantines.

They showed neighborhood convergence to a local minima for nonconvex objective functions us-

ing the GD algorithm. Neighborhood convergence to a local minima for the nonconvex objective

functions using the GD algorithm was also given in [106]. However, a score was computed based

on the estimated descent of the loss function, and the magnitude of the iterate update. The gra-

dients of the WNs with the highest scores were aggregated to obtain the descent direction for the

iterate update. Another line of work [109, 110], considered the decentralized architecture without

a CN in the presence of Byzantines. Unlike [9,91,105,106,109–111,113], our approach develops

a robust variant of the variance reduced algorithm in the presence of Byzantines.

Stochastic Gradient Descent: Furthermore, in [1, 9, 73, 105, 106], the authors proposed robust

SGD algorithms in the presence of Byzantines. Specifically, in [1, 73], the authors considered

strongly convex and convex objective functions, respectively. In [73], a regularization term was

added to the objective function to robustify the algorithm from adversarial attacks. The proposed

algorithm was based on the robust mean aggregation of iterate values sent by the WNs. The

convergence depends on the problem dimension. The authors showed neighborhood convergence

for strongly convex objective functions. In [1], the Byzantines were filtered by computing the

vector median of the stochastic gradients sent by the WNs for convex objective functions. In this

29

chapter, we utilize the idea of vector median to construct our novel filtering rule.

In [104], the geometric median based aggregation rule for the SGD algorithm was provided.

The geometric median involves finding a vector that minimizes the sum of the distances to the set

of stochastic gradients received in an iteration from all the WNs. However, the convergence rates

for nonconvex objective functions were not provided. Furthermore, in [108], the authors proposed

a coordinate-wise median based aggregation rule for the distributed SGD algorithm. Although

the convergence analysis for nonconvex objective functions was provided, the convergence rate

and the explicit complexity bounds were not provided. More recently, in [2, 15], the authors pro-

vided convergence rate results for nonconvex objective functions using the SGD algorithm in the

presence of Byzantines.

Unlike [1, 2, 9, 15, 73, 104–106, 108] that used SGD based algorithms which suffer from high

variance introduced by the stochasticity of the gradients, the stochastic variance-reduced algo-

rithms utilize variance reduction techniques to iteratively reduce variance. The authors in [103]

considered one such algorithm called SAGA. The authors assumed that the objective function is

strongly convex. The geometric median was considered to mitigate the effect of the Byzantines in

the system. The use of geometric median along with SAGA algorithm resulted in the convergence

to the neighborhood of a stationary point even though the objective function was assumed to be

strongly convex. Furthermore, the authors assumed that the identities of the Byzantines do not vary

with time. Also, in [16], the authors provided a robust version of the stochastic variance-reduced

gradient (SVRG) algorithm for convex objective functions. However, our algorithm guarantees ex-

act convergence to the stationary point for nonconvex objective functions using the stochastically

controlled stochastic gradient (SCSG) algorithm in mean, and also in probability. Further, we show

via simulations that our algorithm works well even when the behavioral identities of Byzantines

vary with time. Note that the convergence rate in mean is a weaker result as in some instances the

algorithm may have the rate that is slower than the rate in mean. However, the convergence rate in

probability guarantees that the algorithm always achieves the rate with high probability. Moreover,

the convergence rate of our algorithm does not depend on the problem dimension.

30

Our proposed algorithm is based on a variant of the stochastic variance reduced algorithm

called the SCSG algorithm proposed in [71] for nonconvex objective functions. Specifically,

the stochastic variance reduced algorithm reduces the variance of stochastic gradients in SGD

by adding two more terms to the stochastic gradient. One term is a stochastic gradient and the

other one is a batch gradient. The batch gradient is computed by aggregating gradients for a batch

of samples once every m steps, and the stochastic gradient is computed at every step. Note that

in stochastic variance reduced algorithm, the number of steps m is fixed. However, in SCSG

algorithm, the number of steps is given by a geometric random variable (RV).

The following are our major contributions.

3.1.2 Major Contributions

• A novel filtering rule is proposed that is used to identify the honest WNs and prune the

Byzantines. It compares the norm of the difference between the batch gradient of a WN and

the vector median of all the batch gradients to a threshold. This then serves as the basis for

the aggregation rule. Note that we design the threshold.

• For the proposed algorithm, we provide the convergence rate guarantees in mean and in

probability as a function of α ∈ [0, 1
2
), the upper bound on the fraction of Byzantines present

in the network. Importantly, we also show that with no Byzantines, α = 0, the convergence

rate of the proposed algorithm is the best known rate for distributed nonconvex optimization

(Section 3.4) [61, 114].

• The performance of our algorithm is evaluated via simulation and the results using MNIST

and CIFAR10 datasets are presented. We utilize GPU servers to emulate our distributed

network with multiple WNs and one GPU server acting as a CN.

Unlike [1, 9, 73, 91, 105, 106, 111, 113] where the authors considered the robust variants of GD

and SGD algorithms in the presence of Byzantines, we provide a robust variant of the variance

reduced algorithm. This ensures that the proposed algorithm does not have the disadvantages of

31

Fig. 3.1: System model illustration with one CN and K WNs.

GD and SGD algorithms like large computational overhead and large variance. Further, unlike [1,

73, 91], we consider nonconvex objective functions which is more attuned to real world problems.

3.2 System Model

Consider the system shown in Fig. 3.1 that has K WNs and a CN. This model is similar to the

one in [1]. In this chapter, we focus on distributed algorithms for the empirical risk minimization

problems. We have the following setting. We assume that there are K WNs and a CN in the

network as illustrated in Fig. 3.1. Each WN has access to one sample indicated by ξk, for k =

{1, . . . , K}. The samples are random variables from an unknown distribution D. Specifically, the

goal is to solve the following problem in a distributed setup:

min
x∈Rd

f(x) = Eξ∼Df(x; ξ)

where the functions f(· ; ξ) : Rd → R, for ξ chosen uniformly randomly from distribution D,

and f(·), are assumed to be nonconvex. We assume that all the nodes including CN have access

to the stochastic functions from distribution D. We assume that at most α-fraction of WNs are

Byzantines, α ∈ [0, 1/2). CN updates the iterate, x0,t at the beginning of each inner loop and

broadcasts it to all WNs in the network. Here, t ∈ [T] indicates the outer loop (epoch) index of the

proposed algorithm. WNs compute the batch gradient, µ(k)
t , k ∈ [K] based on the iterate x0,t and

transmit the batch gradients to CN.

32

The set of honest nodes is denoted by G. We assume the following for each honest node k ∈ G:

Assumption 4 (Gradient Lipschitz continuity, [81]). All the functions f(· ; ξ) for any ξ ∼ D

and f(·) are assumed to be Lipschitz smooth. A function f is said to be Lipschitz smooth with

constant L if its derivatives are Lipschitz continuous with constant L. For any x and y, we have

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, where L > 0. Lipschitz Smoothness implies that for any x and y,

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+ L

2
∥x− y∥2. (3.1)

Assumption 5 (Bounded Variance). For any ξ ∼ D we have ∥∇f(x; ξ)−∇f(x)∥ ≤ V .

Remark 3.1. Assumption 5 is also required in [1] to design the Byzantine filtering strategy. More-

over, for α = 0, Assumption 5 can be relaxed to E∥∇f(x; ξ)−∇f(x)∥ ≤ V , which is a standard

assumption in stochastic nonconvex optimization.

In general, for nonconvex optimization problems, it is not feasible to measure the suboptimality

of the function value. Therefore, the convergence of the problems is measured in terms of gradient

norm square, ∥∇f(x)∥2. We define an ϵ-stationary point for a nonconvex problem as follows:

Definition 3.1 (ϵ-Stationary Point, [60]). A point x is called ϵ-stationary if ∥∇f(x)∥2 ≤ ϵ. More-

over, a stochastic algorithm is said to achieve ϵ-stationarity in t epochs if E[∥∇f(xt)∥2] ≤ ϵ,

where the expectation is over the stochasticity of the algorithm until time instant t.

3.3 Byzantine SCSG Algorithm

In this section, we present our proposed algorithm and discuss the steps of Algorithm 3. As men-

tioned earlier, we consider the distributed version of SCSG which is a variant of the stochastic

variance reduced algorithm. Here, the WNs compute the batch gradients and share the computed

batch gradients with the CN. Note that the algorithm is similar to the original variance reduced

algorithm except the fact that the number of inner loop iterations is a geometric RV.

33

We assume that the algorithm runs for a total of T epochs. At the start of each epoch t ∈ [T],

the CN broadcasts the iterate x0,t to the WNs. The WNs then compute their batch gradients at

x0,t and transmit them to the CN. The honest WNs compute and forward their batch gradients,

1
B

∑B
i=1∇f(x0,t; ξ

(k)
t,i), where B indicates the batch size. However, a Byzantine may transmit

an arbitrary vector to the CN. The generalization with variable batch sizes at different nodes is

straightforward. The Byzantine model where the vector sent by WN k at epoch t to the CN is as

follows:

µ
(k)
t =

1
B

∑B
i=1∇f(x0,t; ξ

(k)
t,i) if k ∈ G

∗ if k /∈ G,
(3.2)

where ∗ indicates an arbitrary vector sent by the Byzantine.

Next, the CN performs a filtering step after receiving the batch gradients, µ(k)
t , from the WNs.

The filtering step consists of the CN computing its estimate of the honest set Gt at epoch t. Using

this estimated set Gt, the CN performs an aggregation of the batch gradients received from the

WNs which are present in this estimated set. The aggregation results in the formation of the

batch gradient µt. Furthermore, the CN runs the inner loop indexed by n = 1, 2, . . . , Nt of the

Byzantine SCSG algorithm, where Nt is chosen randomly using a geometric random variable with

parameter B
B+1

, Nt ∼ Geom
(

B
B+1

)
. The CN then performs the update step using the aggregated

batch gradient µt, and the stochastic gradients computed at xn−1,t and x0,t. The Byzantine filtering

step is described as follows.

3.3.1 Byzantine Filtering Step

The CN uses the batch gradients sent by the worker nodes, {µ(k)
t }k∈[K], to design the filtering rule.

Due to the presence of Byzantines in the network, some of the batch gradients may be faulty or

may consist of arbitrary values (see Eq. (3.2)). A key component of the filtering rule is the vector

median which is any vector which is close to at least K
2

other vectors. Specifically, a vector median

34

Algorithm 3: Byzantine SCSG with Distributed Batch Gradient Computations
Input: x̃0 ∈ Rd, step sizes (ηt)Tt=1, batch size B, Variance Bound V (Assumption 5),

Tµ = 2V
√

C
B

(Lemma A.14) where C = 2 log
(
2K
δ

)
with δ ∈ (0, 1) (Theorem 3.1).

1 for t = 1,2, . . . , T do
2 x0,t ← x̃t−1 → Push to WNs;
3 for k = 1,2,. . . , K do
4 Compute µ

(k)
t as in Eq. (3.2) → Push to CN

5 µmed
t ← µ

(k)
t where k ∈ [K] is any WN such that

|{k′ ∈ [K] : ∥µ(k′)
t − µ

(k)
t ∥ ≤ Tµ}| > K/2;

6 Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 2Tµ};
7 if |Gt| < (1− α)K then
8 µmed

t ← µ
(k)
t where k ∈ [K] is any WN s.t.

|{k′ ∈ [K] : ∥µ(k′)
t − µ

(k)
t ∥ ≤ 2V}| > K/2;

9 Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 4V};

10 µt =
1

|Gt|
∑

k∈Gt
µ
(k)
t ;

11 for n = 1, 2, . . . , Nt, Nt ∼ Geom(B
B+1

) do
12 vn−1,t = ∇f(xn−1,t; ξn−1,t)−∇f(x0,t; ξn−1,t) + µt;
13 xn,t = xn−1,t − ηtvn−1,t;

14 x̃t ← xNt,t;

Output: x̃a chosen uniformly randomly from (x̃t)
T
t=1.

µmed
t is defined as any vector µk

t , for k ∈ [K] such that |{k′ ∈ [K] : ∥µ(k′)
t − µ

(k)
t ∥ ≤ Tµ}| > K/2;

as given in Algorithm 3. The CN uses the vector median to filter out the WNs that it believes to be

Byzantine and updates the set Gt as Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 2Tµ}.

Note that the above rule is motivated by the fact that for the honest nodes k ∈ G, the batch

gradients will concentrate around the true gradient,∇f(·), with high probability. However, the

set Gt can be empty or can have |Gt| < (1 − α)K with non-zero probability. We would want

to avoid such scenarios. Therefore, by using the first rule in Algorithm 3, if we obtain |Gt| less

than (1 − α)K. Then, we increase the threshold from Tµ to 2V in the vector median definition to

accommodate more WNs in Gt. In particular, the new vector median definition is the following:

Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 4V}. This condition ensures that we always have |Gt| ≥

(1− α)K.

Note that the Byzantine filtering rule is similar to that in [1]. However, unlike the filtering

35

rule in [1], we do not maintain a running sum of any statistic to filter Byzantines. Instead, we

control the impact of Byzantines by the selection of appropriate batch size. Next, we provide the

theoretical guarantees for the proposed algorithm in expectation.

3.4 Convergence Guarantees in Mean

In this section, we present the convergence guarantees in mean as the following:

Theorem 3.1. Given that Assumptions 4 and 5 are satisfied. For the step size ηt = η = 1
3LB2/3 ,

B ≥ 16, and δ ∈ (0, 1) such that e
δB

2(1−2δ) ≤ 2K
δ
≤ e

B
2 , and δ ≤ 1

25KB
, then we have

E∥∇f(x̃a)∥2

≤ 12LE[f(x̃0)−f(x̃∗)]

TB1/3︸ ︷︷ ︸
T=O

(
1

ϵB1/3

)
+

32V2

(1−α)2KB︸ ︷︷ ︸
B=O(1

ϵK)

+
2176α2V2C

(1−α)2B︸ ︷︷ ︸
B=O

(
α2

ϵ

)
. (3.3)

PROOF: We relegate the proof to Appendix A.8

Note that when α = 0 and K ≤ 1/ϵ, our algorithm improves upon the rates achieved by SGD

based distributed algorithms [61, 114].

Let EGcomp, SN(ϵ) denote the expected number of total gradient computations required at the

CN to reach an ϵ-stationary point. Note that the same number of computations are required at

individual WNs. From Algorithm 3, we have

EGcomp, SN(ϵ) =
T∑
t=1

(B + E[Nt]) = 2TB, (3.4)

where Nt ∼ Geom
(

B
B+1

)
. Here, T is the total number of iterations required to reach an ϵ-

stationary point. Using the above, EGcomp, SN(ϵ) can be computed as:

Corollary 3.1. Under the assumptions as stated in Theorem 3.1, we have the following:

(i) For α ∈ (0, 1/2), EGcomp, SN(ϵ) ≤ Õ
(

1
ϵ5/3K2/3 +

α4/3

ϵ5/3

)
, where Õ(·) hides the logarithmic

36

factors.

(ii) For α = 0, EGcomp, SN(ϵ) ≤ O
(

1
ϵ5/3K2/3

)
.

PROOF: We present the proof in Appendix A.10

Note that when Algorithm 3 is run only at the CN, we achieve EGcomp, SN(ϵ) ≤ O
(

1
ϵ5/3

)
which is

the same as computed in [71].

Remark 3.2. The convergence rate in mean is a weaker result as it does not guarantee that the

algorithm achieves the convergence rate in all instances. A stronger result is to guarantee that the

algorithm is able to always achieve the convergence rate with high probability. We discuss this

stronger result in the next section.

3.5 Convergence Guarantees in Probability

In this section, we present stronger convergence guarantees. Specifically, we show that with proba-

bility 1−δ, our proposed algorithm converges to an ϵ-stationary point with a rate given in Eq. (3.5),

where δ ∈ (0, 1). We present the modified algorithm for convergence in probability results as fol-

lows.

Note that the check in step 7 in Algorithm 3, |Gt| < (1 − α)K is not needed as we know

with high probability |Gt| ≥ (1 − α)K holds. Therefore, we do not require the update step 8,

µmed
t ← µ

(k)
t where k ∈ [K] is any WN s.t. |{k′ ∈ [K] : ∥µ(k′)

t − µ
(k)
t ∥ ≤ 2V}| > K/2 and step

9, Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 4V}. The convergence rate in probability is presented in the

following theorem.

Theorem 3.2. Given that Assumptions 4 and 5 are satisfied as in the previous theorem, for the step

size ηt = η = 1
3LB2/3 , B ≥ 16, and δ ∈ (0, 1) then with probability at least 1 − δ, x = x1+...+xT

T
,

37

Algorithm 4: Byzantine SCSG with Distributed Batch Gradient Computations in Proba-
bility

Input: x̃0 ∈ Rd, step sizes (ηt)Tt=1, batch size B, Variance Bound V (Assumption 5),

Tµ = 2V
√

C
B

(Lemma A.14) where C = 2 log
(
2K
δ

)
with δ ∈ (0, 1) (Theorem 3.2).

1 for t = 1,2, . . . , T do
2 x0,t ← x̃t−1 → Push to WNs;
3 for k = 1,2,. . . , K do
4 Compute µ

(k)
t as in Eq. (3.2) → Push to CN

5 µmed
t ← µ

(k)
t where k ∈ [K] is any WN such that

|{k′ ∈ [K] : ∥µ(k′)
t − µ

(k)
t ∥ ≤ Tµ}| > K/2;

6 Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 2Tµ};
7 µt =

1
|Gt|
∑

k∈Gt
µ
(k)
t ;

8 for n = 1, 2, . . . , Nt, Nt ∼ Geom(B
B+1

) do
9 vn−1,t = ∇f(xn−1,t; ξn−1,t)−∇f(x0,t; ξn−1,t) + µt;

10 xn,t = xn−1,t − ηtvn−1,t;

11 x̃t ← xNt,t;

Output: x̃a chosen uniformly randomly from (x̃t)
T
t=1.

we have

Ẽ∥∇f(x̃a)∥2

≤ 12LẼ[f(x̃0)−f(x̃∗)]

TB1/3︸ ︷︷ ︸
T=O

(
1

ϵB1/3

)
+

16V2

(1−α)2KB︸ ︷︷ ︸
B=O(1

ϵK)

+
800α2V2C

(1−α)2B︸ ︷︷ ︸
B=O

(
α2

ϵ

)
, (3.5)

where Ẽ indicates the expectation with respect to only ξ1,t, . . . , ξn,t and Nt.

PROOF: We relegate the proof to Appendix A.11

Similar to the result in mean, the convergence rate in probability when α = 0 and K ≤ 1/ϵ,

our algorithm improves upon the rates achieved by SGD based distributed algorithms [61, 114].

Furthermore, using the definition in Eq. (3.4), EGcomp, SN(ϵ) can be computed as

Corollary 3.2. Under the assumptions as stated in Theorem 3.2, we have the following:

(i)For α ∈ (0, 1/2), EGcomp, SN(ϵ) ≤ Õ
(

1
ϵ5/3K2/3 +

α4/3

ϵ5/3

)
, where Õ(·) subsumes the log factors.

(ii) For α = 0, EGcomp, SN(ϵ) ≤ O
(

1
ϵ5/3K2/3

)
.

38

PROOF: We present the proof in Appendix A.13.

Moreover, if Algorithm 4 is run only at the CN, we achieve the similar result of EGcomp, SN(ϵ) ≤

O
(

1
ϵ5/3

)
.

3.6 Simulation Results

In this section, we present the simulation results which characterize the performance of Algo-

rithm 3, and gain insights into its behavior. We have K WNs and a CN in the network. The

numerical results are obtained for 150 epochs. We consider two real world datasets. The hand-

written digits dataset called MNIST and the color image dataset called CIFAR10 are considered

for performance evaluation. To setup the distributed network, we use 11 GeForce GTX 750 Ti

GPUs. One GPU is designated as the CN and the other 10 GPUs operate as WNs. We use Open

MPI library to communicate between the CN and the WNs in the network and PyTorch for imple-

mentation. We fix the learning rate to be 0.01. We fix the batchsizes as 64 for MNIST and 256

for CIFAR10 datasets. We utilize a two layer convolutional neural network for MNIST dataset and

ResNet20 for CIFAR10 dataset.

We split the data so that each WN has a subset of data samples that has less overlap with the

subset of data samples from other WNs. For example, for the MNIST dataset, WN 1 receives a

subset of samples from classes 0 and 1, WN 2 receives samples from classes 1 and 2, and so on.

For the CIFAR10 dataset, WN 1 receives a subset of samples from classes Dog and Cat, WN 2

receives samples from classes Dog and Car, and so on. This split ensures that the data is non-i.i.d.

Note that all the plots generated in this paper consider the non-i.i.d. data.

Determination of Parameters V and M : We use a subset of data to estimate the parameters V

and M as follows. We train a NN using the subset of data to compute the stochastic gradient vector

and the full batch gradient by accumulating stochastic gradients over multiple epochs through

backpropagation. We compute the norm of the difference between the stochastic gradient and the

full batch gradient and observe the values of this norm for multiple epochs. We set the value of V

39

more than the largest value of the norm of the difference. Similarly, we set the value of M more

than the largest value of the norm of the stochastic gradient vector.

Byzantine Attack Model

We consider that a Byzantine WN sends a random valued vector to the CN instead of the full

gradient as an honest WN does. Note that for the simulation setup we consider that the random

values are generated from a Gaussian distribution with mean 5 and variance 1.

Type of Byzantines

We consider two types of Byzantines. In the static case, the behavioral identities of the Byzantines

do not change over time. In the dynamic case, the behavioral identities of the Byzantines vary over

time.

3.6.1 Benchmarking Schemes

In the following, we discuss the benchmarking schemes used to compare the performance of our

proposed algorithm.

Oracle SCSG: In this scheme, all the WNs are assumed to be honest in the network.

SCSG with Median: In this scheme, the median is computed using the gradient vectors received

from the WNs at the CN. For this scheme, the aggregation rule is given by µt = median{µk
t }Kk=1.

SCSG with Trimmed Mean: In this scheme, the β-trimmed mean is given by µt =
1

(1−2β)K

∑
k∈Ut

µt
k

where Ut is a subset of {µk
t }Kk=1 obtained by removing the largest and smallest β-fraction of its el-

ements.

SCSG with Phocas [105]: In this scheme, the aggregation is computed as the average of the

first (1 − β)K nearest gradient vectors to the β-trimmed mean given by µt =
1

(1−β)K

∑
k∈Wt

µt
k

whereWt is a subset of {µk
t }Kk=1 nearest to the β-trimmed mean.

40

3.6.2 Performance and Comparison Results

In the following, we summarize the results of our experiments using MNIST and CIFAR10 datasets.

MNIST Dataset

In Fig. 3.2(a), the training accuracy of the proposed algorithm for different values of epochs is

compared with the performance of the other filtering schemes as mentioned above. For this result,

we assume two Byzantines in the distributed setup. Note that initially the median based scheme

dominates. However, as the training progresses our proposed algorithm performs better than Pho-

cas, median, and trimmed mean based filtering schemes. Although there are two Byzantines, the

proposed scheme attains a training accuracy of 93.8% after 150 epochs.

Fig. 3.2(c) benchmarks the test accuracy of the proposed algorithm with other filtering schemes

as a function of number of epochs. We observe trends similar to those of the training accuracy. The

test accuracy of the proposed algorithm is better than that of Phocas, median, and trimmed mean

based filtering schemes. The proposed algorithm achieves a test accuracy of 92.1% in 150 epochs

in the presence of two Byzantines.

Effect of Byzantines: We fix the total number of WNs in the system and vary the number of

Byzantines under the static and dynamic cases as follows. We vary the number of Byzantines as

2, 4, and 6 to show the effect of the number of Byzantines on the training and test accuracies of

our algorithm. Fig. 3.3(a) compares the training accuracy of the proposed algorithm as a func-

tion of the number of epochs for different number of Byzantines. In the static case, we observe

that as the number of Byzantines increases the training accuracy decreases. In Fig. 3.3(c), the

test accuracy of the proposed algorithm for different number of Byzantines is compared. The test

accuracy decreases as the number of Byzantines increases as expected. We observe similar trends

in Fig. 3.4(a) for the dynamic case as that for the static case for the training accuracy albeit with a

further reduction in accuracy values compared to the static case as the identities of the Byzantines

vary with time. Furthermore, in Fig. 3.4(c), the test accuracy for different number of Byzantines

in the dynamic case is compared. The test accuracy decreases as the number of Byzantines in-

41

creases as expected. Hence, we observe that the system performance decreases as the number of

Byzantines increases.

CIFAR Dataset

In Fig. 3.2(b), the training accuracy of the proposed algorithm for different values of epochs is

compared with the performance of other filtering schemes as mentioned above for the CIFAR

dataset. We assume the number of Byzantines in the distributed setup are two. We observe that

our proposed algorithm performs better than Phocas, median, and trimmed mean based filtering

schemes. Although there are two Byzantines, the proposed scheme attains a training accuracy of

94% after 150 epochs.

Fig. 3.2(d) benchmarks the test accuracy of the proposed algorithm with other filtering schemes

as a function of the number of epochs. We observe trends similar to those of the training accuracy.

The test accuracy of the proposed algorithm is better than Phocas, median, and trimmed mean

based filtering schemes. The proposed algorithm achieves a test accuracy of 84% in 150 epochs in

the presence of Byzantines.

42

(a) Training accuracy on MNIST. (b) Training accuracy on CIFAR.

(c) Test accuracy on MNIST. (d) Test accuracy on CIFAR.

Fig. 3.2: Benchmarking of Byzantine SCSG with other filtering schemes and oracle SCSG.

Effect of Byzantines: We fix the total number of WNs in the system and vary the number

of Byzantines under the static and dynamic cases as follows. Fig. 3.3(b) compares the training

accuracy of the proposed algorithm as a function of the number of epochs for different number of

Byzantines in the static case. We observe that the training accuracy decreases as the number of

Byzantines increases. In Fig. 3.3(d), we observe that the test accuracy decreases as the number

of Byzantines increases for different number of Byzantines as expected for the static case. We

observe similar trends in Fig. 3.4(b) for the dynamic case as that in the static case for the training

accuracy with reduced accuracy values as the behavioral identities of the Byzantines vary with

time. Furthermore, in Fig. 3.4(d), the test accuracy decreases as the number of Byzantines increases

in the dynamic case. Hence, we observe that the system performance decreases as the number of

Byzantines increases.

43

(a) Training accuracy on MNIST. (b) Training accuracy on CIFAR.

(c) Test accuracy on MNIST. (d) Test accuracy on CIFAR.

Fig. 3.3: Comparison of Byzantine SCSG by varying number of Byzantines with oracle SCSG in

the static scenario.

44

(a) Training accuracy on MNIST. (b) Training accuracy on CIFAR.

(c) Test accuracy on MNIST. (d) Test accuracy on CIFAR.

Fig. 3.4: Comparison of Byzantine SCSG by varying number of Byzantines with oracle SCSG in

the dynamic scenario.

3.7 Summary

In this chapter, we proposed the Byzantine resilient SCSG algorithm to solve the distributed

stochastic nonconvex optimization problem in the presence of Byzantines. The novel filtering rule

designed in this work results in the convergence rate being independent of the problem dimension.

The effect of Byzantines is captured in the convergence rate results by the presence of an addi-

tional term dependent on α, the fraction of Byzantines. We showed that our proposed algorithm

outperforms the known convergence rates in the literature in the presence of Byzantines. Further,

we provided simulation results using MNIST and CIFAR10 datasets which affirm our theoretical

guarantees.

45

CHAPTER 4

ROBUST DISTRIBUTED CLUSTERING WITH

REDUNDANT DATA ASSIGNMENT

Unlike the previous chapter where the goal was to obtain robust learning algorithms under the su-

pervised learning framework, in this chapter, we propose robust learning algorithms under the un-

supervised learning framework. Specifically, we propose robust distributed clustering algorithms

that can handle large-scale data across multiple nodes in the presence of faulty nodes. The faulty

nodes can either be straggling nodes that fail to respond within a stipulated time or Byzantines that

send arbitrary responses. We first introduce the assumptions and the definitions required to design

the robust algorithm. Next, the crucial redundant data assignment schemes that enable us to obtain

clustering solutions based on the entire dataset even in the presence of stragglers or Byzantines. We

then describe the steps involved in designing the algorithm followed by our analyses showing that

our proposed algorithms obtain constant factor approximate solution in the presence of stragglers

or Byzantines. We also provide various constructions of the data assignment scheme that provide

resilience against a large fraction of the faulty nodes. Finally, we present the simulation results and

conclude the chapter.

46

4.1 Introduction

Clustering is one of the basic unsupervised learning tasks used to infer informative patterns in

data. The goal of clustering algorithms is to find a subset of data points, called cluster centers,

that provide a good representation of the given dataset. The cluster centers provide a partition of

the given set of data points that maximize similarity within a group and minimize similarity across

the groups. The quality of the clusters is measured using a cost function of which, the k-means

and k-median are the most commonly used. The k-median (k-means) clustering problem aims to

find a set of k centers that minimize the sum of the distances (sum of the squared distances) of the

individual points to their closest cluster center. The cost of clustering using the set of k centers

using k-median or k-means is within a constant factor times the cost obtained using the optimal

solution [49]. We refer to this as the constant factor approximate solution.

Most widely used centralized clustering algorithms assume that the entire data fits in a single

node. However, the centralized clustering algorithms are no longer desirable with the increasing

size of the datasets. Hence, there has been a significant interest in designing efficient distributed

algorithms for the clustering problem. The goal is to design algorithms that can work with multiple

worker nodes having access only to their respective local datasets. Under the data-distributed

setup, we assume one central node (CN) and m worker nodes (WNs) such that the dataset P

consisting of n data points is partitioned arbitrarily and distributed across the WNs. We denote

these partitions by {P1, . . . , Pm} ⊆ P and assign each of these subsets to a different WN. The

individual WNs perform computation on the locally available data points and transmit the obtained

results to the CN. The CN then aggregates these results to obtain the final clustering result. Recent

works have provided clustering algorithms in such data-distributed setup with provably constant

factor approximate solutions [4, 6, 7, 21, 50, 77].

Although the distributed model of computation improves computational efficiency, it makes

the system vulnerable to faulty WNs. The faulty WNs may send information with delay, may

completely crash, or may send arbitrary (possibly adversarial) information, thereby drastically

affecting the quality of the computed solutions. In this chapter, we consider two kinds of faulty

47

WNs which (i) may send information with delay (or not send anything at all) (stragglers), or (ii)

may send arbitrary information (Byzantines).

Clustering with Stragglers: The stragglers correspond to the WNs that take significantly more

time than expected to respond. Several issues could lead to this behavior in the WNs, like power

outages, congested communication networks, or software updates running on the WNs. One naïve

approach to handling straggling WNs in certain distributed tasks is to ignore them or rely on

asynchronous methods. There are established tradeoffs between the loss of information due to

ignoring the stragglers and the efficiency of specific tasks such as computing distributed gradients

[17, 35, 65, 70, 92, 115]. However, considering the presence of stragglers in distributed clustering

has received much less attention.

Clustering with Byzantines: Another challenge in the distributed setup is the presence of ad-

versarial WNs, also known as Byzantines [69]. An adversarial attack usually has the ability to

influence the centers in one (or more) of the clusters. Instead of sending the correct result of the

computation to the CN, a Byzantine may send arbitrary values. A naïve approach is to rely on

simple distributed clustering methods even when Byzantines are present [6, 77]. However, this

may lead to extremely poor-quality solutions computed by the distributed clustering algorithm

due to the arbitrary information sent by the Byzantines. Another approach is to provide filters to

identify and remove the Byzantines in the setup as proposed in the Byzantine machine learning

literature [9, 24, 86, 91, 113] (also considered in Chapters 2 and 3).

An alternate solution, that we adopt, is to introduce redundancy in the data distributed to the

WNs. This ensures that the information obtained from a subset of WNs is sufficient to com-

pute the desired function on the entire dataset. Multiple coding-based redundant data distribu-

tion schemes have been proposed to mitigate the effect of stragglers [46, 70, 85, 92, 99, 100] and

Byzantines [28–30, 45] for computing linear functions such as gradient aggregation in first-order

optimization methods. However, these techniques do not translate well for clustering tasks where,

unlike the prior works, the responses from different WNs may not be related.

In this chapter, we propose a data distribution scheme for distributed clustering problems in

48

the presence of stragglers and Byzantines. The stragglers send the correct information albeit with

a delay. Hence, the CN knows the identities of the stragglers. However, in the case of clustering

with Byzantines, the formulation deals with a more general scenario where a subset of the WNs are

adversarial and can send arbitrary information. Moreover, the identity of these adversarial WNs

(Byzantines) is not known to the CN which constitutes the main bottleneck in obtaining Byzantine

resilient clustering algorithms. We show that our proposed data distribution scheme allows us to

compute provably good-quality cluster centers even in the presence of a relatively large number of

stragglers and/or Byzantines1.

In [14, 43], the assumption was that the WNs had the ability to compute exact solutions to the

clustering problem on the local datasets. In this chapter, we consider the case when the WNs can

no longer compute the exact solution to the clustering problem. This reduces the computational

load at each machine with an increased approximation factor (Sections 4.4 and 4.5).

Moreover, in [14], we assumed that the CN computes the local summaries to evaluate the qual-

ity of the data sent by each local machine. Hence, the CN required the access to the entire dataset

P and had to estimate the cost of computing a cluster on the local dataset using the summaries

sent by each machine. In resource-constrained settings, such assumptions can increase the compu-

tational load at the FC. In this chapter, we assume that the CN does not have access to the entire

dataset, and hence, can not estimate the cost of computing a cluster on the local dataset Pi using the

summaries sent by each machine. Hence, the analyses in [14] can no longer be utilized. The first

challenge in this chapter is the computation of coresets by the CN as surrogates of the respective

local datasets Pi. These are efficiently computed in a streaming fashion using the sensitivity sam-

pling technique [12]. We utilize these coresets to approximate the cost of clustering using the local

datasets Pi at the CN. Another challenge is the filtration step. In [14], the filtering step depended

on the cost of clustering computed on the local datasets. However, in this chapter, the filtering

is performed utilizing the cost of clustering using the coresets computed by the CN and the local

summaries sent by the WNs. Moreover, in [14], the weights for each of the points in the summaries

1Unlike the assumption in Chapter 3 where the fraction of Byzantines in the system was assumed to be less than
1/2.

49

sent by the WNs were obtained on the respective local datasets Pi. However, crucially in this work,

the weights for each of the points in the local summaries sent by the WNs are estimated using the

coresets computed by the CN. Therefore, the third challenge is the estimation of these weights. We

show that these estimated weights are a constant factor away from their intended value with high

probability (Sections 4.5.2 and 4.5.3). Thus, as described next, our work in this chapter is much

more general and extends our prior work [14, 43] quite significantly.

4.1.1 Our Results

In this chapter, we provide robust distributed clustering approaches that generate solutions with a

cost at most c · OPT, for a small approximation factor c ≥ 1, where, OPT denotes the cost of the

best clustering solution. Our algorithms are resilient to WNs that are either (i) stragglers, or (ii)

Byzantines.

We propose a redundant data distribution scheme that allocates a data point to multiple WNs to

mitigate the loss of information (or misinformation) that arises due to the presence of some faulty

WNs. The following are our major contributions.

• We establish sufficient conditions on the data assignment scheme that enables us to mitigate

the effect of stragglers and Byzantines to compute good-quality clusters (Property 1 and

Property 2).

• We design robust k-median and k-means clustering approaches that generate a constant fac-

tor approximate solution in the presence of stragglers. Our approach also extends to a more

general class of squared ℓ2-fitting problems known as subspace clustering. Theorem 4.2

shows that we can achieve an approximation factor of roughly 3 for k-median clustering.

This approach extends naturally to k-means clustering (Theorem 4.4) and gives an approx-

imation factor of almost 10 for k-means. The results for k-means can be improved and

generalized to subspace clustering using a slight variant of the above approach which is

formalized in Theorem 4.5.

50

• Byzantines are much harder to handle since their identity is unknown. Using a stronger data

assignment scheme compared to its straggler counterpart (Remark 4.1), we obtain k-median

(Theorem 4.6) and k-means (Theorem 4.8) approaches that are guaranteed to achieve ap-

proximation factors of almost 3 and 10 respectively. We also improve upon the suggested

algorithms to make them computationally and storage efficient in Theorems 4.7 and Theo-

rem 4.9.

• Finally, we provide various constructions of the assignment scheme that satisfy the estab-

lished conditions (Properties 1 and 2) and provide resilience against a large fraction of faulty

WNs while incurring little redundancy. The various constructions and the tradeoffs they

present are summarized in Table 4.1.

• Simulation results illustrate the excellent performance of our algorithm.

4.2 System Model

Given a dataset with n points P = {p1,p2, . . . ,pn} ⊆ Rd, distributed among m WNs, the goal in

clustering is to find a set of k cluster centers C = {c1, c2, . . . , ck} ⊆ Rd that closely represent the

entire dataset. The quality of these centers is usually measured by a cost function cost(P,C).

For k-median, the cost function is defined as cost(P,C) =
∑

x∈P d(x, C), where d(x, C) :=

minc∈C d(x, c). The k-means cost function for clustering is given by cost(P,C) =
∑

x∈P d2(x, C).

If the dataset P is weighted with an associated non-negative weight function g : P → R+, the k-

median cost for the weighted dataset (P, g) is then defined as cost(P, g, C) =
∑

x∈P g(x)d(x, C).

The k-means cost for (P, g, C) is defined analogously. Our goal is, therefore, to obtain a set of

k centers C that minimizes cost(P,C). For any data point x ∈ P , and any set of centers C, we

denote its cluster center by C(x) := argminc∈C d(x, c). Also, for any point set P , we denote the

cluster of P associated with a center c ∈ C by cluster(c, P) := {x ∈ P |C(x) = c}.

We consider the data-distributed clustering framework with m WNs W1, . . . ,Wm. Let Pi ⊆

P be the set of points assigned to the WN Wi. To compute the cluster centers in such data-

51

distributed setups, the WNs transmit a summary of their local data to the CN. For the simplicity of

presentation, we assumed each WN computes the optimal clustering solution on its assigned data

points. Similar to the result of [51], we show that the set of k-centers computed by these WNs

summarizes their local dataset. Our results also extend trivially when WNs provide approximate

clustering solutions as a summary.

In the presence of stragglers, the CN combines the local summaries obtained from non-straggler

WNs to obtain the summary of the global dataset which is a constant factor approximate solution.

To mitigate the effect of Byzantines, the CN ranks the received local summaries to evaluate the

quality of the data summary sent by each local WN. An approximate solution to the clustering

problem can then be computed at the CN by aggregating the subset of best summaries.

Problem Statement: In this paper, the main goal is to design data-distributed robust clustering

approaches. Specifically, given a dataset P of n points in Rd, and distributed setup with m WNs

where at most t WNs are faulty (either stragglers or Byzantines), the goal is to design a clustering

approach that generates a solution with the cost at most c ·OPT, with a small approximation factor

c ≥ 1 for the k-median and the k-means clustering problems.

Next, we provide some definitions and results that are helpful for the presentation in the rest of

this chapter.

4.2.1 Preliminaries

Definition 4.1 ((r, k)-subspace clustering). Given a dataset P ⊂ Rd find a set of k-subspaces (lin-

ear or affine)L = {Li}ki=1, each of dimension r, that minimizes cost(P,L) :=
∑n

i=1 minL∈L d
2(pi, L).

Note that for r = 0, this is exactly the k-means problem described above. Another special case,

when k = 1, is known as principal component analysis (PCA).

For any α, β ≥ 1, we define an α-approximate solution to a clustering problem with cost

function defined by cost(·, ·) as follows:

Definition 4.2 ((α, β)-approximate solution). For any α, β > 1, the set of cluster centers C,

|C| ≤ βk, is an (α, β)-approximate solution to the k-center clustering problem if the cost of

52

clustering P with C, cost(P,C), is at most α times the cost of clustering with optimal set k-centers,

cost(P,C) ≤ α · OPT.

An (α, 1)-approximate solution is just called an α-approximate solution.

The quality of the data summaries is captured by the notion of a coreset. Informally, a coreset

is a small weighted set of representative points of the dataset that closely approximates the cost of

clustering on any set of k centers.

Definition 4.3 (ϵ-coreset). Let ϵ ≥ 0. For a dataset P , an ϵ-coreset with respect to a cost function

cost(·, ·) is a weighted dataset S with an associated weight function g : S → R+ such that, for any

set of k centers C, we have

(1− ϵ)cost(P,C) ≤ cost(S, g, C) ≤ (1 + ϵ)cost(P,C)

Using any off-the-shelf α-approximate solution to the clustering problem on an ϵ-coreset of the

dataset P yields a good approximate solution on the entire dataset. This fact is formalized by the

following Theorem.

Theorem 4.1 ([38]). Let (S, g) be an ϵ-coreset for a dataset P with respect to the cost function

cost(·, ·). Any α-approximate solution to the clustering problem on input S, is an α(1 + 3ϵ)-

approximate solution to the clustering problem on P .

Next, we present our approach to assign data to different WNs with redundancy.

4.3 Data Assignment

The first step to obtaining robust distributed clustering in the presence of faulty WNs is the initial

data assignment to the WNs. Specifically, every data point in the dataset P is mapped to multiple

WNs by carefully employing redundancy in the assignment process. Hence, each data point affects

the local computation performed on multiple WNs and the final clusters at the CN are obtained by

53

taking into account the contributions of most of the data points in P even though some of the WNs

are faulty. We introduce the data assignment scheme along with the resilience properties below.

This property enables the aggregation of local computations from the non-straggling or honest

WNs at the CN and preserves the relevant information present in the dataset P for the clustering

problems. The assignment scheme is utilized to obtain good-quality solutions to k-median and

k-means clustering.

4.3.1 Straggler-resilient Data Assignment

Let A ∈ {0, 1}m×n be the binary assignment matrix where the i-th row, ai, indicates the set Pi ⊆ P

of points assigned to WN Wi. Let R ⊂ [m] denote the set of non-straggler WNs. We assume that

|R| ≥ m− t, where t < m denotes an upper bound on the number of stragglers in the system. For

any such set of non-straggler WNsR, we require the assignment matrix A to satisfy the following

property.

Property 1 ((t, δ)-Straggler resilience property). Let δ > 0 be a given constant. The assignment

matrix A ∈ {0, 1}m×n has (t, δ)-straggler resilience if for every subset of m− t rows R ⊆ [m], ∃

a recovery vector, b = (b1, . . . , b|R|)
T ∈ R|R|, bi > 0,∀i ∈ |R|, such that

1T
n≤
∑
i∈R

biai ≤ (1 + δ)1T
n , (4.1)

where ≤ indicates coordinate-wise inequality.

We remark that the straggler resilience property is significantly different from that in [92] where

the property utilizes the fact that the gradients are related to each other across different WNs. For

the straggler resilience property, the recovery vector b is restricted to be only non-negative.

Utilizing the combinatorial characterization for the assignment scheme given by Property 1, the

information received from the non-straggler WNs can be combined to generate close to optimal

clustering solutions using the following result.

54

Lemma 4.1. Let P ⊂ Rd be a dataset distributed across m WNs using a (t, δ)-straggler resilient

assignment matrix A that satisfies Property 1. Let R be the set of m − t non-straggler WNs. For

any δ > 0, let b ∈ R|R| be the recovery vector corresponding to R. Then, for any set of k centers

C ⊂ Rd, any weight function g : P → R,

cost(P, g, C) ≤
∑
i∈R

bicost(Pi, g, C) ≤ (1 + δ)cost(P, g, C).

PROOF: See Appendix A.14.

4.3.2 Byzantine-resilient Data Assignment

Similar to the straggler resilient data assignment, we propose a modified data assignment to the

WNs to mitigate the effect of Byzantines. Let A ∈ {0, 1}m×n denote the binary assignment matrix

whose i-th row, ai, indicates the set Pi ⊆ P of points assigned to WN Wi. LetR ⊂ [m] denote the

set of honest (non-Byzantine) WNs. We assume that |R| ≥ m− t, where t < m denotes an upper

bound on the number of Byzantines in the system. For any such set of honest WNs R, we require

the assignment matrix A to satisfy the following property.

Property 2 ((t, δ)-Byzantine resilience property). Let δ > 0 be a given constant. The assignment

matrix A ∈ {0, 1}m×n has (t, δ)-Byzantine resilience if ∃ a reconstruction coefficient ρ > 0, such

that for any subset of m− t rowsR ⊆ [m],

1T
n≤ρ

∑
i∈R

ai ≤ (1 + δ)1T
n , (4.2)

where ≤ indicates coordinate-wise inequality.

Remark 4.1. The Byzantine-resilience property is much stronger than the straggler resilience

property introduced in Property 1. For straggler resilience, it is sufficient to have some non-

negative linear combination of the rows (corresponding to the non-straggler WNs) that is close to

the all-ones vector. However, for Byzantine resilience, we need all these linear combinations to be

55

uniform and non-negative. Further, we also need this reconstruction factor to be the same across

all subsets of Byzantines.

The information received from the honest WNs is combined using the following lemma to

generate a close-to-optimal clustering solution.

Lemma 4.2. Let T ⊆ [m] be any set of m− t indices. Let ρ be the reconstruction coefficient of the

(t, δ)-Byzantine resilient assignment matrix. Then, for any set of centers C, we have cost(P,C) ≤∑
i∈T ρ cost(Pi, C) ≤ (1 + δ)cost(P,C).

PROOF: The proof is analogous to that of Lemma 4.1 and follows based on the combinatorial

characterization for the assignment scheme enforced by Property 2.

4.4 Straggler Resilient Clustering

In this section, we present straggler resilient clustering techniques using the redundant data dis-

tribution scheme described above. In Section 4.4.1, we present the k-median clustering algorithm

that is extended in a straightforward manner to the k-means setting in Section 4.4.2. This algo-

rithm is improved in Section 4.4.3, where we present a general algorithm for the (r, k)-subspace

clustering.

4.4.1 Straggler-Resilient Distributed k-median Clustering

The dataset P is distributed across m WNs using a (t, δ)-straggler resilient assignment matrix A

that satisfies Property 1. Each non-straggling WN sends a set of weighted k-median centers of their

local datasets which when aggregated at the CN gives a summary for the entire dataset. Hence, the

weighted k-median clustering on this summary at the CN provides a good-quality solution for the

entire dataset P . In Algorithm 5, we provide the above-discussed steps in detail.

56

Algorithm 5: Straggler-resilient distributed k-median clustering
Input: A collection of n data points P ⊂ Rd

1 Allocate P to m WNs according to a (t, δ)-straggler resilient matrix A.

2 Let Pi ⊂ P be the set of points assigned to WN Wi.

3 Each WN Wi computes a k-median solution, Yi, on set Pi.

4 Define gi : Yi → R as gi(y) = |cluster(y, Pi)|, for every y ∈ Yi.

5 CN collects {(Yi, gi)}i∈R from the non-straggling WNs, for someR ⊆ [m], |R| ≥ m− t.

6 Let Y =
⋃

i∈R Yi. Using the recovery vector b, define g : Y → R such that

g(y) = bigi(y),∀y ∈ Yi and i ∈ R2

Output: Ĉ, the k-median solution on (Y, g).

Before we state the theorem that quantifies the quality of the clustering solution Ĉ provided by

Algorithm 5 on the entire dataset P , we present the following lemma where we show that the cost

incurred by the weighted dataset Y is close to the cost incurred by P for any set of k centers C,

which is necessary to prove the theorem.

Lemma 4.3. For k-median clustering, for any set of k-centers C ⊂ Rd, we have

cost(P,C)−
∑
i∈R

bicost(Pi, Yi) ≤ cost(Y, g, C) ≤ 2(1 + δ)cost(P,C).

PROOF: Presented in Appendix A.15.

Theorem 4.2. Let C∗ be the optimal set of k-median centers for dataset P . Then, Algorithm 5 on

dataset P returns a set of centers Ĉ such that cost(P, Ĉ) ≤ 3(1 + δ)cost(P,C∗).

PROOF: Utilizing the lower bound from Lemma 4.3 with C = Ĉ, we have

cost(P, Ĉ) ≤ cost(Y, g, Ĉ) +
∑
i∈R

bicost(Pi, Yi)
(a)

≤ cost(Y, g, C∗) +
∑
i∈R

bicost(Pi, C
∗)

(b)

≤ 2(1 + δ)cost(P,C∗) + (1 + δ)cost(P,C∗), (4.3)

2In general, if y ∈ Yi1 ∩ Yir ∩ . . . ∩ Yir , then g(y) =
∑r

j=1 bijgij (y).

57

where (a) follows from the fact that Ĉ and Yi are the optimal set of centers for the weighted dataset

(Y, g) and the partial dataset Pi, respectively. For (b), we utilize the upper bound in Lemma 4.3

and Lemma 4.1 with C = C∗.

Note that the summary computed at the CN uses the weighted set (Y, g) which is constructed

only from the information sent by the non-straggling WNs. Also, the data assignment scheme

initially used to distribute the data satisfies the Property 1. Hence, from Theorem 4.2, we observe

that the CN is able to construct a good summary of the entire dataset P despite the presence of the

stragglers. Moreover, this summary is sufficient to generate a good quality k-median clustering

solution corresponding to P , i.e., the summary generates a constant factor approximate solution.

Remark 4.2. Suppose the honest WNs and the CN are unable to compute the exact k-median

clustering solution as required in Step 3 and the last step of Algorithm 5, but instead produce an

α-approximate solution (such as in [18]), then this slight variant of Algorithm 5 returns a set of

k-centers Ĉ such that cost(P, Ĉ) ≤ α(1+δ)(2+α)cost(P,C∗), even in the presence of t stragglers

(Theorem 4.3).

Theorem 4.3. Let C∗ be the optimal set of k-median centers for dataset P . Then, Algorithm 5 on

dataset P returns a set of centers Ĉ such that cost(P, Ĉ) ≤ α(1 + δ)(2 + α)cost(P,C∗).

PROOF: See Appendix A.16.

4.4.2 Straggler-Resilient Distributed k-means Clustering

Observe that the above-described algorithms for distributed k-median clustering in the presence

of stragglers can be generalized to other classical cost functions to yield algorithms such as for

the k-means clustering algorithm. The key observation that we use to extend the above-described

algorithms is that the distance function d2(·, ·) satisfies a scaled version of the triangle inequality,

i.e., for any a,b, c ∈ Rd,

d2(a,b) ≤ 2(d2(a, c) + d2(b, c)). (4.4)

58

We use a strategy similar to Algorithm 5 to compute the k-means clustering solution in the presence

of stragglers. We observe that if each local WN can compute an exact (or approximate) k-means

solution on their local datasets, then it can be suitably combined using the recovery vector to obtain

a constant factor approximate k-means solution to the global dataset. Algorithm 6, does exactly

this, where in Step 3 of Algorithm 5, each WN Wi sends a k-means solution Yi corresponding to

Pi weighted accordingly.
Algorithm 6: Straggler-resilient distributed k-means clustering

Input: A collection of n data points P ⊂ Rd

1 Allocate P to m WNs according to a (t, δ)-straggler resilient matrix A.

2 Assign the set of points Pi ⊂ P to WN Wi.

3 Each WN Wi computes α-approximate k-means solution Yi on set Pi. Let gi : Yi → R as

gi(y) = |cluster(y, Pi)|, for every y ∈ Yi.

4 CN collects {(Yi, gi)}i∈R from the non-straggling WNs.

5 Let Y =
⋃

i∈R Yi. Using the recovery vector b, define g : Y → R such that

g(y) = bigi(y),∀y ∈ Yi and i ∈ R.

Output: Ĉ, the α-approximate k-means solution on (Y, g).
The performance guarantees of Algorithm 6 can be stated as follows:

Theorem 4.4. Let C∗ be the optimal set of k-means centers for dataset P . Then, Algorithm 6 on

dataset P returns a set of centers Ĉ such that cost(P, Ĉ) ≤ 2α(3 + 2α)(1 + δ)cost(P,C∗).

PROOF: The proof is very similar to that of Theorem 4.2, and can be found in Appendix A.17.

4.4.3 Straggler-Resilient Distributed (r,k)-Subspace Clustering

Note that the approximation factor of over 10 obtained using Algorithm 6 is quite prohibitive. We

observe that Algorithm 6 succeeds because the weighted centers (Yi, gi) sent by the local WNs Wi

are in fact a coreset of the local dataset Pi in a weak sense 3. We leverage this observation to present

3the cost of clustering using the weighted set (Y, g) is close to the cost of clustering using the entire dataset P
albeit with an offset (Lemma A.21)

59

a variant of Algorithm 6 that is computationally more efficient and also guarantees an improved

approximation factor. In Algorithm 7, each WN sends a δ-coreset of its local dataset instead of

an exact k-means solution. We now show that this small change can yield a better approximation

factor and more general results.

In this section, we present a straggler resilient algorithm for a general class of squared ℓ2 fitting

problems, known as (r, k) subspace clustering problems where the goal is to find k subspaces each

of dimension at most r that best fit the data. Note that the subspace clustering problem covers both

the k-means and the principal component analysis (PCA) problems as special cases.

Algorithm 7: Straggler-resilient distributed (r, k)-subspace clustering
Input: A collection of n data points P ⊂ Rd.

1 Allocate P to m WNs according to a (t, δ)-straggler resilient matrix A.

2 Assign the set of points Pi ⊂ P to WN Wi

3 Each WN Wi computes δ-coreset (Yi, gi) of Pi.

4 CN Collects {(Yi, gi)}i∈R from the non-straggling WNs

5 Let Y =
⋃

i∈R Yi. Using the recovery vector b, define g : Y → R such that

g(y) = bigi(y),∀y ∈ Yi and i ∈ R

Output: Ĉ, the set of r-subspaces that is an α-approximate solution to the

(r, k)-subspace clustering on input (Y, g).
In the following lemma, we show that the cost incurred by the aggregated weighted dataset

(Y, g) is close to the cost incurred by P for any set of k centers C. In other words, (Y, g) is a

coreset of P .

Lemma 4.4. Let δ ∈ (0, 1). For any set of k-centers C ⊂ Rd, we have

(1− δ)cost(P,C) ≤ cost(Y, g, C) ≤ (1 + 3δ)cost(P,C).

PROOF: The proof is relegated to Appendix A.18.

The following result quantifies the quality of the clustering solution Ĉ provided by Algorithm

7 on the entire dataset P .

60

Theorem 4.5. Let δ ∈ (0, 1). Let C∗ be the optimal solution for (r, k)-subspace clustering on

dataset P . Then, Algorithm 7 on dataset P returns a set of k subspaces Ĉ such that cost(P, Ĉ) ≤

α(1 + 4δ)cost(P,C∗).

PROOF: From the bounds in Lemma 4.4, we have

cost(P, Ĉ)
(a)

≤ cost(Y, g, Ĉ)

1− δ

(b)

≤ α

1− δ
cost(Y, g, C∗)

(c)

≤ α(1 + 3δ)

1− δ
cost(P,C∗) ≤ α(1 + 4δ)OPT, (4.5)

where (a) and (c) follow from Lemma 4.4, and (b) follows from the fact that CN computes an

α-approximate k-means clustering on (Y, g).

Coreset constructions for various clustering algorithms with squared ℓ2 cost were considered

in [36,93]. There is a long line of work that has focused on constructing coresets for subspace clus-

tering and for the k-means problems [36–38,94]. Prior to the work of [39], the size of the coresets

was dependent on the dimension of the problem d. However, in [38], first coresets of dimension in-

dependent sizes were provided. They constructed ϵ-coresets of size O(k/ϵ) and Õ(k3/ϵ4) for sub-

space and k-means clustering, respectively. Later, [40,90] improved the coreset sizes to poly(k/ϵ)

for the subspace clustering problem and was further reduced to Õ(k/ϵ4) for k-means and k-median

problems by [26]. The current state-of-the-art coreset sizes are Õ(kϵ−2 ·min{ϵ−z, k}) where z = 2

for k-means and z = 1 for k-median problems as given in [25].

Therefore, Algorithm 7 obtains an approximation factor of (1 + 4δ) when each WN commu-

nicates Õ(k/ϵ4) points to the CN. Whereas, in Algorithm 6 each WN communicates k points to

obtain an approximation factor of 10(1 + δ). The observation indicates that with an increase in

communication, we can obtain better accuracy.

61

4.5 Byzantine Resilient Clustering

4.5.1 Byzantine Resilient Distributed k-Median Clustering

In this section, we design distributed clustering methods that are robust to the presence of Byzan-

tines. Since the Byzantines can send arbitrary information, naive clustering algorithms may lead

to solutions that may be of poor quality (illustrated in Section 4.7).

We first present a simple solution that assumes sufficient storage and computational power

of the FC. Note that such an assumption is not unrealistic as central servers are usually quite

powerful. However, the proposed algorithm is quite computationally and storage intensive which

makes it prohibitive for practical applications with limited resources. We later propose techniques

to address this difficulty by incurring slightly larger approximation factors.

The dataset P is distributed among the m WNs using the assignment matrix A which satisfies

Property 2. The basic idea of the proposed algorithm is that each honest WN sends a set of k-

median centers of their respective data subsets. Next, the FC combines the set of k-median centers

from all the WNs and computes the respective cost of clustering on them to gauge the quality of

the centers sent by each WN. The FC then computes a good-quality4 clustering solution for the

entire dataset by filtering out the summaries with larger cost. We present the aforementioned steps

in detail in Algorithm 8.

4good approximation factor

62

Algorithm 8: Byzantine-resilient distributed k-median clustering
Input: A collection of n vectors P ⊂ Rd.

1 Allocate P to m WNs according to a (t, δ)-Byzantine resilient matrix A.

2 Assign the set of points Pi ⊂ P to WN Wi

3 Each honest WN Wi computes an α-approximate k-median solution Yi on set Pi

4 Each honest WN Wi sends the set of points Yi to CN

5 Byzantine WNs send an arbitrary set of k points.

6 CN computes & arranges received point sets in non-decreasing order of cost(Pi, Yi).

7 Without loss of generality, assume cost(P1, Y1) ≤ cost(P2, Y2) ≤ . . . ≤ cost(Pm, Ym).

8 For each point y ∈ Yi, CN computes weight gi(y) = |cluster(y, Pi)|.

9 Let Y =
⋃

i∈[m−t] Yi. Using ρ, define g : Y → R such that g(y) = ρgi(y),∀y ∈ Yi

Output: Ĉ, the α-approximate k-median solution on (Y, g).
We present the following intermediate result, which shows that the cost incurred by the weighted

summary Yi of WN Wi on any set of k centers C is bounded by the cost of clustering the local

dataset Pi with C, and the quality of the summary Yi. Note that these bounds hold irrespective of

the WN Wi being honest or Byzantine and rely on the fact that the CN can correctly compute the

weights gi(y).

Lemma 4.5. For any i ∈ [m], the weighted point set (Yi, gi) satisfies

cost(Pi, C)− cost(Pi, Yi) ≤ cost(Yi, gi, C) ≤ cost(Pi, C) + cost(Pi, Yi).

PROOF: The proof is relegated to Appendix A.19.

Lemma 4.5 shows that the cost of clustering the weighted data subset (Yi, gi) (where summary

Yi is obtained from Wi and weight function gi is computed at the CN), with any set of k centers

C, cost(Yi, gi, C) deviates from cost(Pi, C) by an additive term of cost(Pi, Yi). The latter term

quantifies the quality of the summary Yi obtained from Wi. We assume that this quantity can be

computed (or approximated) by the CN. This information is then used to filter out the summaries

that contribute to large cost of clustering. From these observations, we get our main result that

63

evaluates the quality of the clustering solution, Ĉ, obtained by Algorithm 8 on the entire dataset

P .

Theorem 4.6. Let C∗ be the optimal solution to the k-median problem on point set P . Then,

Algorithm 8 on dataset P returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤ 3α(1+δ)cost(P,C∗),

even in the presence of t Byzantines.

PROOF: The proof is relegated to Appendix A.20.

4.5.2 Improved Byzantine Resilient Distributed k-Median Clustering

Recall that in the previous section, we assumed that the CN can compute the local summaries to

evaluate the quality of the data sent by each local WN. In particular, we required the CN to have

access to the entire dataset P . The CN needs them to estimate the cost of computing cluster Pi

using Yi sent by the WN Wi (last step in Algorithm 8). This assumption is generally reasonable

since in most applications, the CN is quite powerful and has access to the entire dataset. However,

in resource-constrained settings such assumptions that increase the computational load at the CN

can be rather restrictive.

In this section, we discuss a simple technique to relax this assumption. For any δ ∈ (0, 1), let

(P̃i, wi) denote a δ-coreset computed by the CN of dataset Pi, i ∈ [m]. One possible approach to

compute this efficiently in a streaming fashion is by using the uniform sampling where a δ-coreset

of a set of n points is computed by only storing poly(kϵ−1) points as given in [10]. Another possible

approach is to use importance sampling techniques of [11, 12]. Specifically, the algorithm of [12]

only stores a small set of points, and computes a good coreset using only the stored points. They

show that to compute a δ-coreset of a set of n points, it is sufficient to only store O(δ−2dk log k)

points. Therefore, the CN will only need to store O(mdk log k) points in total. Using standard

dimension reduction techniques, we can without loss of generality, assume that d = O(log n).

To improve Algorithm 8, the coreset (P̃i, wi) computed on each dataset Pi (using sensitiv-

ity sampling [12]) is utilized to approximate the cost of clustering pointset Pi with Yi, i ∈ [m].

64

Furthermore, the weights gi(y) for each y ∈ Yi are also estimated using only the coreset points.

This reduces the computational load at the CN. In particular, estimating cost(Pi, Yi), takes only

O(k2 log |Pi|) time instead of O(k|Pi|). In the following, we show that we still obtain a good

approximation for k-median clustering in the presence of Byzantines using (P̃i, wi) instead of Pi.

Furthermore, this coreset computation at the CN can be done while assigning them to the WNs.

The modified algorithm for distributed k-median clustering in the presence of Byzantines is pre-

sented in Algorithm 9. For the simplicity of presentation, we assume that WNs and the CN can

compute the exact (i.e., α = 1) k-median solution on a small dataset. The results extend trivially

when in Step 4 and last step, the WNs and the CN compute an α-approximate solution.
Algorithm 9: Computationally-efficient Byzantine-resilient distributed k-median clus-

tering
Input: A collection of n vectors P ⊂ Rd

1 Allocate P to m WNs according to A with Property 2.

2 CN computes δ-coreset (P̃i, wi) from the streaming data with respect to each Pi

3 Assign the set of points Pi ⊂ P to WN Wi

4 Each honest WN Wi computes k-median solution Yi on set Pi

5 Each honest WN Wi sends the set of points Yi to CN

6 Byzantine WNs send an arbitrary set of k points.

7 CN computes & arranges received point sets in non-decreasing order of cost(P̃i, wi, Yi).

8 Without loss of generality, assume

cost(P̃1, w1, Y1) ≤ cost(P̃2, w2, Y2) ≤ . . . ≤ cost(P̃m, wm, Ym).

9 For each point y ∈ Yi, CN computes weight g̃i(y) =
∑

p∈cluster(y,P̃i)
wi(p).

10 Let Y =
⋃

i∈[m−t] Yi. Using ρ, define g̃ : Y → R such that g̃(y) = ρg̃i(y),∀y ∈ Yi

Output: Ĉ, the k-median solution on (Y, g̃).

Theorem 4.7. Let δ ∈ (0, 1). Let C∗ be the optimal solution to the k-median problem on point

set P . Then, Algorithm 9 returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤
(

2
1−γ

+ 1
1−δ

)
(1 +

3δ)cost(P,C∗), even in the presence of t Byzantines with probability 1− 1
k

by choosing γ = 1
k
.

We now briefly sketch the proof of Theorem 4.7. The formal proof is presented in Ap-

65

pendix A.21.

The two main differences in Algorithm 9 compared to Algorithm 8 are

1. The filtering of Byzantines in Step 7 is done with respect to cost(P̃i, wi, Yi) instead of

cost(Pi, Yi). Since (P̃i, wi) is a δ-coreset of Pi, we incur at most a factor of (1 + δ) in

cost by making this change.

2. For any i ∈ [m − t], and y ∈ Yi, the quantity gi(y) = |cluster(y, Pi)| is computed using the

coreset P̃i instead of the actual pointset Pi. We show that by adopting a particular sensitivity-

based i.i.d. sampling technique of coreset construction, the estimate of g̃i is at most some

(1+γ) factor away from its intended value with very high probability, for some appropriately

chosen value of γ.

We now formalize the above two statements in the following Lemmas and Observations.

Observation 1. Let δ ∈ (0, 1). For any i ∈ [m] and any set of k centers C, we have

|cost(P̃i, wi, C)− cost(Pi, C)| ≤ δcost(Pi, C)

The observation follows from the fact that (P̃i, wi) is a δ-coreset of Pi

Lemma 4.6. Let γ ≥ 1
k
. For any i ∈ [m], and y ∈ Yi,

Pr[|g̃i(y)− gi(y)| ≥ γ gi(y)] ≤
1

k

Lemma 4.6 therefore ensures the following:

Observation 2. Let γ ≥ 1
k
. For any i ∈ [m] and y ∈ Yi, let gi(y) := |cluster(y, Pi)|. Then for any

set of k centers C,

cost(Yi, gi, C) =
∑
y∈Yi

gi(y)d(y, C) ≤
∑
y∈Yi

1

1− γ
g̃i(y)d(y, C) =

1

1− γ
cost(Yi, g̃i, C),

with probability at least 1− 1/k.

66

Using the two observations listed above, we get an equivalent of Lemma 4.5.

Lemma 4.7. Let δ, γ ∈ (0, 1). For any i ∈ [m], the weighted point set (Yi, g̃i) satisfies

(1−γ)cost(Pi, C)− 1− γ

1− δ
cost(P̃i, wi, Yi) ≤ cost(Yi, g̃i, C) ≤ (1+δ)cost(Pi, C)+cost(P̃i, wi, Yi).

The proof of Theorem 4.7 then follows similarly as the proof of Theorem 4.6 using the adjusted

Lemma 4.7 instead of Lemma 4.5.

PROOF: Proof of Theorem 4.7 is relegated to Appendix A.21

4.5.3 Byzantine Resilient k-means Clustering

Similar to Algorithm 6 for straggler resilient k-means clustering, a simple modification can be

made to Algorithm 8 to obtain a Byzantine-resilient distributed k-means algorithm (Algorithm 10)

with performance guarantees given in Theorem 4.8.
Algorithm 10: Byzantine-resilient distributed k-means clustering

Input: A collection of n vectors P ⊂ Rd

1 Allocate P to m WNs according to A with Property 2.

2 Assign the set of points Pi ⊂ P to WN Wi

3 Each honest WN Wi computes k-means solution Yi on set Pi

4 Each honest WN Wi sends the set of points Yi to CN

5 Byzantine WNs send an arbitrary set of k unweighted points.

6 CN computes & arranges received point sets in non-decreasing order of cost(Pi, Yi).

7 Without loss of generality, assume cost(P1, Y1) ≤ cost(P2, Y2) ≤ . . . ≤ cost(Pm, Ym).

8 For each point y ∈ Yi, CN computes weight gi(y) = |cluster(y, Pi)|.

9 Let Y =
⋃

i∈[m−t] Yi. Using ρ, define g : Y → R such that g(y) = ρgi(y),∀y ∈ Yi

Output: Ĉ, the k-means solution on (Y, g).

Theorem 4.8. Let C∗ be the optimal solution to the k-means problem on point set P . Then,

Algorithm 10 returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤ 10α(1 + δ)cost(P,C∗), even in

67

the presence of t Byzantines.

Moreover, similar to Algorithm 9, the CN can reduce its computational and storage costs by

computing δ-coresets for k-means clustering of each local data set. Coresets obtained by i.i.d.

sensitivity sampling of the data in a streaming fashion require O(δ−2mdk log k) points to be stored

in total.
Algorithm 11: Computationally-efficient Byzantine-resilient distributed k-means clus-

tering
Input: A collection of n vectors P ⊂ Rd

1 Allocate P to m WNs according to A with Property 2

2 CN computes weighted coreset (P̃i, wi) from the streaming data with respect to each Pi

3 Assign the set of points Pi ⊂ P to WN Wi

4 Each honest WN Wi computes k-means solution Yi on set Pi

5 Each honest WN Wi sends the set of points Yi to CN

6 Byzantine WNs send an arbitrary set of k points.

7 CN computes & arranges received point sets in non-decreasing order of cost(P̃i, wi, Yi).

8 Without loss of generality, assume

cost(P̃1, w1, Y1) ≤ cost(P̃2, w2, Y2) ≤ . . . ≤ cost(P̃m, wm, Ym).

9 For each point y ∈ Yi, CN computes weight g̃i(y) =
∑

p∈cluster(y,P̃i)
wi(p).

10 Let Y =
⋃

i∈[m−t] Yi. Using ρ, define g̃ : Y → R such that g̃(y) = ρg̃i(y),∀y ∈ Yi

Output: Ĉ, the k-means solution on (Y, g̃).

Theorem 4.9. Let δ ∈ (0, 1). Let C∗ be the optimal solution to the k-means problem on point

set P . Then, Algorithm 11 returns a set of k-centers Ĉ such that cost(P, Ĉ) ≤
(

8
1−γ

+ 2
1−δ

)
(1 +

3δ)cost(P,C∗), even in the presence of t Byzantines with probability 1− 1
k

by choosing γ = 1
k
.

The proofs of both Theorem 4.8, and Theorem 4.9 are analogous to the k-median proof. In fact,

they are the same except for the use of scaled triangular inequality (Eq. (4.4)) instead of standard

triangle inequality used in the proofs for their k-median counterparts.

68

4.6 Construction of Data Assignment Matrix

In this section, we provide the approach for the construction of the assignment matrix in the pres-

ence of stragglers and Byzantines. Since Property 2 for Byzantine resilience is stronger than Prop-

erty 1, we will focus only on the construction of assignment matrices A that satisfy the former.

The straggler resilience property of those matrices will follow from the definition.

Let n be the number of data points in P , and m be the number of WNs. Let B ⊂ [m], |B| < t

denote the set of Byzantines, and letR = [m] \ B be the set of non-Byzantines. For the simplicity

of presentation, we assume n = m. In the random Byzantine model, we assume that each WN Wi,

for i ∈ [m] behaves as a Byzantine independently with some fixed (known) probability pt. We now

present the construction of various assignment matrices A ∈ {0, 1}m×m that satisfy Property 2,

and hence Property 1 as well.

The two parameters of importance when constructing an assignment matrix are the load per

WN and the fraction of faulty WNs that can be tolerated. Increasing the redundancy increases both,

the fault tolerance and the computational load on individual WNs. For each of the constructions

provided below, we analyze the tradeoffs between these two parameters namely, the load per WN

(ℓ = maxi |Pi|) and the fraction of Byzantines (t/m) that can be tolerated.

4.6.1 Randomized Construction for Random Byzantines

We present a randomized construction of the assignment matrix that satisfies Property 2. For the

construction of the matrix, we assume a random Byzantine (or straggler) model, where every WN

acts as a Byzantine (or straggler) independently with probability pt. Hence, the local computation

from each WN is received at the CN with probability 1− pt.

For some ℓ (to be chosen later), the (i, j)-th entry of the assignment matrix, based on the

69

random construction discussed above, is defined as

Ai,j =

1 with probability pa =

l
m

0 otherwise.
(4.6)

For an appropriate choice of ℓ (and, hence, pa), we show that the random matrix A satisfies

Property 2 with high probability.

Theorem 4.10. For any δ > 0, the randomized assignment matrix in (4.6) with ℓ = 6(2+δ)2

δ2
· log (n

√
2)

1−pt

satisfies Property 2 with probability at least 1− 1
n

under the random Byzantine (or straggler) model.

PROOF: Proof is relegated to Appendix A.22.

For m = O(n), our construction assigns O(log n) data points to each WN and is resilient to a

constant fraction of random Byzantines (or stragglers).

4.6.2 Explicit Construction for Random Byzantines

Fractional Repetition Codes (FRC) have been well-studied in [20] for straggler resilient gradient

computations. In this section, we show that the FRC scheme also satisfies Property 2 for random

Byzantines with high probability, and hence provides redundant data assignment for Byzantine-

resilient clustering problems.

For simplicity, let us assume that we have m data points and m WNs. In FRC, the m data points

are partitioned into groups of size s (assume that s divides m), and each group of data points is

replicated across s WNs. The assignment matrix A for this scheme is given by

A =

1s×s 0s×s 0s×s . . . 0s×s

0s×s 1s×s 0s×s . . . 0s×s

...
...

...

0s×s 0s×s 0s×s . . . 1s×s

, (4.7)

where 1s×s denotes an s× s matrix of all 1’s.

70

Let AR of size |R|×m denote the submatrix of honest WNs obtained by removing t rows from

A uniformly at random. We now show that the random matrix AR satisfies Property 2 with high

probability.

Theorem 4.11. For any δ > 0, the FRC based assignment matrix A with ℓ = s = O(logm),

satisfies Property 2 with probability at least 1 − O(1
m
) under the random Byzantine model, and

provides resilience against t = O(m) Byzantines.

PROOF: The proof is relegated to Appendix A.23.

Theorem 4.11 provides good tradeoff between the load per WN ℓ = O(logm), and the number

of Byzantines tolerated, t = O(m). However, the performance guarantees hold only in the random

Byzantine model. In the adversarial Byzantine model, any subset B ⊂ [m] can be Byzantines.

This is a much stronger yet practical model for Byzantines. We now give two constructions - one

randomized and one explicit construction that provide relatively worse tradeoffs in the adversarial

Byzantine model.

4.6.3 Random Construction for Adversarial Byzantines

In this section, we show that a random Bernoulli assignment matrix satisfies Property 2 under the

adversarial Byzantine model albeit with slightly degraded tradeoffs between ℓ and t.

Consider an m × m random Bernoulli assignment matrix A where each entry Ai,j is set to 1

independently with some probability p, and 0 otherwise.

Theorem 4.12. For any δ > 0, the Bernoulli assignment matrix A with p = O(1
logm

), satisfies

Property 2 with probability at least 1 − O(1
m
) under the adversarial Byzantine model, and is

resilient to t = O(m
log2 m

) Byzantines.

PROOF: Proof is relegated to Appendix A.24.

Alternatively, Theorem 4.12 can be stated in terms of a random construction that is resilient to

t arbitrary Byzantines with an expected load of O(mt
m−t

logm). Note that Theorem 4.12 provides

71

lesser redundancy in the regime when t = o(m) compared to the naïve solution of distributing all

the points to all the WNs.

4.6.4 Explicit Construction for Adversarial Byzantines

We now present an explicit construction of an assignment matrix that satisfies Property 2 for the

adversarial Byzantine model. The construction is based on expander graphs which were recently

used to construct explicit data assignment schemes for gradient coding [46, 85].

Let G = (V,E) be a connected d-regular graph on m vertices and let AG denote its adjacency

matrix. Let λ1 ≥ λ2 ≥ . . . ≥ λm be the m real eigenvalues ofAG. Define the expansion parameter

of graph G as λ = max{|λ2|, |λm|}. We denote such d-regular graphs on n vertices with expansion

parameter λ as (n, d, λ)-expanders.

The double cover of a graph G̃ = (Ṽ , Ẽ) on n vertices, is a bipartite graph G = (L ∪ R,E),

on 2n vertices with L = R = V . There is an edge (u, v) ∈ L×R in G if and only if (u, v) ∈ Ẽ.

To construct our assignment matrix, we consider a bipartite graph G = (L ∪ R,E) that is a

double cover of an (n, d, λ)-expander. The m × m assignment matrix A is obtained from G by

setting Au,v = 1 if and only if there is an edge between (u, v) ∈ G for any u ∈ R and, v ∈ L.

We now show that the assignment matrix A obtained from G satisfies Property 2 for any set of t

Byzantines.

Theorem 4.13. For any δ > 0, the assignment matrix A satisfies Property 2 under adversarial

Byzantine model with t =
√

logm/ log logm, and ℓ = O(logm).

The proof, presented formally in Appendix A.25, follows from the fact that if G̃ is an expander

graph, then its double cover G satisfies the expander Mixing Lemma [55].

Theorem 4.14 (Expander Mixing Lemma [55]). For any sets S and T in a (n, d, λ)-expander, we

have |E(S, T)− d
n
|S||T || ≤ λ

√
|S||T |, where, E(S, T) denotes the number of edges between sets

S and T .

72

Using Expander Mixing Lemma, we can show that no vertex in L is incident to a large fraction

of vertices in any t subset of R. This in turn translates to the fact that no column of A has a large

number of 1’s in any subset of t rows of A. Therefore, removing any t rows of A keeps all the

column weights within a fixed range.

The existence of graphs with appropriate expansion properties then completes the proof. We

use the constructions of (n, d, λ)-expanders of [8], to get data assignment schemes that are resilient

to O(
√
logm) Byzantines with an overhead of O(logm) data points per WN.

Theorem 4.15 ([8]). There exists a polynomial time algorithm to construct (n, d, λ) = (2ℓ, ℓ −

1,
√

ℓ log3 ℓ).

Construction Byzantine model # Byzantines Load per node
Thm 4.10 Random Random O(m) 6(2+δ)2

δ2
· log (n

√
2)

1−pt

Thm 4.11 Explicit Random O(m) O(logm)
Thm 4.12 Random Adversarial o(m) O(mt

m−t
logm)

Thm 4.13 Explicit Adversarial
√

logm/ log(logm) O(logm)

Table 4.1: Summary of constructions of data assignment schemes

Next, we empirically evaluate the performance of our algorithms and show that they are robust

to Byzantines (or stragglers).

4.7 Simulation Results

In this section, we demonstrate the performance of our distributed k-median clustering algorithms

that are resilient to stragglers and Byzantines, respectively. We consider the synthetic Gaussian

dataset [41] with n = 5000 two-dimensional points that are distributed among m = 10 WNs.

73

(a) Ground Truth. (b) Performance with no redundancy.

Fig. 4.1: Performance of the proposed Straggler-resilient k-median algorithm with no redundancy.

4.7.1 Straggler-resilient Clustering

In this section, we illustrate the performance of our straggler-resilient distributed k-median al-

gorithm and benchmark it with the non-redundant data assignment scheme. We consider t = 3

randomly chosen stragglers. We present the results in Figures 4.1(a), 4.1(b), 4.2(a), and 4.2(b).

We plot the ground truth using the centroids provided in the dataset in Fig. 4.1(a) with k-median

clustering, for k = 15. In Fig. 4.1(b), we present the results by ignoring the local computations

from the stragglers, i.e., Algorithm 5 is used without any redundant data assignment. We randomly

partition the n = 5000 data points among m = 10 WNs. The non-straggler WNs send their

respective k-median centers to the FC. Then, the FC runs a k-median algorithm on the k(m − t)

centers obtained from the non-straggler WNs. From Fig. 4.1(b), the set of poor quality k-centers

obtained from this scheme is noticeable.

In Fig. 4.2(a), the result obtained by using Algorithm 5 is shown. We choose the assignment

matrix randomly with p = Pr[Ai,j = 1] = 0.1. Hence, using this assignment matrix ensures that

each WN receives 500 data points on an average which results in a non-redundant data assignment.

Lastly, in Fig. 4.2(b), we show the effect of increasing the value of p to 0.2. Therefore, the redun-

dancy in the data assignment increases which results in each WN receiving about 1000 data points.

74

(a) Performance with redundancy p = 0.1. (b) Performance with redundancy p = 0.2.

Fig. 4.2: Performance of the proposed Straggler-resilient k-median algorithm.

We observe that the results are very close to the ground truth clustering presented in Fig. 4.1(a).

4.7.2 Byzantine-resilient Clustering

In this section, we illustrate the performance of our Byzantine-resilient distributed k-median al-

gorithm and benchmark it with the non-redundant data assignment scheme. We consider t = 3

randomly chosen Byzantines. We present the results in Figures 4.3(a), 4.3(b), 4.4(a), and 4.4(b).

We plot the ground truth using the centroids provided in the dataset in Fig. 4.3(a) with k-median

clustering, for k = 15. In Fig. 4.3(b), we present the results by ignoring the local computations

from the Byzantines, i.e., Algorithm 8 is used without any redundant data assignment. We ran-

domly partition the n = 5000 data points among m = 10 WNs. The honest WNs send their

respective k-median centers to the FC. Then, the FC runs a k-median algorithm on the (m − t)

centers obtained from the honest WNs. From Fig. 4.3(b), the set of poor quality k-centers obtained

from this scheme is noticeable.

In Fig. 4.4(a), the result obtained by using Algorithm 8 is shown. We choose the assignment

matrix randomly with p = Pr[Ai,j = 1] = 0.1. Hence, using this assignment matrix ensures that

each WN receives 500 data points on an average which results in a non-redundant data assignment.

75

(a) Ground Truth. (b) Performance with no Redundancy.

Fig. 4.3: Performance of the proposed Byzantine-resilient k-median algorithm with no redun-
dancy.

(a) Performance with Redundancy p = 0.1. (b) Performance with Redundancy p = 0.2.

Fig. 4.4: Performance of the proposed Byzantine-resilient k-median algorithm.

76

Lastly, in Fig. 4.4(b), we show the effect of increasing the value of p to 0.2. Therefore, the redun-

dancy in the data assignment increases which results in each WN receiving about 1000 data points.

We observe that the results are very close to the ground truth clustering presented in Fig. 4.3(a).

4.8 Summary

In this chapter, we provided O(1)-approximate solutions for the distributed k-median and k-means

clustering problems in the presence of stragglers. These solutions were obtained under the assump-

tion that the WNs can not compute exact clustering solutions. These algorithms were then extended

to the case where Byzantines were present in the system. Note that the approach for k-means (Al-

gorithm 6 and Algorithm 10) used in this work can be generalized to obtain straggler-resilient

and Byzantine-resilient algorithms for a larger class of ℓ2 fitting problems such as (r, k)-subspace

clustering solutions. We also provided computationally efficient constant factor approximate solu-

tions for the distributed clustering problems in the presence of Byzantines. Further, we provided

simulation results which affirm our theoretical guarantees.

77

CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Summary

In this dissertation, we studied machine learning algorithms under both supervised and unsuper-

vised learning frameworks in the presence of two types of attacks: 1) attack on data, and 2) attack

on nodes. We proposed learning algorithms that are robust under both types of attacks.

Firstly, we considered the problem of estimating the parameters (weight matrix and bias vec-

tor) of a neural network with rectified linear unit as the activation function under the unsupervised

learning framework. Specifically, we considered the estimation procedure in the presence of arbi-

trary outliers (attack on data) where in the given set of data samples a fraction of the samples are

arbitrary outliers, and the rest are the output samples of a single-layer neural network. We designed

our robust estimation procedure by combining the gradient descent algorithm with the median fil-

ter to mitigate the effect of the arbitrary outliers. We then proceeded to compute the bounds on

the number of samples needed by the algorithm along with its running time to perform the estima-

tion of the parameters. Our theoretical and simulation results provided insights into the training

complexity of the neural network in terms of the probability of outliers and problem dimension.

Secondly, we considered the problem of distributed optimization with the worker-server ar-

chitecture under the supervised learning framework where a fraction (< 1/2) of the nodes are

78

adversarial (attack on nodes). We proposed a robust variant of the learning algorithm to solve

stochastic nonconvex optimization. The algorithm design consisted of the combination of dis-

tributed variance-reduction and the filtering technique called vector median used to identify and

prune the Byzantines. We showed that our algorithm converges to a first-order stationary point and

the convergence rate does not depend on the problem dimension. We evaluated the performance of

the proposed algorithm and presented the simulation results using MNIST and CIFAR10 datasets.

Thirdly, under the unsupervised learning framework, we considered the problem of distributed

clustering for any set of adversarial nodes (attack on nodes). We proposed a redundant data as-

signment scheme that enabled us to obtain global information about the entire dataset even in the

presence of adversarial nodes. We proposed robust clustering algorithms that generate a constant

factor approximate solution in the presence of adversarial nodes. Moreover, we provided several

constructions for the data assignment scheme which provided resilience against a large fraction of

the adversarial nodes. We also provided simulation results that corroborated the excellent perfor-

mance of our proposed algorithms.

Next, we discuss some of the future directions of the work presented in this dissertation.

5.2 Future Directions

5.2.1 Robust Learning of Multi-layer Neural Network

The problem of learning multi-layer neural networks has received a lot of attention. It was only

recently in [23] that a polynomial-time algorithm for learning a multi-layer neural network with

ReLU activation was proposed. However, the problem of learning a multi-layer neural network in

the presence of adversarial attacks has received less attention. Further, differential privacy (DP) is

the most widely accepted notion of data privacy in theory and practice. Under DP, a single sample

is not allowed to have significant impact on the output distribution of a learning algorithm that

operates on a dataset. DP can be considered to provide robustness against data leakage. Also,

there has been significant amount of work in robust statistics showing that robustness and privacy

79

are indeed related [67,74,75]. However, there has not been any significant work on the algorithms

for learning neural networks that ensure robustness against adversarial attacks and privacy of the

data. Extending our work to learn the parameters of a multi-layer neural network ensuring privacy

and robustness against adversarial attacks will bring us closer to understanding inner workings of

a neural network.

5.2.2 Byzantine-resilient Decentralized Optimization

To reduce the computational bottleneck of a central server that performs a majority of the compu-

tations in a distributed system, a decentralized setup was proposed. Typically, in a decentralized

setup, all the devices exchange information to perform local tasks and achieve a global objective

in the absence of a central server. The connectivity of all the nodes in the decentralized setting is

represented by a mixing matrix. There have been several works on decentralized optimization in

the literature with different types of mixing matrices [53,88] where all the participating devices are

assumed to be honest. However, robust decentralized optimization in the presence of adversarial

nodes that also satisfies privacy constraints has received less attention and is a research direction

worth pursuing. For stochastic decentralized optimization problem, the design of efficient algo-

rithms that ensure privacy and robustness against adversarial attacks is a research direction worth

pursuing.

5.2.3 Robust Fair Clustering

There are several examples of the unsavory behavior of the learning algorithms related to unsu-

pervised learning tasks like gender stereotypes in word2vec embeddings. It is crucial to ensure

robustness against over-represented classes dominating under-represented classes. This can be

ensured through algorithmic fairness. One direction to ensure fairness is the problem of data

summarization through the lens of algorithmic fairness where the goal is to output a small but

representative subset of a dataset such that some fairness constraint is satisfied. Under the fairness

consideration, each class should receive a similar service guarantee. Alternatively, each cluster

80

should contain approximately the same proportion of samples from each protected class as they

appear in the dataset. One typical approach to solving this is Colorful k-Center Clustering which

includes a covering constraint which ensures that at least a given number of points from each group

is covered by the clusters [59]. The existing algorithms for the clustering problem with fairness

constraint run in super-quadratic time. This drawback has been addressed in [66] with a linear

time algorithm. Although efficient algorithms have been considered for clustering, fairness and

robustness against adversarial attacks perspective has not been explored. Hence, designing fair

clustering algorithms that are robust to adversarial attacks with running time linear in the size of

the data is another research direction worth pursuing.

81

APPENDIX A

APPENDIX: PROOFS OF VARIOUS RESULTS

A.1 Toolbox

This section summarizes a list of well-known results used in the proofs of our results.

Lemma A.1 (Strong Convexity with Truncation ([27, Lemma 4])). Consider the truncated nor-

mal distribution N (µ,Σ,S) whose support is S ⊂ Rd. Let H(v) ∈ R(d+d2)×(d+d2) denotes

the Hessian matrix of the expected negative log-likelihood function computed with respect to

v =

 Σ−1µ

vec
{
Σ−1

}
 ∈ Rd+d2 where vec {·} is the vectorization operator. Then, H(v) satisfies

H(v) ⪰ C

[∫
S

1√
2π|Σ|

exp

(
−1

2
(u− µ)TΣ−1(u− µ)

)
du

]4
λmin

max
{
4, 16 ∥µ∥2 +

√
λmin

}I,
(A.1)

where C > 0 is a universal constant, and λmin = [min1≤i≤j≤d min {λiλj, λi}] with λ1, λ2, . . . , λd

being the eigenvalues of Σ.

Lemma A.2 (Smooth and strongly convex functions ([13, Lemma 3.11])). Let the function l :

Rd → R be L-smooth and η-strongly convex. Then, for all u,w ∈ Rd, the following holds:

(∇l(u)−∇l(w))T(u−w) ≥ ηL

η + L
∥u−w∥2 + 1

η + L
∥∇l(u)−∇l(w)∥2 . (A.2)

82

Lemma A.3 (Hoeffding’s inequality ([97, Theorem 2.2.2])). Let {xi ∈ {0, 1}}Nn=1 be a set of iid

Bernoulli random variables with mean p. Then, for any ϵ ∈ (0, 1), we have

P

(
N∑

n=1

xi ≥ (p− ϵ)n

)
≥ 1− e−2ϵ2N . (A.3)

Lemma A.4 (Concentration of empirical mean and covariance). Consider a set of iid random

variables
{
x(n) ∼ N+(µ, σ2)

}N
n=1

. Let the empirical mean and variance computed using N =

O
(

1
ϵ2
log
(
1
Ψ

)
log2

(
1
δ

))
be µ̂ = 1

N

∑N
n=1 x

(n) and σ̂2 = 1
N

∑N
n=1

(
x(n) − µ̂

)2
, respectively. Then,

we have ∣∣µ̂− E
{
x(1)
}∣∣ ≤ ϵ and

∣∣∣σ̂2 − E
{(

x(1) − E
{
x(1)
})2}∣∣∣ ≤ ϵ, (A.4)

with probability exceeding 1− δ where Ψ =
∫
x>0

1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
dx.

PROOF: The proof is similar to the proof of ([27, Lemma 5]), and hence, it is omitted.

Lemma A.5 (Angle estimated from the sign of inner products ([102, Lemma 2])). Suppose that

x ∼ D(W , b) and that b ∈ Rd is non-negative, for all i ̸= j ∈ [d],

Px∼D(W ,b)[xi > bi and xj > bj] =
π − θij
2π

, (A.5)

where θij is the angle between vectors W i and W j .

Lemma A.6 (Error bound of angle estimation ([102, Lemma 3])). Let x ∼ D(W , b), where

b ∈ Rd is non-negative. Suppose b̂ ∈ Rd is non-negative such that
∣∣∣bi − b̂i

∣∣∣ ≤ ϵ ∥W i∥, for all

i ∈ [d]. Then, the following relation holds for any i, j ∈ [d]

∣∣∣Px∼D(W ,b)[xi > bi and xj > bj]− Px∼D(W ,b)[xi > b̂i and xj > b̂j]
∣∣∣ ≤ ϵ. (A.6)

83

A.2 Proof of Proposition 2.1

Invoking Lemma A.1 with d = 1, we obtain that there exists a universal constant C > 0 such that

∇2ℓ(v) ⪰ C

[
1− Φ

(
− v2√

v1

)]4
min {1/v1, 1/v

2
1}

max
{
4, 16v2

2/v
2
1 +

√
min {1/v1, 1/v2

1}
}I (A.7)

⪰ C
[
1− Φ

(
r3/2
)]4 r−2

max {4, 16r4 +
√
r}

I, (A.8)

where we use the assumption that v ∈ Dr. Hence, ℓ(v) is η-strongly convex where η is decreasing

function of r.

We next prove the smoothness of ℓ(v) to complete the proof. We start by considering the

Hessian of ℓ. Since∇ℓ(v) = g − h(v), we have

∇2ℓ(v) = −∇h(v) = ∇E
y∼N+

(
v2
v1

, 1
v1

)
{[
−y2/2 y

]T}
(A.9)

⪯ −
{
1

2

∂

∂v1

[
E

y∼N+
(

v2
v1

, 1
v1

) {y2}]− ∂

∂v2

[
E

y∼N+
(

v2
v1

, 1
v1

) {y}
]}

I,

(A.10)

we use fact that the matrix ∇2ℓ(v) is a positive semi-definite matrix from Eq. (A.7), and thus, its

largest eigenvalue is upper bounded by the sum of its eigenvalues. We simplify each term in Eq.

(A.10) as follows. The first term of Eq. (A.10) is bounded as

∂

∂v1

[
E

y∼N+
(

v2
v1

, 1
v1

) {y2}] = ∂

∂v1

[∫
y>0

y2
√

v1

2π
exp

(
−v1

2
y2 + v2y

)
dy∫

z>0

√
v1

2π
exp

(
−v1

2
z2 + v2z

)
dz

]
(A.11)

= E
y∼N+

(
v2
v1

, 1
v1

){−y4

2
− y2E

z∼N+
(

v2
v1

, 1
v1

){−z2

2

}}
(A.12)

≥ −1

2
E

y∼N+
(

v2
v1

, 1
v1

) {y4} . (A.13)

84

Similarly, the second term of Eq. (A.10) is bounded as

∂

∂v2

[
E

y∼N+
(

v2
v1

, 1
v1

) {y}
]
=

∂

∂v2

[∫
y>0

y
√

v1

2π
exp

(
−v1

2
y2 + v2y

)
dy∫

z>0

√
v1

2π
exp

(
−v1

2
z2 + v2z

)
dz

]
(A.14)

= E
y∼N+

(
v2
v1

, 1
v1

){y2 + yE
z∼N+

(
v2
v1

, 1
v1

) {−z}
}

(A.15)

≤
[
E

y∼N+
(

v2
v1

, 1
v1

) {y2}] . (A.16)

Substituting Eq. (A.13) and Eq. (A.16) into Eq. (A.10), we arrive at

∇2ℓ(v) ⪯

[
E

y∼N+
(

v2
v1

, 1
v1

) {y4/2}+ (E
y∼N+

(
v2
v1

, 1
v1

) {y}
)2
]
I. (A.17)

Here, the moments of the distributionN+
(

v2

v1
, 1
v1

)
are finite and depend only on v which belongs

to the bounded region Dr whose volume increases with r. Thus, we conclude that ℓ(v) is an

L−smooth function where L > 0 is an increasing function of r. Hence, the proof is completed.

A.3 Proof of Proposition 2.2

To bound the estimation error of the robust GD algorithm, we use a constant step size γ(k) = 1/L

where L > 0 is defined in Proposition 2.1. The estimation error ∥v(k + 1)− v∗∥ in the (k+ 1)-th

iteration is bounded as follows using Eq. (2.7),

∥v(k + 1)− v∗∥ =
∥∥∥∥P (v(k)− 1

L
[g̃ − h(v(k))]

)
− P (v∗)

∥∥∥∥ (A.18)

≤
∥∥∥∥v(k)− 1

L
[g̃ − h(v(k))]− v∗

∥∥∥∥ (A.19)

≤
∥∥∥∥v(k)− 1

L
∇ℓ(v(k))− v∗

∥∥∥∥+ 1

L
∥g̃ − g∥ , (A.20)

where Eq. (A.19) follows from the non-expansiveness of the projection P (·) defined in Eq. (2.9)

, and Eq. (A.20) follows because ∇ℓ(v(k)) = g − h(v(k)), where g and h(v(k)) are defined in

85

Eq. (2.3) and Eq. (2.4) , respectively. We further upper bound the first term in Eq. (A.20) as

∥∥∥∥v(k)− 1

L
∇ℓ(v(k))− v∗

∥∥∥∥2 = ∥v(k)− v∗∥2 + 1

L2
∥∇ℓ(v(k))∥2 − 2

1

L
(v(k)− v∗)T∇ℓ(v(k))

(A.21)

≤
(
1− 2η

η + L

)
∥v(k)− v∗∥2 +

(
1

L2
− 2

L(η + L)

)
∥∇ℓ(v(k))∥2

(A.22)

≤
(

L

η + L

)2

∥v(k)− v∗∥2 , (A.23)

where we use Lemma A.2, Proposition 2.1 to bound the last term of Eq. (A.21) and the fact that

∇ℓ(v∗) = 0 to obtain Eq. (A.22). Also, Eq. (A.23) is due to η ≤ L which follows from the

definitions of strong-convexity and smoothness. Further, combining Eq. (A.20) and Eq. (A.23),

we obtain

∥v(K)− v∗∥ =
(

L

η + L

)
∥v(K − 1)− v∗∥+ 1

L
∥g̃ − g∥ (A.24)

≤
(

L

η + L

)K

∥v(0)− v∗∥+ 1

L
∥g̃ − g∥

K−1∑
k=0

(
L

η + L

)k

(A.25)

≤
(

L

η + L

)K√
(r − 1/r)2 + r2 +

(
η + L

ηL

)
∥g̃ − g∥ , (A.26)

where we use the fact that v(0),v∗ ∈ Dr. Thus, the rest of the proof is devoted to bounding the

error ∥g̃ − g∥ in the gradient computation to arrive at the desired result.

To bound the error in the gradient, we recall from Eq. (2.3) and Eq. (2.6) that

∥g̃ − g∥ =
∥∥∥∥med

{
g̃(1), g̃(2), . . . , g̃(B)

}
−
[
(σ∗2

trun − µ∗2
trun) /2 −µ∗

trun

]∥∥∥∥ , (A.27)

where g̃(b) is defined in Eq. (2.5), and we define B = |X+| /NB, and µ∗
trun and σ∗2

trun are the mean

86

and variance of the true distribution N+
(

v∗
2

v∗
1
, 1
v∗
2

)
, respectively. Then, we have

P {∥g̃ − g∥ ≤ ϵ} ≥ P

{
B∑
b=1

1
(∥∥g̃(b) − g

∥∥ ≤ ϵ
)
≥ B/2

}
. (A.28)

Further, from Lemma A.4, for any ϵ > 0 and 0 ≤ δ < 1/2, if NB = Õ
(

1
ϵ2
log
(
1
Ψ

)
log2

(
1
δ

))
,

P
{∥∥g̃(b) − g

∥∥ ≤ ϵ

∣∣∣∣∀x ∈ X+(b), x ∼ N+

(
v∗
2

v∗
1

,
1

v∗
2

)}
≥ 1− δ. (A.29)

Here, Ψ =
∫
x>0

√
v∗
2

2π
exp

(
−1

2

(
x− v∗

2

v∗
1

)2
v∗
2

)
dx, and Ψ can be bounded using a function of r

since v∗ ∈ Dr. Therefore, if NB = Õ
(

1
ϵ2
log2

(
1
δ

))
,

P
{∥∥g̃(b) − g

∥∥ ≤ ϵ
}
≥
(
p+
)NB (1− δ). (A.30)

Consequently, the random variable
∑B

b=1 1
(∥∥g̃(b) − g

∥∥ ≤ ϵ
)

first-order stochastically dominates

the binomial random variable T ∼ binom
(
B, (p+)

NB (1− δ)
)

. Hence, from Eq. (A.28),

P {∥g̃ − g∥ ≤ ϵ} ≥ P {T ≥ B/2} . (A.31)

Further, we choose

NB ≤
1

log p+
log

(
1 + ζ

2(1− δ)

)
, (A.32)

so that (p+)NB (1− δ) ≥ 1/2 + ζ/2, for any ζ ∈ (0, 1− 2δ). We note that such a choice exists for

any p+ > 1/2. Then, the Hoeffding’s inequality leads to the following:

P {∥g̃ − g∥ ≤ ϵ} ≥ P {T ≥ B/2} (A.33)

≥ 1− exp
(
−2B(

(
p+
)NB (1− δ)− 1/2)2

)
(A.34)

≥ 1− exp
(
−Bζ2/2

)
. (A.35)

87

Combining Eq. (A.26) and Eq. (A.35), we arrive at

∥v(k)− v∗∥ ≤
(

L

η + L

)K√
(r − 1/r)2 + r2 +

(
η + L

ηL

)
ϵ, (A.36)

with probability exceeding 1 − δ if B = Ω
(

1
ζ2
log
(
1
δ

))
. Hence, if we choose the number of

iterations as

K ≥
[
log
(
1 +

η

L

)]−1

log
[
ϵ−1
√
(r − 1/r)2 + r2

]
= Ω(log 1/ϵ) , (A.37)

we arrive at the desired result. Hence, the proof is complete.

A.4 Proof of Theorem 2.1

To prove the overall error bound, we first bound the error in the bias and the diagonal entries of Σ̂

using Proposition 2.2. Then, we bound the error in the angle estimation using Lemmas A.5, A.6.

Finally, we combine the two error bounds to compute the overall estimation error.

To apply Proposition 2.2, we need p+ which is the probability of a true sample in the set of

positive i-th elements of the observed samples, X+
i . We have

p+ = P {x ∼ D (W , b)|xi > 0,x ∈ X} (A.38)

=
P {xi > 0,x ∼ D (W , b)|x ∈ X}

P {xi > 0,x ∼ D (W , b)|x ∈ X}+ P {xi > 0,x ∼ Dout|x ∈ X}
(A.39)

≥ pP {xi > 0|x ∼ D (W , b) ,x ∈ X}
pP {xi > 0|x ∼ D (W , b) ,x ∈ X}+ P {x ∼ Dout|x ∈ X}

(A.40)

=
pP {xi > 0|x ∼ D (W , b) ,x ∈ X}

pP {xi > 0|x ∼ D (W , b) ,x ∈ X}+ (1− p)
. (A.41)

We notice that the above lower bound is an increasing function of P {xi > 0|x ∼ D (W , b) ,x ∈ X}

88

and because b is nonnegative, P {xi > 0|x ∼ D (W , b) ,x ∈ X} ≥ 1/2. Consequently,

p+ ≥ p

2− p
≥ p

2
. (A.42)

Thus, if p > 2/3, we have p+ > 1/2, and from Proposition 2.2, we obtain for any i ∈ [d],

∣∣∣b̂i − bi

∣∣∣ ≤ ϵ ∥W i∥ (A.43)∣∣∣Σ̂ii − ∥W i∥2
∣∣∣ ≤ ϵ ∥W i∥2 , (A.44)

holds with probability 1− δ if K = Ω(log 1/ϵ),
∣∣X+

i

∣∣ = Ω
(

1
ζ2ϵ2

log3 1
δ

)
and NB = Õ

(
1
ϵ2
log2 1

δ

)
and NB ≤ 1

log(p/2)
log 1+ζ

2(1−δ)
. We next invoke Hoeffding’s inequality (Lemma A.3) to compute the

N = |X | from
∣∣X+

i

∣∣. For this, we have

P (xi > 0|x ∈ X) ≥ P (xi > 0|x ∼ D(W , b),x ∈ X)P (x ∼ D(W , b),x ∈ X) ≥ p/2.

(A.45)

Using Hoeffding’s inequality (Lemma A.3), we obtain for any N+ = Ω
(

1
ζ2ϵ2

log3 1
δ

)
> 0,

P
{∣∣X+

i

∣∣ ≥ N+
}
= P

{
N∑

n=1

1(x
(n)
i > 0) ≥ N+

∣∣∣∣∣xn ∈ X , n = 1, 2, . . . , N

}
(A.46)

≥ 1− exp

[
−2
(
p

2
− N+

N

)2

N

]
(A.47)

≥ 1− exp
[
−Np2/2 + 2pN+

]
≥ 1− δ, (A.48)

if N = Ω(1/p2 log(1/δ) + 2N+/p) = Ω
(

1
p2
log 1

δ
+ 1

pζ2ϵ2
log3 1

δ

)
.

Next, we bound the error in the estimate θ̂ij . For this, we define the functions βij : Rd ×Rd →

{0, 1} for any pair (i, j) ∈ [d]× [d] as follows:

βij(x; b̂) = 1(xi > b̂i and xj > b̂j). (A.49)

89

Then, we deduce the following relations:

1

2π

∣∣∣θ̂ij − θij

∣∣∣ = ∣∣∣∣∣ 1N
N∑

n=1

βij(x
(n); b̂)− Ex∼D(W ,b)[βij(x; b)]

∣∣∣∣∣ (A.50)

≤

∣∣∣∣∣ 1N
N∑

n=1

βij(x
(n); b̂)− Ex∼Dp(W ,b)[βij(x; b̂)]

∣∣∣∣∣
+
∣∣∣Ex∼Dp(W ,b)[βij(x; b̂)]− Ex∼D(W ,b)[βij(x; b)]

∣∣∣ . (A.51)

Here, we simplify the first term of Eq. (A.51) using the Hoeffding’s inequality (Lemma A.3) as

P

{∣∣∣∣∣ 1N
N∑

n=1

βij(x
(n); b̂)− Ex∼Dp(W ,b)[βij(x; b̂)]

∣∣∣∣∣ ≤ ϵ

}
≥ 1− 2e−2ϵ2N , (A.52)

for any ϵ > 0. Further, we bound the second term of Eq. (A.51) as

∣∣∣Ex∼Dp(W ,b)[βij(x; b̂)]− Ex∼D(W ,b)[βij(x; b)]
∣∣∣

=
∣∣∣pEx∼D(W ,b)[βij(x; b̂)] + (1− p)Ex∼Dout [βij(x; b̂)]− Ex∼D(W ,b)[βij(x; b)]

∣∣∣ (A.53)

= p
∣∣∣Ex∼D(W ,b)[βij(x; b̂)]− Ex∼D(W ,b)[βij(x; b)]

∣∣∣
+ (1− p)

∣∣∣Ex∼Dout [βij(x; b̂)]− Ex∼D(W ,b)[βij(x; b)]
∣∣∣

(A.54)

≤ pϵ+ (1− p) ≤ ϵ+ (1− p), (A.55)

with probability at least 1 − 2δ. Here, we use Eq. (A.43) and Lemma A.6 to obtain the first

term. The second term follows from the fact that both Ex∼Dout [βij(x; b̂)] and Ex∼D(W ,b)[βij(x; b)]

belongs to [0, 1], and thus, their difference lies in [−1, 1]. Substituting Eq. (A.52) and Eq. (A.55)

into Eq. (A.51), and since cos (·) has Lipschitz constant 1, we derive that

P
{∣∣∣cos(θ̂ij)− cos(θij)

∣∣∣ ≤ ϵ+ (1− p)
}
≥ 1− 3δ, (A.56)

90

when N = Ω
(

1
ϵ2
log 1

δ

)
+ Ω

(
1
p2
log 1

δ
+ 1

pζ2ϵ2
log3 1

δ

)
= Ω

(
1
p2
log 1

δ
+ 1

pζ2ϵ2
log3 1

δ

)
.

Finally, we combine the error in angle and row norm estimation of WW T to obtain the final

bound. Without loss of generality, suppose that cos(θij) ≥ 0. Then, from Eq. (A.44) and Eq.

(A.56), we have with probability at least 1− 3δ

Σ̂(i, j) =

√
Σ̂(i, i)Σ̂(j, j) cos(θ̂ij) (A.57)

≤ (1 + ϵ)2 ∥W i∥ ∥W j∥ [cos(θij) + ϵ+ 1− p] (A.58)

= W T
i W j +

[
(2ϵ+ ϵ2) cos(θij) + (1 + ϵ)2 (ϵ+ 1− p)

]
∥W i∥ ∥W j∥ (A.59)

≤W T
i W j + [3ϵ cos(θij) + 4ϵ+ (1 + 3ϵ)(1− p)] ∥W i∥ ∥W j∥ (A.60)

≤W T
i W j + [10ϵ+ (1− p)] ∥W i∥ ∥W j∥ . (A.61)

Similarly, we derive a lower bound for Σ̂(i, j) which leads to the following:

∥∥∥Σ̂−WW T
∥∥∥2 = d∑

i,j=1

∣∣∣Σ̂(i, j)−W T
i W j

∣∣∣2 (A.62)

≤
d∑

i,j=1

[10ϵ+ (1− p)]2 ∥W i∥2 ∥W j∥2 (A.63)

≤ [10ϵ+ (1− p)]2 ∥W ∥4 , (A.64)

with probability at least 1 − 3d2δ. We note that we obtain the probability using the union bound

over all the
(
d
2

)
≤ d2 pairs of (i, j). Thus, the sample complexity of Algorithm 1 is given by

N = Ω
(

1
p2
log d

δ
+ 1

pζ2ϵ2
log3 d

δ

)
.

Next, we complete the proof by analyzing the time complexity. The complexity of the first for-

loop containing the robust GD is given by O(dKN log(B)) due to the median computation, where

B = Ω
(

1
ζ2
log 1

δ

)
is the number of batches from Proposition 2.2. The complexity of the second

for-loop is O(d2N), and the overall time complexity is Ω
(

d2

p2
log d

δ
+ d2

pζ2ϵ2
log3 d

δ

)
. Further, the

space complexity is defined as the space required to store N samples and the covariance estimate,

the space complexity is O(Nd+ d2). Hence, the proof of Theorem 2.1 is completed.

91

A.5 Proof of Corollary 2.1

From the proof of [102, Corollary 1], it is easy to show that under the assumptions of Theorem 2.1

with ϵ̃ = ϵ,

TV
(
D
(
Σ̂

1/2
, b̂
)
,D (W , b)

)
≤
√

(ϵ̃+ 1− p)2κ2d2/2 + ϵ̃2κd ≤ (ϵ̃+ 1− p)κd, (A.65)

when 0 < ϵ̃+1− p ≤ 1/2. Defining ϵ in the corollary to be (ϵ̃+1− p)κd, we arrive at the desired

result.

A.6 Proof of Theorem 2.2

To prove the result, we first observe that for any two distributions from C denoted by D (b, σ2I)

and D
(
b̃, σ2I

)
, there exist two outlier distributions Dout and D̃out given by

Dout =
p

1− p

[
D
(
b̃, σ2I

)
−D

(
b, σ2I

)]
1

(
D
(
b̃, σ2I

)
≥ D

(
b, σ2I

))
(A.66)

D̃out =
p

1− p

[
D
(
b, σ2I

)
−D

(
b̃, σ2I

)]
1

(
D
(
b̃, σ2I

)
< D

(
b, σ2I

))
. (A.67)

Then, the distribution of the available data samples satisfies

pD
(
b, σ2I

)
+ (1− p)Dout = pD

(
b̃, σ2I

)
+ (1− p)D̃out, (A.68)

which ensures that no algorithm can distinguish between D (b, σ2I) and D
(
b̃, σ2I

)
. Further, let

b and b̃ be such that the total variation distance between DN (b, σ2I) and DN
(
b̃, σ2I

)
satisfies

1− p

p
= TV

(
DN

(
b, σ2I

)
,DN

(
b̃, σ2I

))
, (A.69)

where DN denotes the joint distribution of N iid samples from D. From the results of the data

processing inequality for f -divergence: TV(f(X), f(Y)) ≤ TV(X, Y) for any function f and

92

random variables X, Y over the same space, and therefore, we obtain

1− p

p
≤ TV

(
NN

(
b, σ2I

)
,NN

(
b̃, σ2I

))
≤

N
∥∥∥b− b̃

∥∥∥2
2σ2

. (A.70)

Hence, we derive ∥∥∥b− b̃
∥∥∥ ≥

√
2σ2(1− p)

pN
≥

√
2σ2

pN
(1−√p). (A.71)

This result implies that when ∥W ∥−1
∥∥∥b− b̃

∥∥∥ = Ω
(

1√
pN

(1−√p)
)

, the two distributions cannot

be distinguished in the worst case in the presence of outliers. Further, from the results on estimation

error from uncorrupted data due to [102, Theorem 2], we have ∥W ∥−1
∥∥∥b− b̃

∥∥∥ = Ω
(

1√
N

)
.

Combining the two results, we have ∥W ∥−1
∥∥∥b− b̃

∥∥∥ = Ω
(

1√
pN

)
.

A.7 Additional Simulation Results: Errors vs number of

iterations

Figs. A.1 and A.2 show how the estimation error of different schemes varies with K. From our

experiments, we observe that the errors first decrease with the number of iterations and then after

a certain number of iterations, the errors flatten. Based on this observation, we chose the number

of iterations. Note that we discard the zero entries and only consider the set of positive samples

X+ for the number of iterations as they do not convey any information about the row norms of W

and bias vector b. We observe that the parameter estimation errors computed using Oracle SGD

and Oracle GD schemes decrease as the number of samples increases. Also, the estimation errors

computed using our proposed schemes with median and trimmed mean based filters perform better

than GD without filter. Hence, the filters mitigate the effect of arbitrary outliers and having more

samples reduces the estimation errors. Further, we observe that the errors first decrease with the

number of iterations and then after a certain number of iterations, the errors flatten.

93

0 100 200 300 400 500

No. of iterations (K)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
rr

o
r

in
 b

ia
s
 v

e
c
to

r

0 100 200 300 400 500

No. of iterations (K)

0

0.5

1

1.5

2

2.5

E
rr

o
r

in
 w

e
ig

h
t

m
a
tr

ix

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

GD w/o Filter GD with Median GD with Trimmed Mean Oracle GD

(b)

Fig. A.1: Comparison of the different GD schemes as a function of K for p = 0.95, d = 5, and N

= 20000.

0 100 200 300 400 500

No. of iterations (K)

0

0.5

1

1.5

2

2.5

E
rr

o
r

in
 b

ia
s
 v

e
c
to

r

0 100 200 300 400 500

No. of iterations (K)

0

0.5

1

1.5

2

2.5

3

3.5

4

E
rr

o
r

in
 w

e
ig

h
t

m
a
tr

ix

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5
1

SGD with Median GD with Median Oracle SGD Oracle GD

(b)

Fig. A.2: Comparison of GD and SGD schemes as a function of K for p = 0.95, d = 5, and N =

20000.

94

We consider a more general model where the nodes can choose different batch sizes, Bt, for

t = 1, 2, . . . , T . For varying batch sizes, Algorithm 3 and Algorithm 4 remain the same except for

the Byzantine filtering constant Tµ which is evaluated inside the epochs and is a function of Bt.

Our proof follows the structure similar to that in [71] with a few major differences. The problem

considered in [71] was a finite sum problem with all the gradient computations designated at the

CN. The key novelty in our proofs lie in proving the boundedness of the norm square of the error

term et (see Lemma A.16 and Lemma A.20).

A.8 Proof of Theorem 3.1

Noting that f is Lipschitz smooth from Eq. (3.1), taking the expectation with respect to ξn,t on

both sides and applying Lemma A.7 to the last term, we have

Eξn,tf(xn+1,t)≤f(xn,t)− ηt(1− Lηt)∥∇f(xn,t)∥2

− ηt⟨et,∇f(xn,t)⟩+
L3η2t
2
∥xn,t − x0,t∥2 + Lη2t ∥et∥2, (A.72)

where et = µ
(k)
t −∇f(x̃t−1). Let Et denote the expectation with respect to all ξ1,t, ξ2,t, . . . given Nt.

As ξ1,t, ξ2,t, . . . are independent of Nt, Et is equivalent to expectation with respect to ξ1,t, ξ2,t, . . .,

we have

Etf(xn+1,t) ≤ Etf(xn,t)− ηt(1− Lηt)Et∥∇f(xn,t)∥2

− ηtEt⟨et,∇f(xn,t)⟩+
L3η2t
2

Et∥xn,t − x0,t∥2 + Lη2t ∥et∥2.

95

Next, taking n = Nt, denoting ENt as the expectation with respect to Nt, rearranging the terms

and utilizing Fubini’s theorem [71], we get

ηt(1− Lηt)ENtEt∥∇f(xNt,t)∥2 ≤ ENtEtf(xNt,t)

− ENtEtf(xNt+1,t)− ηtENtEt⟨et,∇f(xNt,t)⟩

+
L3η2t
2

ENtEt∥xNt,t − x0,t∥2 + Lη2t ∥et∥2

=
1

Bt

[f(x0,t)− EtENtf(xNt,t)]− ηtENtEt⟨et,∇f(xNt,t)⟩

+
L3η2t
2

ENtEt∥xNt,t − x0,t∥2 + Lη2t ∥et∥2

where the last equality follows from Lemma A.10, Lemma A.11 and Fubini’s theorem [71]. Fur-

ther, taking expectation over all the randomness and using xNt,t = x̃t and x̃t−1 = x0,t, we obtain

ηt(1− Lηt)E∥∇f(x̃t)∥2 ≤
1

Bt

E[f(x̃t−1)− f(x̃t)]

− ηtE⟨et,∇f(x̃t)⟩+
L3η2t
2

E∥x̃t − x̃t−1∥2 + Lη2tE∥et∥2

(a)
=

1

Bt

E[f(x̃t−1)− f(x̃t)] +
1

Bt

E⟨et, x̃t − x̃t−1⟩

+
L3η2t
2

E∥x̃t − x̃t−1∥2 + ηt(1 + Lηt)E∥et∥2,

where (a) is from Lemma A.8 and from Lemma A.9, we have

ηt(1− Lηt)E∥∇f(x̃t)∥2
(b)

≤ 1

Bt

E[f(x̃t−1)− f(x̃t)]

+

(
1

2ηtBt

(
− 1

Bt

+ η2tL
2

))
E∥x̃t − x̃t−1∥2

− 1

Bt

E⟨∇f(x̃t), x̃t − x̃t−1⟩+
ηt
Bt

E∥∇f(x̃t)∥2

+
ηt
Bt

E∥et∥2 +
L3η2t
2

E∥x̃t − x̃t−1∥2 + ηt(1 + Lηt)E∥et∥2.

96

Rearranging the terms yield

ηt

(
1− Lηt −

1

Bt

)
E∥∇f(x̃t)∥2

+

(
1− η2tL

2Bt − η3tL
3B2

t

2ηtB2
t

)
E∥x̃t − x̃t−1∥2

≤ 1

Bt

E[f(x̃t−1)− f(x̃t)] +
1

Bt

E⟨∇f(x̃t), x̃t−1 − x̃t⟩

+ ηt

(
1 + Lηt +

1

Bt

)
E∥et∥2.

Applying Young’s inequality ⟨a, b⟩ ≤ β
2
∥a∥2 + 1

2β
∥b∥2 to E⟨∇f(x̃t), x̃t−1 − x̃t⟩ with

β =
1−η2tL

2Bt−η3tL
3B2

t

ηtBt
, a = x̃t−1 − x̃t and b = ∇f(x̃t), and from Lemma A.16, we have

ηt

(
1− Lηt −

1

Bt

− 1

2ηtBtβ

)
E∥∇f(x̃t)∥2

≤ 1

Bt

E[f(x̃t−1)− f(x̃t)] + ηt

(
1 + Lηt +

1

Bt

)
×
(

4V2

(1− α)2KBt

+
272α2V2C

(1− α)2Bt

)
. (A.73)

We need an appropriate choice of ηt to ensure that 1 − η2tL
2Bt − η3tL

3B2
t > 0 which implies

1
2(1−η2tL

2Bt−η3tL
3B2

t)
> 1

2
. Furthermore, we choose ηt such that the following holds

1− Lηt −
1

Bt

− 1

2(1− η2tL
2Bt − η3tL

3B2
t)
≥ 1

4
.

Therefore, choice of ηt should satisfy the following conditions:

1. 1
2
< 1

2(1−η2tL
2Bt−η3tL

3B2
t)
≤ 5

8
,

2. Lηt ≤ 1
16
, and 1

Bt
≤ 1

16
.

From above, condition (1) implies that η2tL
2Bt + η3tL

3B2
t ≤ 1

5
. Therefore, ηt should also satisfy

η2tL
2Bt ≤ 1

10
and η3tL

3B2
t ≤ 1

10
. Hence, we have ηt ≤ 1

101/2LB
1/2
t

and ηt ≤ 1

101/3LB
2/3
t

. Further-

more, from condition (2), we have ηt ≤ 1
16L

and Bt ≥ 16. Therefore, we can choose ηt ≤ 1

3LB
2/3
t

97

as we have
1

3LB
2/3
t

≤ min

{
1

16L
,

1

101/3LB
2/3
t

,
1

101/2LB
1/2
t

}
for Bt ≥ 16. This choice of ηt ensures the following

1− Lηt −
1

Bt

− 1

2(1− η2tL
2Bt − η3tL

3B2
t)
≥ 1

4
. (A.74)

Substituting ηt and Bt above, we get

1 + ηtL+
1

Bt

≤ 1 +
1

3B
2/3
t

+
1

Bt

≤ 2. (A.75)

Next, replacing Eq. (A.74) and Eq. (A.75) in Eq. (A.73), and substituting ηt =
1

3LB
2/3
t

yields

E∥∇f(x̃t)∥2 ≤
12LE[f(x̃t−1)− f(x̃t)]

B
1/3
t

+
32V2

(1− α)2KBt

+
2176α2V2C

(1− α)2Bt

.

Summing over t = 1, 2, . . . , T and choosing x̃a using Algorithm 3, we obtain

E∥∇f(x̃a)∥2

≤ 12LE[f(x̃0)− f(x̃∗)] + 32V2(1− α)−2K−1
∑T

t=1B
−2
3

t∑T
t=1B

1
3
t

+
2176α2V2C(1− α)−2

∑T
t=1 B

−2
3

t∑T
t=1B

1
3
t

.

98

For Bt = B, we have

E∥∇f(x̃a)∥2

≤ 12LE[f(x̃0)− f(x̃∗)]

TB1/3︸ ︷︷ ︸
T=O

(
1

ϵB1/3

)
+

32V2

(1− α)2KB︸ ︷︷ ︸
B=O(1

ϵK)

+
2176α2V2C

(1− α)2B︸ ︷︷ ︸
B=O

(
α2

ϵ

)
.

A.9 Useful Lemmas for Proof in Appendix A.8

In this section, we present the following lemmas which are used in the proof of Appendix A.8.

Lemma A.7. For the gradient vn,t computed by Algorithm 3, we have Eξn,t∥vn,t∥2 ≤ L2∥xn,t −

x0,t∥2 + 2∥∇f(xn,t)∥2 + 2∥et∥2.

PROOF: From the definition of vtn we have:

vtn = ∇f(xt
n; ξ

t
n)−∇f(xt

0; ξ
t
n) + µt.

where µt =
1

|Gt|
∑

k∈Gt
µ
(k)
t . We define

et = µt −∇f(xt
0) = µt −∇f(x̃t−1).

This implies that we have

Eξtnv
t
n = ∇f(xt

n) + et.

99

Now taking Eξtn∥vtn∥2 and using E∥Z∥2 = E∥Z − EZ∥2 + ∥EZ∥2, we have

Eξtn∥v
t
n∥2

= Eξtn∥v
t
n − Eξtnv

t
n∥2 + ∥Eξtnv

t
n∥2

= Eξtn∥∇f(x
t
n; ξ

t
n)−∇f(xt

0; ξ
t
n)− (∇f(xt

n)−∇f(xt
0))∥2

+ ∥∇f(xt
n) + et∥2

(a)

≤ Eξtn∥∇f(x
t
n; ξ

t
n)−∇f(xt

0; ξ
t
n)− (∇f(xt

n)−∇f(xt
0))∥2

+ 2∥∇f(xt
n)∥2 + 2∥et∥2

(b)

≤ Eξtn∥∇f(x
t
n; ξ

t
n)−∇f(xt

0; ξ
t
n)∥2 + 2∥∇f(xt

n)∥2 + 2∥et∥2

(c)

≤ L2∥xt
n − xt

0∥2 + 2∥∇f(xt
n)∥2 + 2∥et∥2.

where (a) follows from the definition of vtn and Lemma A.13, (b) follows from variance inequality

and (c) follows from the Gradient Lipschitz continuity of f(· ; ξtn).

Lemma A.8. For the error term et defined in the proof of Lemma A.7, we have the following

equality

ηtE⟨et,∇f(x̃t)⟩ =
1

Bt

E⟨et, x̃t−1 − x̃t⟩ − ηtE∥et∥2. (A.76)

PROOF: Consider the term M t
n = ⟨et, xt

n − xt
0⟩. From the definition of M t

n we have

M t
n+1 −M t

n = ⟨et, xt
n+1 − xt

n⟩ = −ηt⟨et, vtn⟩.

Taking expectation w.r.t. ξtn, we have

Eξtn(M
t
n+1 −M t

n) = −ηt⟨et,Eξtnv
t
n⟩

(a)
= −ηt⟨et,∇f(xt

n)⟩ − ηt∥et∥2,

100

where (a) follows from the definition of vtn. Denoting by Et the expectation w.r.t. all ξt1, ξ
t
2, . . .

given Nt. Since ξt1, ξ
t
2, . . . are independent of Nt, Et is equivalent to expectation w.r.t. ξt1, ξ

t
2,

We have

Et(M
t
n+1 −M t

n) = −ηt⟨et,Et∇f(xt
n)⟩ − ηt∥et∥2.

Taking n = Nt and expectation w.r.t. Nt as ENt we have

ENtEt(M
t
Nt+1 −M t

Nt
) = −ηt⟨et,ENtEt∇f(xt

Nt
)⟩ − ηt∥et∥2.

Using Fubini’s theorem, Lemma A.10, Lemma A.11 and using the fact xt
Nt

= x̃t and x̃t−1 = xt
0,

we have

1

Bt

ENtEt⟨et, x̃t − x̃t−1⟩ = −ηt⟨et,ENtEt∇f(x̃t)⟩ − ηt∥et∥2.

Taking expectation w.r.t. the whole past yields the statement of the lemma.

Lemma A.9. The inner product term in Eq. (A.76) is bounded as follows

2ηtE⟨et, x̃t − x̃t−1⟩ ≤
(
− 1

Bt

+ η2tL
2

)
E∥x̃t − x̃t−1∥2

− 2ηtE⟨∇f(x̃t), x̃t − x̃t−1⟩+ 2η2tE∥∇f(x̃t)∥2 + 2η2tE∥et∥2.

PROOF: We have from the update equation xt
n+1 = xt

n − ηtv
t
n, we have

Eξtn∥x
t
n+1 − xt

0∥2 = Eξtn∥x
t
n − ηtv

t
n − xt

0∥2

= ∥xt
n − xt

0∥2 + η2tEξtn∥v
t
n∥2 − 2ηt⟨Eξtnv

t
n, x

t
n − xt

0⟩
(a)

≤ (1 + η2tL
2)∥xt

n − xt
0∥2 − 2ηt⟨∇f(xt

n), x
t
n − xt

0⟩

− 2ηt⟨et, xt
n − xt

0⟩+ 2η2t ∥∇f(xt
n)∥2 + 2η2t ∥et∥2 (A.77)

101

where (a) follows from Lemma A.7 and the definition of vtn. Denoting by Et the expectation w.r.t.

all ξt1, ξ
t
2, . . . given Nt. Since ξt1, ξ

t
2, . . . are independent of Nt, Et is equivalent to expectation w.r.t.

ξt1, ξ
t
2, We have

Et∥xt
n+1 − xt

0∥2 ≤ (1 + η2tL
2)Et∥xt

n − xt
0∥2 − 2ηtEt⟨∇f(xt

n), x
t
n − xt

0⟩

− 2ηtEt⟨et, xt
n − xt

0⟩+ 2η2tEt∥∇f(xt
n)∥2 + 2η2t ∥et∥2.

Now taking n = Nt and taking expectation ENt w.r.t. Nt we have

2ηtENtEt⟨et, x̃t − x̃t−1⟩ ≤ (1 + η2tL
2)ENtEt∥xt

Nt
− xt

0∥2 − ENtEt∥xt
Nt+1 − xt

0∥2

− 2ηtENtEt⟨∇f(x̃t), x̃t − x̃t−1⟩+ 2η2tENtEt∥∇f(x̃t)∥2

+ 2η2t ∥et∥2

(a)
=

(
− 1

Bt

+ η2tL
2

)
ENtEt∥x̃t − x̃t−1∥2

− 2ηtENtEt⟨∇f(x̃t), x̃t − x̃t−1⟩+ 2η2tENtEt∥∇f(x̃t)∥2

+ 2η2t ∥et∥2.

where (a) follows from Lemma A.10, Lemma A.11 and Fubini’s theorem. Finally, rearranging the

terms and taking expectation w.r.t. the whole past yields the lemma.

Lemma A.10. Given N ∼ Geom(Γ) for Γ > 0. For any sequence D0, D1, . . . with E|DN | < ∞,

we have

E[DN −DN+1] =

(
1

Γ
− 1

)
(D0 − EDN)

PROOF: Proof follows from [71].

Lemma A.11. For step size ηt ≤ 1

3LB
2/3
t

, we have the following

i) E∥x̃t − x̃t−1∥2 <∞,

ii) E(f(x̃t)− f(x̃∗)) <∞,

102

iii) E∥∇f(x̃t)∥2 <∞,

iv) E|⟨et, x̃t − x̃t−1⟩| <∞,

and v) E|⟨et,∇f(x̃t)⟩| <∞.

PROOF: The lemma is proven using induction and follows the same structure as the proof in [71].

The second inequality Eq. (A.72) in the proof of theorem yields

Eξtnf(x
t
n+1) ≤ f(xt

n)− ηt(1− Lηt)∥∇f(xt
n)∥2

− ηt⟨et,∇f(xt
n)⟩+

L3η2t
2
∥xt

n − xt
0∥2 + Lη2t ∥et∥2, (A.78)

using Young’s inequality ⟨a, b⟩ ≤ 1
2β
∥a∥2 + β

2
∥b∥2 for any β > 0, on −ηt⟨et,∇f(xt

n)⟩ with β = 1
2

we get:

−ηt⟨et,∇f(xt
n)⟩ ≤ ηt∥et∥2 +

ηt
4
∥∇f(xt

n)∥2.

Moreover, using the fact that ηt ≤ 1

3LB
2/3
t

≤ 1
4L

since Bt ≥ 16 and rearranging the terms in Eq.

(A.78) we have

ηt

(
1− Lηt −

1

4

)
∥∇f(xt

n)∥2 ≤ f(xt
n)− Eξtnf(x

t
n+1) +

L3η2t
2
∥xt

n − xt
0∥2 + ηt(1 + Lηt)∥et∥2

ηt

(
1− 1

4
− 1

4

)
∥∇f(xt

n)∥2 ≤ f(xt
n)− Eξtnf(x

t
n+1) +

L3η2t
2
∥xt

n − xt
0∥2 + ηt

(
1 +

1

4

)
∥et∥2

ηt∥∇f(xt
n)∥2 ≤ 2

(
f(xt

n)− Eξtnf(x
t
n+1)

)
+ L3η2t ∥xt

n − xt
0∥2 +

5ηt
2
∥et∥2.

(A.79)

Now using the first inequality Eq. (A.77) in Proof of Lemma A.9, we have

Eξtn∥x
t
n+1 − xt

0∥2 ≤ (1 + η2tL
2)∥xt

n − xt
0∥2 − 2ηt⟨∇f(xt

n), x
t
n − xt

0⟩

− 2ηt⟨et, xt
n − xt

0⟩+ 2η2t ∥∇f(xt
n)∥2 + 2η2t ∥et∥2,

using Young’s inequality ⟨a, b⟩ ≤ β
2
∥a∥2 + 1

2β
∥b∥2 for any β > 0, on −2ηt⟨∇f(xt

n), x
t
n − xt

0⟩ and

103

−2ηt⟨et, xt
n − xt

0⟩ with β = 8ηtBt we get:

−2ηt⟨∇f(xt
n), x

t
n − xt

0⟩ ≤ 8η2tBt∥∇f(xt
n)∥2 +

1

8Bt

∥xt
n − xt

0∥2

−2ηt⟨et, xt
n − xt

0⟩ ≤ 8η2tBt∥et∥2 +
1

8Bt

∥xt
n − xt

0∥2,

Therefore, we get:

Eξtn∥x
t
n+1 − xt

0∥2 ≤
(
1 + η2tL

2 +
1

4Bt

)
∥xt

n − xt
0∥2 + (2η2t + 8η2tBt)∥∇f(xt

n)∥2

+ (2η2t + 8η2tBt)∥et∥2

(a)

≤
(
1 +

13

36Bt

)
∥xt

n − xt
0∥2 + 10η2tBt∥∇f(xt

n)∥2 + 10η2tBt∥et∥2 (A.80)

where (a) used the fact that we ηtL ≤ 1

3B
2/3
t

. Now plugging Eq. (A.79) into Eq. (A.80) we get:

Eξtn∥x
t
n+1 − xt

0∥2 ≤
(
1 +

13

36Bt

)
∥xt

n − xt
0∥2 + 10η2tBt∥et∥2

+ 20ηtBt

(
f(xt

n)− Eξtnf(x
t
n+1)

)
+ 10η3tL

3Bt∥xt
n − xt

0∥2

+ 25η2tBt∥et∥2

≤
(
1 +

13

36Bt

+ 10η3tL
3Bt

)
∥xt

n − xt
0∥2

+ 20ηtBt

(
f(xt

n)− Eξtnf(x
t
n+1)

)
+ 35η2tBt∥et∥2

(a)

≤
(
1 +

711

972Bt

)
∥xt

n − xt
0∥2

+ 20ηtBt

(
f(xt

n)− Eξtnf(x
t
n+1)

)
+ 35η2tBt∥et∥2 (A.81)

where (a) follows from using ηtL ≤ 1

3B
2/3
t

. Let us assume

Lt
n = 20ηtBtE

(
f(xt

n)− f(x̃∗)
)
+ E∥xt

n − xt
0∥2

104

Taking expectation over Eq. (A.81) we get:

Lt
n+1 ≤

(
1 +

711

972Bt

)
Lt
n + 35η2tBtE∥et∥2

Denoting γ = 711
972

< 1 we have:

Lt
n+1 ≤

(
1 +

γ

Bt

)
Lt
n + 35η2tBtE∥et∥2

Lt
n+1 +

35η2tB
2
tE∥et∥2

γ

(a)

≤
(
1 +

γ

Bt

)
Lt
n

+

(
1 +

γ

Bt

)
35η2tB

2
tE∥et∥2

γ

Lt
n+1 +

35η2tB
2
tE∥et∥2

γ
≤
(
1 +

γ

Bt

)(
Lt
n +

35η2tB
2
tE∥et∥2

γ

)

where (a) follows from adding and subtracting 35η2tB
2
t E∥et∥2
γ

on both sides. this implies that we

have:

Lt
n ≤

(
1 +

γ

Bt

)n(
Lt
0 +

35η2tB
2
tE∥et∥2

γ

)

Since we have: Nt ∼ Geom
(

Bt

Bt+1

)
, and assuming Nt can be 0 we have

P[Nt = n] =
1

Bt + 1

(
Bt

Bt + 1

)n

≤
(

Bt

Bt + 1

)n

.

Now the term:

E
[(

1 +
γ

Bt

)Nt
]
≤
∑
n≥0

(
Bt + γ

Bt

× Bt

Bt + 1

)n

=
∑
n≥0

(
Bt + γ

Bt + 1

)n

(a)
=

Bt + 1

1− γ
.

105

(a) follows since γ = 711
972

< 1. This implies that:

ELt
Nt
≤ Bt + 1

1− γ

(
Lt
0 + 70η2tBtE∥et∥2

)
.

which is finite since E∥et∥ <∞ is finite by Lemma A.16 as well as the filtering rule of Algorithm

3. The induction hypothesis implies that ELNt <∞.

All the claims follow.

Lemma A.12 ([1] Lemma 2.4). Let the sequence of random variables X1, X2, . . . , XN ∈ Rd

represent a random process such that we have E[Xn|X1, . . . , Xn−1] = 0 and ∥Xn∥ ≤ M . Then,

P[∥X1 + . . .+XN∥2 ≤ 2 log(2/δ)M2N] ≥ 1− δ.

Lemma A.13. For X1, X2, . . . , Xn ∈ Rd, we have ∥X1 + . . .+Xn∥2 ≤ n∥X1∥2 + . . .+ n∥Xn∥2.

Lemma A.14. For any t ∈ [T] and for all k ∈ G, we define Event A as follows:

1. ∥µ(k)
t −∇f(x̃t−1)∥ ≤ V

√
C
Bt

.

2. ∥µ(k)
t − µmed

t ∥ ≤ 4V
√

C
Bt

and ∥µmed
t −∇f(x̃t−1)∥ ≤ 3V

√
C
Bt

, where C = 2 log
(
2K
δ

)
,

with probability at least 1− δ.

PROOF: For (1): Consider the RV, ∇f(x̃t−1; ξ
(k)
t,i) − ∇f(x̃t−1). From Assumption 5, we have

∥∇f(x̃t−1; ξ
(k)
t,i) − ∇f(x̃t−1)∥ ≤ V . We apply Lemma A.12 on the summation with ∥µ(k)

t −

∇f(x̃t−1)∥ = ∥ 1
Bt

∑Bt

i=1

(
∇f(x̃t−1; ξ

(k)
t,i)−∇f(x̃t−1)

)
∥ to obtain the result.

For (2): Proof follows from the above result.

Lemma A.15. For any t ∈ [T] and for all k ∈ G, we have

1. ∥µ(k)
t −∇f(x̃t−1)∥ ≤ V .

2. Furthermore, we have ∥µ(k)
t − µmed

t ∥ ≤ 4V and ∥µmed
t −∇f(x̃t−1)∥ ≤ 3V .

106

PROOF: For (1): Proof follows from the definition of µ(k)
t and applying triangle inequality along

with Assumption 5.

For (2): Proof follows from the above result.

Lemma A.16. The error term E∥et∥2 is bounded as

E∥et∥2 ≤
4V2

(1− α)2KBt

+
272α2V2C

(1− α)2Bt

,

provided that the parameters δ and Bt in Algorithm 3 satisfy the conditions e
δBt

2(1−2δ) ≤ 2K
δ
≤ e

Bt
2

and δ ≤ 1
25KBt

.

PROOF: From the definition of the error term, et, we obtain

E∥et∥2 = E
∥∥∥∥ 1

|Gt|
∑
k∈Gt

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2.
For the proof, we define the following three events and their complements, respectively.

Definition A.1. The three events and their complements are:

1. Event A (Event A!): Recall the event defined in Lemma A.14 as Event A. Note that we have

P[Event A] ≥ 1− δ. Hence, the probability of the complement of Event A called Event A! is

given by P[Event A!] ≤ δ.

2. Event Ā (Event Ā!): The Event Ā consists of the set G ⊂ Gt. Therefore, the complement

Event Ā! consists of the set G ̸⊂ Gt.

3. Event R1 (Event R2): Let Event R1 denotes the event that Rule 1 executes. The complement

of Event R1, Event R2 denotes the event that Rule 2 executes.

We provide the definitions of Rule 1 and Rule 2 below:

Rule 1: Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 2Tµ}, where the vector median is given by

µmed
t = µ

(k)
t for k ∈ [K] is any WN such that |{k′ ∈ [K] : ∥µ(k′)

t −µ
(k)
t ∥ ≤ Tµ}| > K/2. However,

|Gt| < (1− α)K then Rule 2 is used.

107

Rule 2: Gt = {k ∈ [K] : ∥µ(k)
t − µmed

t ∥ ≤ 4V}, where the vector median is modified as

µmed
t = µ

(k)
t where k ∈ [K] is any WN s.t. |{k′ ∈ [K] : ∥µ(k′)

t − µ
(k)
t ∥ ≤ 2V}| > K/2.

Relationship between events:

• From Definition of Event A in Definition A.1, Event A ⊂ Event Ā. Furthermore, from

Lemma A.14, we obtain

P[Event Ā] ≥ P[Event A] ≥ 1− δ. (A.82)

• From above, we get Event A! ⊃ Event Ā!. Furthermore, from Lemma A.14, we obtain

P[Event Ā!] ≤ P[Event A!] ≤ δ. (A.83)

• From the definitions of Event R1 and Event A in Definition A.1, Event A ⊂ Event R1.

Hence, Lemma A.14 yields

P[Event R1] ≥ P[Event A] ≥ 1− δ. (A.84)

• Note that Event R2 is the complement of Event R1. Therefore, Event R2 ⊂ Event A!.

Hence, Lemma A.14 yields

P[Event R2] ≤ P[Event A!] ≤ δ. (A.85)

Using law of total expectation, we have

E∥et∥2

=P[EventĀ]E
[
∥et∥2|EventĀ

]
+P[EventĀ!]E

[
∥et∥2|EventĀ!

]
(a)

≤ E
[
∥et∥2|Event Ā

]
+ δ E

[
∥et∥2|Event Ā!

]
(A.86)

108

where we use Eq. (A.82) and Eq. (A.83) in (a). Considering the term E
[
∥et∥2|Event Ā

]
from

above, we get

E
[
∥et∥2|Event Ā

]
(b)

≤ 2

(1− α)2K2

(
E

[∥∥∥∥∑
k∈G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2∣∣∣∣Event Ā

]

+ E

[∥∥∥∥ ∑
k∈Gt\G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2︸ ︷︷ ︸
IGt\G

∣∣∣∣Event Ā

])
, (A.87)

where we use |Gt| ≥ (1 − α)K and G ⊂ Gt under Event Ā, and Lemma A.13. Consider the first

term in Eq. (A.87), noting that f(x̃t−1; ξ
(k)
t,i) are chosen uniformly independently across samples

i ∈ [B] and WNs k ∈ [K], we get

E

[∥∥∥∥∑
k∈G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2∣∣∣∣ Event Ā

]
(a)
=

1

B2
t

E

[∑
k∈G

Bt∑
i=1

∥∥∇f(x̃t−1; ξ
(k)
t,i)−∇f(x̃t−1)

∥∥2∣∣∣∣Event Ā

]

+
1

B2
t

E

 ∑
(k,i) ̸=(k′,i′),k,k′∈G

⟨∇f(x̃t−1; ξ
(k)
t,i)−∇f(x̃t−1)

,∇f(x̃t−1; ξ
(k′)
t,i′)−∇f(x̃t−1)⟩

∣∣∣∣ Event Ā
]
,

as the second term in (a) is zero under Event Ā and using Assumption 5 and |G| ≤ K, we have

E

[∥∥∥∥∑
k∈G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2∣∣∣∣ Event Ā

]
(a)

≤ KV2

Bt

, (A.88)

Considering the second term in Eq. (A.87),

noting that WNs k ∈ Gt\G under Event Ā can come from either Rule 1 or Rule 2, and rewriting

109

E[IGt\G
∣∣Event Ā] using the law of total expectation yields

E[IGt\G
∣∣Event Ā]

(a)
= P[Event R1

∣∣Event Ā] E[IGt\G
∣∣Event Ā,Event R1]

+ P[Event R2
∣∣Event Ā] E[IGt\G

∣∣Event Ā,Event R2]

(b)

≤ E[IGt\G
∣∣Event Ā,Event R1]

+

(
δ

1− δ

)
E[IGt\G

∣∣Event Ā,Event R2]. (A.89)

where the fact Event R2 is the complement of Event R1 is used in (a). Next, (b) follows from

P[Event R2
∣∣Event Ā]=

P[Event R2 ∩ Event Ā]
P[Event Ā]

(a)

≤ P[Event R2]

P[Event Ā]

(b)

≤ δ

1− δ
.

where (a) follows from [Event R2 ∩ Event Ā] ⊂ Event R2, and (b) follows from Eq. (A.85) and

Eq. (A.82). Next, considering the first term in Eq. (A.89), we obtain

E[IGt\G
∣∣Event Ā,Event R1]

(a)

≤ 2αKE

∑
k∈Gt\G

∥∥µ(k)
t − µmed

t

∥∥2∣∣∣∣Event Ā,Event R1

+ 2αKE

[∑
k∈Gt\G

∥∥µmed
t −∇f(x̃t−1)

∥∥2
︸ ︷︷ ︸

JGt\G

∣∣∣∣Event Ā,Event R1

]

(b)

≤ 2α2K2

[
16V2C

Bt

]
+ 2α2K2

[
18V2C

Bt

]
=

68α2K2V2C

Bt

. (A.90)

where adding and subtracting µmed
t , and applying Lemma A.13 and |Gt\G| ≤ αK in (a). (b) is

110

obtained as below

E[JGt\G
∣∣Event Ā,Event R1] = P[Event A

∣∣Event Ā,Event R1]

E[JGt\G
∣∣Event A,Event Ā,Event R1]

+ P[Event A!
∣∣Event Ā,Event R1]

E[JGt\G
∣∣Event A!,Event Ā,Event R1]

(d)

≤ E[JGt\G
∣∣Event A,Event Ā,Event R1]

+

(
δ

1− 2δ

)
E[JGt\G

∣∣Event A!,Event Ā,Event R1]

(e)

≤ αK
9V2C

Bt

+

(
δ

1− 2δ

)
αK9V2

(f)

≤ αK
18V2C

Bt

,

where (d) follows from

P[Event A!
∣∣Event Ā,Event R1] ≤ P[Event A!]

P[Event Ā,Event R1]

≤ δ

1− 2δ
,

where we use [Event A! ∩ Event R1 ∩ Event Ā] ⊂ Event A! and the last inequality follows from

the fact that P[Event Ā ∩ Event R1] = P[Event Ā] + P[Event R1]− P[Event Ā ∪ Event R1] ≥

1 − δ + 1 − δ − 1 = 1 − 2δ. Moreover, we apply Lemma A.14 and Lemma A.15 in (e). Finally,

(f) follows from choosing δ such that e
δBt

2(1−2δ) ≤ 2K
δ

. Considering the second term in Eq. (A.89)

yields

E[IGt\G
∣∣Event Ā,Event R2]

(a)

≤ 2αKE

 ∑
k∈Gt\G

∥∥µ(k)
t − µmed

t

∥∥2∣∣∣∣Event Ā,Event R2

+ 2αKE

∑
k∈Gt\G

∥∥µmed
t −∇f(x̃t−1)

∥∥2∣∣∣∣ Event Ā,Event R2

(b)

≤ 2α2K2
[
16V2

]
+2α2K2

[
9V2
]
=50α2K2V2<68α2K2V2. (A.91)

111

where adding and subtracting µmed
t , and applying Lemma A.13 and |Gt\G| ≤ αK in (a). We

use the fact that under Event R2 WNs k ∈ Gt\G satisfy statement (a) in Lemma A.15 in (b).

Substituting Eq. (A.90) and Eq. (A.91) in Eq. (A.89) yields

E[IGt\G
∣∣Event Ā] ≤ 68α2K2V2C

Bt

+

(
δ

1− δ

)
68α2K2V2

(a)

≤ 136α2K2V2C

Bt

, (A.92)

where (a) follows from choosing δ such that e
δBt

2(1−δ) ≤ 2K
δ

. Substituting Eq. (A.88) and Eq. (A.92)

in Eq. (A.87), we use the bound on the first term in Eq. (A.86) as follows:

E
[
∥et∥2|Event Ā

]
≤ 2

(1− α)2K2

(
KV2

Bt

+
136α2K2V2C

Bt

)

=
2V2

(1− α)2KBt

+
272α2V2C

(1− α)2Bt

. (A.93)

Considering the second term in Eq. (A.86)

δ E
[
∥et∥2|Event Ā!

] (a)

≤ 2δ

(1− α)2K

(
E
[∑

k∈Gt

∥∥µ(k)
t − µmed

t

∥∥2∣∣∣∣ Event Ā!
]

+ E
[∑

k∈Gt

∥∥µmed
t −∇f(x̃t−1)

∥∥2∣∣∣∣ Event Ā!
])

≤ 2δ

(1− α)2K

(
16KV2 + 9KV2

)
= δ

50V2

(1− α)2
, (A.94)

where adding and subtracting µmed
t , applying Lemma A.13, and using |Gt| ≥ (1 − α)K in the

denominator and |Gt| ≤ K in the numerator in (a). Substituting Eq. (A.93) and Eq. (A.94) in

Eq. (A.86), we have

E∥et∥2 ≤
2V2

(1− α)2KBt

+
272α2V2C

(1− α)2Bt

+ δ
50V2

(1− α)2
,

choosing δ ≤ 1
25KBt

, we obtain the final result.

112

A.10 Proof of Corollary 3.1

To guarantee that we get an ϵ-accurate solution, we need T = O
(

1
ϵB1/3

)
iterations for the first term

in Eq. (3.3). For the second term in Eq. (3.3), we need BK = O
(

1
ϵK

)
batch size. We need Bα =

O
(

α2

ϵ

)
batch size for the third term in Eq. (3.3) to account for the Byzantine workers. Hence, the

total number of gradient computations, EGcomp, CN required at the CN (and at the individual WNs)

on an average are of the order of EGcomp, CN(ϵ) ≤ TBK + TBα ≤ O
(

1
ϵ5/3K2/3 +

α4/3

ϵ5/3

)
. Also, the

expected number of gradient computations across the network denoted by, EGcomp, NW, are of the

order of EGcomp, NW(ϵ) ≤ O
(

K1/3

ϵ5/3
+ Kα4/3

ϵ5/3

)
.

Moreover, if α = 0, we get the expected computational complexity and the expected number

of gradient computations across the network as EGcomp, CN(ϵ) ≤ O
(

1
ϵ5/3K2/3

)
and EGcomp, NW(ϵ) ≤

O
(

K1/3

ϵ5/3

)
.

A.11 Proof of Theorem 3.2

Using the smoothness of function f and Lemma A.7, we have:

Eξn,tf(xn+1,t) ≤ f(xn,t)− ηt(1− Lηt)∥∇f(xn,t)∥2

− ηt⟨et,∇f(xn,t)⟩+
L3η2t
2
∥xn,t−x0,t∥2 + Lη2t ∥et∥2. (A.95)

Denoting by Et the expectation w.r.t. all ξ1,t, ξ2,t, . . . given Nt. Since ξ1,t, ξ2,t, . . . are independent

of Nt, Et is equivalent to expectation w.r.t. ξ1,t, ξ2,t, Taking n = Nt and denoting by ENt

expectation w.r.t. Nt, we get

ENtEtf(xNt+1,t) ≤ ENtEtf(xNt,t)−ηt(1−Lηt)ENtEt∥∇f(xNt,t)∥2+Lη2t ∥et∥2

− ηtENtEt⟨et,∇f(xNt,t)⟩+
L3η2t
2

ENtEt∥xNt,t − x0,t∥2

113

Rearranging the terms and using Lemma A.10, Lemma A.19 and Fubini’s theorem [71], we have

ηt(1− Lηt)ENtEt∥∇f(xNt,t)∥2 =
1

Bt

[f(x0,t)− EtENtf(xNt,t)]− ηtENtEt⟨et,∇f(xNt,t)⟩

+
L3η2t
2

ENtEt∥xNt,t − x0,t∥2 + Lη2t ∥et∥2

(a)
=

1

Bt

[EtENtf(x0,t)− EtENtf(xNt,t)] + Lη2t ∥et∥2

− ηtENtEt⟨et,∇f(xNt,t)⟩+
L3η2t
2

ENtEt∥xNt,t − x0,t∥2

Note that in (a), EtENtf(x0,t) = f(x0,t). Denoting the expectation as Ẽ[·], and using xNt,t = x̃t

and x̃t−1 = x0,t, and applying Lemma A.17 we get

ηt(1− Lηt)Ẽ∥∇f(x̃t)∥2 ≤
1

Bt

Ẽ[f(x̃t−1)− f(x̃t)] +
1

Bt

Ẽ⟨et, x̃t−x̃t−1⟩

+
L3η2t
2

Ẽ∥x̃t−x̃t−1∥2+ηt(1+Lηt)∥et∥2

≤ 1

Bt

Ẽ[f (̃xt−1)−f (̃xt)]+

(
1

2ηtBt

(
− 1

Bt

+η2tL
2

))
Ẽ∥x̃t−x̃t−1∥2

− 1

Bt

Ẽ⟨∇f(x̃t), x̃t − x̃t−1⟩+
ηt
Bt

Ẽ∥∇f(x̃t)∥2 +
ηt
Bt

∥et∥2

+
L3η2t
2

Ẽ∥x̃t − x̃t−1∥2 + ηt(1 + Lηt)∥et∥2

where the last inequality follows from Lemma A.18. Rearranging the terms, we get

ηt

(
1−Lηt−

1

Bt

)
Ẽ∥∇f (̃xt)∥2+

(
1−η2tL2Bt−η3tL3B2

t

2ηtB2
t

)
Ẽ∥x̃t−x̃t−1∥2

≤ 1

Bt

Ẽ[f(x̃t−1)− f(x̃t)] +
1

Bt

Ẽ⟨∇f(x̃t), x̃t−1 − x̃t⟩

+ ηt

(
1 + Lηt +

1

Bt

)
∥et∥2.

114

Using the Young’s inequality ⟨a, b⟩ ≤
[
β
2
∥a∥2 + 1

2β
∥b∥2

]
to Ẽ⟨∇f(x̃t), x̃t−1 − x̃t⟩ with β =

1−η2tL
2Bt−η3tL

3B2
t

ηtBt
, a = x̃t−1 − x̃t and b = ∇f(x̃t), and Lemma A.20, we get

ηt

(
1− Lηt −

1

Bt

− 1

2ηtBtβ

)
Ẽ∥∇f(x̃t)∥2

≤ 1

Bt

Ẽ[f(x̃t−1)− f(x̃t)] + ηt

(
1 + Lηt +

1

Bt

)
∥et∥2

ηt

(
1−Lηt−

1

Bt

− 1

2ηtBtβ

)
Ẽ∥∇f (̃xt)∥2≤

1

Bt

Ẽ[f (̃xt−1)−f (̃xt)]

+ ηt

(
1 + Lηt +

1

Bt

)(
2V2

(1−α)2KBt

+
100α2V2C

(1−α)2Bt

)
. (A.96)

Choosing ηt such that we have 1−η2tL2Bt−η3tL3B2
t > 0, this implies that we have 1

2(1−η2tL
2Bt−η3tL

3B2
t)

>

1
2
. Further, we choose ηt such that, we have

1− Lηt −
1

Bt

− 1

2(1− η2tL
2Bt − η3tL

3B2
t)
≥ 1

4
.

Therefore, we choose ηt to ensure the following.

1. 1
2
< 1

2(1−η2tL
2Bt−η3tL

3B2
t)
≤ 5

8
,

2. Lηt ≤ 1
16
, and 1

Bt
≤ 1

16
.

Condition (1) above implies η2tL
2Bt + η3tL

3B2
t ≤ 1

5
. Further ensuring ηt such that η2tL

2Bt ≤
1
10

and η3tL
3B2

t ≤ 1
10
. This implies that ηt ≤ 1

101/2LB
1/2
t

and ηt ≤ 1

101/3LB
2/3
t

. Further from

Condition (2), we get ηt ≤ 1
16L

and Bt ≥ 16. The above discussion implies that we must have

Bt ≥ 16 and we can choose ηt ≤ 1

3LB
2/3
t

as we have

1

3LB
2/3
t

≤ min

{
1

16L
,

1

101/3LB
2/3
t

,
1

101/2LB
1/2
t

}
.

This choice of ηt ensures that

1− Lηt −
1

Bt

− 1

2(1− η2tL
2Bt − η3tL

3B2
t)
≥ 1

4
. (A.97)

115

Now, replacing ηt and Bt, we get

1 + ηtL+
1

Bt

≤ 1 +
1

3B
2/3
t

+
1

Bt

≤ 2. (A.98)

Now replacing Eq.(A.97) and Eq. (A.98) in Eq. (A.96), and replacing ηt =
1

3LB
2/3
t

we get

ηt
4
Ẽ∥∇f(x̃t)∥2 ≤

1

Bt

Ẽ[f(x̃t−1)− f(x̃t)]

+ 2ηt

(
2V2

(1− α)2KBt

+
100α2V2C

(1− α)2Bt

)
Ẽ∥∇f(x̃t)∥2 ≤

12LẼ[f(x̃t−1)− f(x̃t)]

B
1/3
t

+
16V2

(1− α)2KBt

+
800α2V2C

(1− α)2Bt

.

For Bt = B and summing over t = 1, 2, . . . , T and choosing xa using Algorithm 4, we obtain

Ẽ∥∇f(x̃a)∥2

≤ 12LE[f(x̃0)− f(x̃∗)] + 16V2(1− α)−2K−1
∑T

t=1B
−2/3
t∑T

t=1B
1/3
t

+
800α2V2C(1− α)−2

∑T
t=1B

−2/3
t∑T

t=1B
1/3
t

.

Replacing Bt = B, we get

Ẽ∥∇f(x̃a)∥2

≤ 12LE[f(x̃0)− f(x̃∗)]

TB1/3︸ ︷︷ ︸
T=O

(
1

ϵB1/3

)
+

16V2

(1− α)2KB︸ ︷︷ ︸
B=O(1

ϵK)

+
800α2V2C

(1− α)2B︸ ︷︷ ︸
B=O

(
α2

ϵ

)
.

A.12 Useful Lemmas for Proof in Appendix A.11

In this section, we present the following lemmas which are used in the proof of Appendix A.11.

116

Lemma A.17. For the error term, et, we have the following

ηtẼ⟨et,∇f(x̃t)⟩ =
1

Bt

Ẽ⟨et, x̃t−1 − x̃t⟩ − ηt∥et∥2. (A.99)

Lemma A.18. The inner product term in Eq. (A.99) satisfies the following inequality

2ηtẼ⟨et, x̃t − x̃t−1⟩ ≤
(
− 1

Bt

+ η2tL
2

)
Ẽ∥x̃t − x̃t−1∥2

− 2ηtẼ⟨∇f(x̃t), x̃t − x̃t−1⟩+ 2η2t Ẽ∥∇f(x̃t)∥2 + 2η2t Ẽ∥et∥2.

Lemma A.19. For step size ηt ≤ 1

3LB
2/3
t

, we have:

i) Ẽ∥x̃t − x̃t−1∥2 <∞, ii) Ẽ(f(x̃t)− f(x̃∗)) <∞,

iii) Ẽ∥∇f(x̃t)∥2 <∞, iv) Ẽ|⟨et, x̃t − x̃t−1⟩| <∞,

and v) Ẽ|⟨et,∇f(x̃t)⟩| <∞.

Note that the missing proofs of Lemmas A.17, A.18, and A.19 are similar to those of the proofs

of Lemmas A.8, A.9, and A.11 and therefore have been skipped.

Lemma A.20. Choosing Bt in Algorithm 4 then ∥et∥2 is bounded as

∥et∥2 ≤
2V2

(1− α)2KBt

+
100α2V2C

(1− α)2Bt

.

PROOF: From the definition of et and noting that we are in Event A where G ⊂ Gt, we can write

∥et∥2 as

∥et∥2 ≤
2

(1− α)2K2

(∥∥∥∥∑
k∈G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2
+

∥∥∥∥ ∑
k∈Gt\G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2︸ ︷︷ ︸
IGt\G

)
(A.100)

where the inequality follows from the fact that |Gt| ≥ (1 − α)K and from Lemma A.13. Now

117

considering the two terms separately under Event Ā, first consider the terms for k ∈ G

∥∥∥∥∑
k∈G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2 ≤ KCV2

Bt

, (A.101)

where inequality follows from Lemma A.19. Now, consider the second term in Eq. (A.100), we

get

IGt\G =

∥∥∥∥ ∑
k∈Gt\G

(
µ
(k)
t −∇f(x̃t−1)

)∥∥∥∥2
(a)

≤ 2αK
∑

k∈Gt\G

(
∥∥µ(k)

t − µmed
t

∥∥2+∥∥µmed
t −∇f(x̃t−1)

∥∥2)
(b)

≤2αK
[
αK

16V2C

Bt

]
+2αK

[
αK

9V2C

Bt

]
=
50α2K2V2C

Bt

. (A.102)

where (a) follows from Lemma A.13 and |Gt\G| ≤ αK, (b) follows by adding and subtracting

µmed
t and applying Lemma A.13. Now replacing Eq. (A.102) and Eq. (A.101) in Eq. (A.100)

yields the result.

A.13 Proof of Corollary 3.2

To guarantee that we get an ϵ-accurate solution, we need T = O
(

1
ϵB1/3

)
iterations for the first term

in Eq. (3.5). For the second term in Eq. (3.5), we need BK = O
(

1
ϵK

)
batch size. We need Bα =

O
(

α2

ϵ

)
batch size for the third term in Eq. (3.5) to account for the Byzantine workers. Hence,

the total number of gradient computations, EGcomp, CN required at the CN (and at the individual

WNs) on an average are of the order of EGcomp, CN(ϵ) ≤ TBK + TBα ≤ O
(

1
ϵ5/3K2/3 +

α4/3

ϵ5/3

)
.

Also, the expected number of gradient computations across the network denoted by, EGcomp, NW,

are of the order of EGcomp, NW(ϵ) ≤ O
(

K1/3

ϵ5/3
+ Kα4/3

ϵ5/3

)
. Moreover, if α = 0, we get the expected

computational complexity and the expected number of gradient computations across the network

as EGcomp, CN(ϵ) ≤ O
(

1
ϵ5/3K2/3

)
and EGcomp, NW(ϵ) ≤ O

(
K1/3

ϵ5/3

)
.

118

A.14 Proof of Lemma 4.1

Here, we prove the result for the d2(·, ·) cost function, and the proof extends similarly to d(·, ·)

as well. The proof is independent of the choice of the distance function, and we only use the

properties of the assignment matrix. First note that,

∑
i∈R

bicost(Pi, g, C) =
∑
i∈R

bi
∑
p∈Pi

g(p)d2(p, C)

=
∑
i∈R

bi
∑
j∈[n]

Ai,jg(pj) d
2(pj, C)

=
∑
j∈[n]

g(pj) d
2(pj, C)

∑
i∈R

biAi,j. (A.103)

From Property 1 we know that for any j ∈ [n],
∑

i∈R biAi,j ≤ 1 + δ. By combining this fact with

(A.103), we obtain that

∑
i∈R

bicost(Pi, g, C) =
∑
j∈[n]

g(pj) d
2(pj, C)

∑
i∈R

biAi,j

≤ (1 + δ)
∑
j∈[n]

g(pj) d
2(pj, C)

= (1 + δ) · cost(P, g, C)

Similarly, Property 1 ensures that for any j ∈ [n],
∑

i∈R biAi,j ≥ 1. Utilizing this fact in (A.103)

gives us the desired lower bound as follows.

∑
i∈R

bicost(Pi, g, C) =
∑
j∈[n]

g(pj) d
2(pj, C)

∑
i∈R

biAi,j

≥
∑
j∈[n]

g(pj) d
2(pj, C)

= cost(P,C).

119

A.15 Proof of Lemma 4.3

We prove each part of the inequality separately. First, we prove the upper bound on cost(Y, g, C)

followed by the lower bound.

Upper Bound: We first show that for any set of k-centers C ⊂ Rd, and for any i ∈ [m],

cost(Yi, gi, C) ≤ (1 + α)cost(Pi, C) which ensures that the weighted k-centers (Yi, gi) are a good

representation of the partial dataset Pi. Consider the following

cost(Yi, gi, C) =
∑
y∈Yi

gi(y)d(y, C)

=
∑
y∈Yi

|cluster(y, Pi)|d(y, C) (by definition of gi)

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C). (A.104)

For any x ∈ Rd, recall that C(x) denotes its closest center in C. From the above equality, we have

cost(Yi, gi, C) =
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(y))

(a)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(x))

(b)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

(d(x, y) + d(x, C(x)))

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(x, y) +
∑
x∈Pi

d(x, C(x))

= cost(Pi, Yi) + cost(Pi, C)

(c)

≤ (1 + α)cost(Pi, C), (A.105)

where (a) follows from the definition of C(x) and (b) follows from triangular inequality. (c) follows

from the fact that the k-centers Yi on the partial dataset Pi is an α-approximate solution, and

120

therefore, cost(Pi, Yi) ≤ α cost(Pi, C). Next, we have

cost(Y, g, C) =
∑
i∈R

cost(Yi, bi · gi, C)

=
∑
i∈R

bicost(Yi, gi, C)

≤ (1 + α)
∑
i∈R

bicost(Pi, C) ≤ (1 + α)(1 + δ)cost(P,C), (A.106)

where the first inequality follows from (A.105) and the second inequality follows from Lemma

4.1.

Lower Bound: From Lemma 4.1 for any set of k-centers C, we have

cost(P,C) ≤
∑
i∈R

bicost(Pi, C)

=
∑
i∈R

bi
∑
x∈Pi

d(x, C(x)). (A.107)

From the definition of cluster centers, we know that for any two points x, y ∈ Rd and for any set

of k-centers C, d(x, C(x)) ≤ d(x, C(y)). Applying this observation in (A.107), we get

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

d(x, C(x))

≤
∑
i∈R

bi
∑
x∈Pi

d(x, C(Yi(x))), (A.108)

121

where Yi(x) is the cluster center in Yi closest to x ∈ Pi. Using triangular inequality, we obtain

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

(d(x, Yi(x)) + d(Yi(x), C(Yi(x))))

=
∑
i∈R

bicost(Pi, Yi) +
∑
i∈R

bi
∑
x∈Pi

d(Yi(x), C(Yi(x)))

=
∑
i∈R

bicost(Pi, Yi) +
∑
i∈R

bi
∑
x∈Yi

|cluster(y, Pi)|d(y, C(y))

=
∑
i∈R

bicost(Pi, Yi) +
∑
i∈R

bicost(Yi, gi, C)

=
∑
i∈R

bicost(Pi, Yi) +
∑
i∈R

cost(Yi, bi · gi, C)

=
∑
i∈R

bicost(Pi, Yi) + cost(Y, g, C). (A.109)

Combining the upper and the lower bounds with α = 1, we obtain the final result.

A.16 Proof of Theorem 4.3

Utilizing the lower bound from Lemma 4.3 with C = Ĉ, we have

cost(P, Ĉ) ≤ cost(Y, g, Ĉ) +
∑
i∈R

bicost(Pi, Yi)

(a)

≤ α cost(Y, g, C∗) + α
∑
i∈R

bicost(Pi, C
∗)

(b)

≤ α(1 + α)(1 + δ)cost(P,C∗) + α(1 + δ)cost(P,C∗)

= α(1 + δ)(2 + α)cost(P,C∗), (A.110)

where (a) follows from the fact that Ĉ and Yi are the α-approximate set of centers for the weighted

dataset (Y, g) and the partial dataset Pi, respectively. For (b), we utilize the upper bound in Lemma

4.3 and Lemma 4.1 with C = C∗.

122

A.17 Proof of 4.4

Lemma A.21. For the k-means clustering, for any set of k-centers C ⊂ Rd, we have

1

2
cost(P,C)−

∑
i∈R

bicost(Pi, Yi) ≤ cost(Y, g, C) ≤ (2 + 2α)(1 + δ)cost(P,C).

PROOF: [Proof of Lemma A.21] We split the proof into two parts. The first part involves the upper

bound and in the second part, we prove the lower bound.

Upper Bound: We first show that for any set of k-centers C ⊂ Rd, for any i ∈ [m], cost(Yi, gi, C) ≤

(2 + 2α)cost(Pi, C) which ensures that the weighted k-centers (Yi, gi) are a good representation

of the partial dataset Pi. Consider the following:

cost(Yi, gi, C) =
∑
y∈Yi

gi(y)d2(y, C)

=
∑
y∈Yi

|cluster(y, Pi)|d2(y, C)

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

d2(y, C). (A.111)

123

For any x ∈ Rd, recall that C(x) denotes its closest center in C. From the above equality, we have

cost(Yi, gi, C) =
∑
y∈Yi

∑
x∈cluster(y,Pi)

d2(y, C(y))

(a)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d2(y, C(x))

(b)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

(2d2(x, y) + 2d2(x, C(x)))

=
∑
y∈Yi

∑
x∈cluster(y,Pi)

2d2(x, y) +
∑
x∈Pi

2d2(x, C(x))

= 2cost(Pi, Yi) + 2cost(Pi, C)

(c)

≤ (2 + 2α)cost(Pi, C), (A.112)

where (a) follows from the definition of C(x) and (b) follows from scaled triangular inequality.

(c) follows from the fact that Yi is a set of α-approximate k centers on the partial dataset Pi,

cost(Pi, Yi) ≤ α cost(Pi, C). Next, we have

cost(Y,C, g) =
∑
i∈R

cost(Yi, C, bi · gi)

=
∑
i∈R

bicost(Yi, C, gi)

≤ (2 + 2α)
∑
i∈R

bicost(Pi, C) ≤ (2 + 2α)(1 + δ)cost(P,C), (A.113)

where the first inequality follows from (A.112) and the second inequality follows from Lemma

4.1.

Lower Bound: From Lemma 4.1 for any set of k-centers C, we have

cost(P,C) ≤
∑
i∈R

bicost(Pi, C)

=
∑
i∈R

bi
∑
x∈Pi

d2(x, C(x)). (A.114)

124

From the definition of cluster centers, we know that for any two points x, y ∈ Rd and for any set

of k-centers, d2(x, C(x)) ≤ d2(x, C(y)). Applying this observation in (A.114), we get

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

d2(x, C(x))

≤
∑
i∈R

bi
∑
x∈Pi

d2(x, C(Yi(x))), (A.115)

where Yi(x) is the cluster center in Yi closest to x ∈ Pi. Using scaled triangular inequality, we

obtain

cost(P,C) ≤
∑
i∈R

bi
∑
x∈Pi

(2d2(x, Yi(x)) + 2d2(Yi(x), C(Yi(x))))

=
∑
i∈R

2bicost(Pi, Yi) +
∑
i∈R

bi
∑
x∈Pi

2d2(Yi(x), C(Yi(x)))

=
∑
i∈R

2bicost(Pi, Yi) +
∑
i∈R

bi
∑
x∈Yi

|cluster(y, Pi)|2d2(y, C(y))

=
∑
i∈R

2bicost(Pi, Yi) +
∑
i∈R

2bicost(Yi, C, gi)

=
∑
i∈R

2bicost(Pi, Yi) +
∑
i∈R

2cost(Yi, C, bi · gi)

=
∑
i∈R

2bicost(Pi, Yi) + 2cost(Y,C, g). (A.116)

Combining the upper and the lower bounds, we obtain the final result.

PROOF: [Proof of Theorem 4.4] Utilizing the lower bound from Lemma A.21 with C = Ĉ, we

125

have

cost(P, Ĉ) ≤ 2cost(Y, Ĉ, g) +
∑
i∈R

2bicost(Pi, Yi)

(a)

≤ 2αcost(Y,C∗, g) + α
∑
i∈R

2bicost(Pi, C
∗)

(b)

≤ 2α(2 + 2α)(1 + δ)cost(P,C∗) + 2α(1 + δ)cost(P,C∗)

= 2α(3 + 2α)(1 + δ)cost(P,C∗), (A.117)

where (a) follows from the fact that Ĉ and Yi are the α-approximate set of centers for the weighted

dataset (Y, g) and the partial dataset Pi, respectively. For (b), we utilize the upper bound in Lemma

A.21 and Lemma 4.1 with C = C∗.

A.18 Proof of Lemma 4.4

For any i ∈ R, note that the weighted point set (Yi, gi) is an δ-coreset of the partial dataset Pi.

Hence, from the Definition 4.3, we have that for any set of k-centers C ⊂ Rd,

(1− δ)cost(Pi, C) ≤ cost(Yi, gi, C) ≤ (1 + δ)cost(Pi, C). (A.118)

For Y = ∪i∈RYi and any set of k-centers C, we have

cost(Y, g, C) =
∑
y∈Y

g(y)d2(y, C)

=
∑
i∈R

bi
∑
y∈Yi

gi(y)d2(y, C)

=
∑
i∈R

bicost(Yi, gi, C). (A.119)

126

Combining (A.119) and (A.118), we get

(1− δ)
∑
i∈R

bicost(Pi, C) ≤ cost(Y, g, C) ≤ (1 + δ)
∑
i∈R

bicost(Pi, C). (A.120)

Now using the above inequality and Lemma 4.1, we have

cost(Y,C, g) ≥ (1− δ)
∑
i∈R

bicost(Pi, C)

≥ (1− δ)cost(P,C), (A.121)

and

cost(Y,C, g) ≤ (1 + δ)
∑
i∈R

bicost(Pi, C)

≤ (1 + δ)(1 + δ)cost(P,C)

≤ (1 + 3δ)cost(P,C) for any δ ≤ 1. (A.122)

Combining the upper and the lower bounds, we obtain the final result.

A.19 Proof of Lemma 4.5

We prove both sides of the inequality separately.

Upper Bound: Using the definitions of cost(Yi, gi, C), and gi(y) = |cluster(y, Pi)|, we get

cost(Yi, gi, C) =
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(y)) (A.123)

≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(y, C(x)). (A.124)

127

Applying triangular inequality, we obtain

cost(Yi, gi, C) ≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

(d(x, y) + d(x, C(x))). (A.125)

Splitting the summation into two terms, simplifying further, and utilizing the definition of cost(·, ·)

yields the final result as the following.

cost(Yi, gi, C) ≤
∑
y∈Yi

∑
x∈cluster(y,Pi)

d(x, y) +
∑
x∈Pi

d(x, C(x))

= cost(Pi, Yi) + cost(Pi, C). (A.126)

Lower Bound: For any machine i ∈ [m], we have

cost(Pi, C) =
∑
x∈Pi

d(x, C(x)).

Let Yi(x) be the cluster center in Yi that is closest to x ∈ Pi. Then, we get

cost(Pi, C) ≤
∑
x∈Pi

d(x, C(Yi(x))),

applying triangular inequality, we have

cost(Pi, C) ≤
∑
x∈Pi

d(x, Yi(x)) +
∑
x∈Pi

d(Yi(x), C(Yi(x))).

simplifying further, and utilizing the definitions of cost(Pi, Yi) and cost(Yi, gi, C), we obtain the

final result.

cost(Pi, C) ≤ cost(Pi, Yi) +
∑
y∈Yi

|cluster(y, Pi)|d(y, C(y))

= cost(Pi, Yi) + cost(Yi, gi, C),

128

A.20 Proof of Theorem 4.6

Let Ĉ be the set of k-centers returned by Algorithm 8. From Lemma 4.2, we have

cost(P, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Ĉ),

utilizing the result from Lemma 4.5 with C = Ĉ, we get

cost(P, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Yi) +
m−t∑
i=1

ρ cost(Yi, gi, Ĉ).

Next, we note that for every Byzantine in j ∈ [m − t], there is an honest machine i ∈ R with a

higher cost, cost(Pi, Yi) ≤ cost(Pj, Yj), which yields the following.

cost(P, Ĉ) ≤
∑
i∈R

ρ cost(Pi, Yi) +
m−t∑
i=1

ρ cost(Yi, gi, Ĉ).

Since Yi is an α approximate k-median solution on the partial dataset Pi, we have cost(Pi, Yi) ≤

α cost(Pi, C
∗). Hence, we have

cost(P, Ĉ) ≤ α
∑
i∈R

ρ cost(Pi, C
∗) +

m−t∑
i=1

ρ cost(Yi, gi, Ĉ).

We apply the result from Lemma 4.2 to the first term. Utilizing the definition of the cost function

on a weighted point set, cost(Y, g, Ĉ) and the α approximate solution Ĉ of the weighted dataset

(Y, g) in the second term, we obtain

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α cost(Y, g, C∗).

129

From the definition of the cost function, cost(Y, g, C∗), we get

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α
m−t∑
i=1

cost(Yi, ρgi, C
∗)

≤ α(1 + δ)cost(P,C∗) + α
m−t∑
i=1

ρ cost(Yi, gi, C
∗).

Next, applying the result from Lemma 4.5 to the second term above, we have

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α
m−t∑
i=1

ρ cost(Pi, Yi) + α

m−t∑
i=1

ρ cost(Pi, C
∗).

For the second term above, using a similar manipulation as before, we obtain

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α
∑
i∈R

ρ cost(Pi, C
∗) + α

m−t∑
i=1

ρ cost(Pi, C
∗),

applying Lemma 4.2 to the second and third terms, we obtain

cost(P, Ĉ) ≤ α(1 + δ)cost(P,C∗) + α(1 + δ)cost(P,C∗) + α(1 + δ)cost(P,C∗)

= 3α(1 + δ)cost(P,C∗)

A.21 Proof of Theorem 4.7

PROOF: [Proof of Lemma 4.6] The weight g̃i(y) can be written as

g̃i(y) =
∑

p∈cluster(y,P̃i)

wi(p)

=
∑

p∈cluster(y,Pi)

wi(p)1(p ∈ P̃i). (A.127)

130

Applying expectation on both sides where the randomness is due to the sampling while construct-

ing the coreset [12], we obtain

E[g̃i(y)] =
∑

p∈cluster(y,Pi)

wi(p)P(p ∈ P̃i).

From [12], we know that wi(p)P(p ∈ P̃i) = 1. Therefore, we have

E[g̃i(y)] =
∑

p∈cluster(y,Pi)

1 = gi(y). (A.128)

From Chernoff’s inequality, we have P(|gi(y)− g̃i(y)| ≤ γgi(y)) ≥ 1− e−2γ2gi(y)2|Pi|, for a given

i ∈ [m− t] and y ∈ Yi.

Taking union bound over all i ∈ [m− t] and y ∈ Yi, and setting γ2 ≥ log k
(mini,y gi(y)2|Pi|) log (k(m−t))

,

the above inequality holds with probability at least 1 − 1
k
. We assume that a cluster includes

itself, thus ensuring that gi(y) ≥ 1. Note that an upper bound for gi(y) and |Pi| is n. Therefore,

γ2 ≥ log k
n3 log (k(m−t))

. Thus, we choose γ = 1/k which satisfies the inequality.

PROOF: [Proof of Lemma 4.7]

We prove the upper and the lower bound separately.

Upper bound: Expanding the definition of cost(Yi, g̃i, C) and g̃i(y) for any y ∈ Yi, we have

cost(Yi, g̃i, C) =
∑
y∈Yi

g̃i(y)d(y, C(y))

≤
∑
y∈Yi

∑
x∈cluster(y,P̃i)

wi(x)d(y, C(x))

(a)

≤
∑
y∈Yi

∑
x∈cluster(y,P̃i)

wi(x)d(y, x) +
∑
y∈Yi

∑
x∈cluster(y,P̃i)

wi(x)d(x, C(x))

= cost(P̃i, wi, Yi) + cost(P̃i, wi, C)

(b)

≤ cost(P̃i, wi, Yi) + (1 + δ)cost(Pi, C). (A.129)

131

The inequality (a) follows from triangular inequality, and (b) follows from the fact that (P̃i, wi) is

a δ-coreset of Pi as mentioned in Observation 1.

Lower bound: For any machine i ∈ [m] with any set of centers C, we have

cost(Pi, C) =
∑
x∈Pi

d(x, C(x)).

Let Yi(x) be the cluster center in Yi that is closest to x ∈ Pi. Then, we get

cost(Pi, C) ≤
∑
x∈Pi

d(x, C(Yi(x))),

applying triangular inequality, we have

cost(Pi, C) ≤
∑
x∈Pi

d(x, Yi(x)) +
∑
x∈Pi

d(Yi(x), C(Yi(x))).

For any y ∈ Yi, define gi(y) := |cluster(y, Pi)|. Simplifying further, and utilizing the defini-

tions of cost(Pi, Yi) and cost(Yi, gi, C), we obtain

cost(Pi, C) ≤ cost(Pi, Yi) +
∑
y∈Yi

|cluster(y, Pi)|d(y, C(y))

= cost(Pi, Yi) + cost(Yi, gi, C). (A.130)

Now, using Observation 2, we know that with probability at least 1− 1/k,

cost(Yi, gi, C) ≤ 1

1− γ
cost(Yi, g̃i, C).

Plugging this back in Equation A.130, and rearranging the terms, we get that

cost(Yi, g̃i, C) ≥ (1− γ)cost(Pi, C)− (1− γ)cost(Pi, Yi)

≥ (1− γ)cost(Pi, C)− (1− γ)

1− δ
cost(P̃i, wi, Yi),

132

where the last inequality follows from the fact that (P̃i, wi) is a δ-coreset of Pi (Observation 1).

PROOF: [Proof of Theorem 4.7]

We need to show that cost(P, Ĉ) ≤ αcost(P,C∗), for some α ≥ 1. Starting from the LHS,

using the lower bound from Lemma 4.7, we get

cost(P, Ĉ) ≤
m−t∑
i=1

ρ cost(Pi, Ĉ)

≤ ρ

1− δ

m−t∑
i=1

cost(P̃i, wi, Yi)︸ ︷︷ ︸
(Term1)

+
ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ)︸ ︷︷ ︸
(Term2)

. (A.131)

We now bound each of the terms in Equation A.131 separately.

Term 1

ρ

1− δ

m−t∑
i=1

cost(P̃i, wi, Yi)
(a)

≤ ρ

1− δ

∑
i∈R

cost(P̃i, wi, Yi)

(b)

≤ ρ(1 + δ)

1− δ

∑
i∈R

cost(Pi, Yi)

(c)

≤ ρ(1 + δ)

1− δ

∑
i∈R

cost(Pi, C
∗)

(d)

≤ (1 + δ)2

1− δ
cost(P,C∗). (A.132)

Since for every Byzantine in the first [m − t] machines, there will exist an honest machine with

higher cost, (a) follows. (b) follows from the fact that (P̃i, wi) is a δ-coreset of Pi. The optimality

of the centers Yi on Pi computed at the honest machines implies (c). Finally, (d) follows from the

property of the assignment matrix shown in Lemma 4.2.

133

Term 2

ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ)
(a)
=

1

1− γ
cost(Y, g̃, Ĉ)

(b)

≤ 1

1− γ
cost(Y, g̃, C∗)

(c)

≤ ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, C
∗) (A.133)

(a) and (c) follow from the definitions of Y and g̃, and the optimality of the k-centers Ĉ on (Y, g)

implies (b).

Now using the upper bound from Lemma 4.7, continuing from Equation A.133, we get

ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ) ≤ ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, C
∗)

≤ ρ(1 + δ)

1− γ

m−t∑
i=1

cost(Pi, C
∗)︸ ︷︷ ︸

Term 21

+
ρ

1− γ

m−t∑
i=1

cost(P̃i, wi, Yi)︸ ︷︷ ︸
Term 22

(A.134)

(A.135)

Term 21, by the property of the assignment matrix is equivalent to

ρ(1 + δ)

1− γ

m−t∑
i=1

cost(Pi, C
∗) =

(1 + δ)2

1− γ
cost(P,C∗) From Lemma 4.2

Also, observe that Term 22 is just a scaled version of Term 1 simplified above in Equa-

tion A.132. Therefore,

ρ

1− γ

m−t∑
i=1

cost(P̃i, wi, Yi) ≤
(1 + δ)2

1− γ
cost(P,C∗)

134

Plugging these two inequalities back in Equation A.134, we get that Term 2 is bounded by

ρ

1− γ

m−t∑
i=1

cost(Yi, g̃i, Ĉ) ≤ 2(1 + δ)2

1− γ
cost(P,C∗) (A.136)

Finally, combining Equation A.132 and Equation A.136 in Equation A.131 we get

cost(P, Ĉ) ≤ (1 + δ)2
(

1

1− δ
+

2

1− γ

)
cost(P,C∗)

≤ (1 + 3δ)

(
1

1− δ
+

2

1− γ

)
cost(P,C∗) (for any δ ∈ (0, 1]).

A.22 Proof of Theorem 4.10

Recall thatR ⊆ [m] denotes the set of stragglers. Then, for any i ∈ [m], we have

P(i ∈ R) = 1− pt. (A.137)

Next, we argue that for any δ > 0, we can choose pa = ℓ
m

large enough to ensure Property 1 with

high probability. First, we analyze the weight of each of the column in the random matrix. For

i ∈ [m] and j ∈ [n], define an event Ei,j as follows

Ei,j =

1 if i ∈ R and Ai,j = 1

0 otherwise.
(A.138)

Note that for any fixed j ∈ [n], {Ei,j}i∈[m] is a collection of m independent events. Further, it

follows from (4.6) and (A.137) that

P(Ei,j = 1) = pa(1− pt).

135

Note that

E

[
m∑
i=1

Ei,j

]
= mpa(1− pt) = ℓ(1− pt).

It then follows from standard Chernoff bound that for any γ ∈ (0, 1), we have

P(

∣∣∣∣∣
m∑
i=1

Ei,j − ℓ(1− pt)

∣∣∣∣∣ ≥ γ(1− pt)) ≤ 2e−
γ2ℓ(1−pt)

3 . (A.139)

Specifically, if we choose γ = δ
2+δ

and ℓ = 6 log (n
√
2)

γ2(1−pt)
, then with probability at least 1− 1

n2 the

following holds for a given j ∈ [n]

1 ≤ 1

(1− γ)ℓ(1− pt)

m∑
i=1

Ei,j ≤ 1 + δ.

Now, taking a union bound over all j ∈ [n], we have with probability at least 1− 1
n

,

1 ≤ 1

(1− γ)ℓ(1− pt)

m∑
i=1

Ei,j ≤ 1 + δ, ∀j ∈ [n]. (A.140)

Recall that to establish Property 1, we need to show that there exists a non-negative vector b ∈ R|R|

such that

bTAR = (a1, . . . , an),

where b = 1
(1−γ)ℓ(1−pt)

· (1, . . . , 1) as a candidate. Note that for this choice of b, we have

bTBR =
1

(1− γ)ℓ(1− pt)
·

(
m∑
i=1

Ei,1, . . . ,
m∑
i=1

Ei,n

)
.

It follows from (A.140) that with probability at least 1− 1
n

, each of the coordinates of bTBR falls

in the interval [1, 1 + δ]. This completes the proof.

136

A.23 Proof of Theorem 4.11

Recall thatR ⊆ [m] indicates the set of honest nodes. Then, for any i ∈ [m], we have

Pr{i ∈ R} = 1− pt. (A.141)

Next, we show that the proposed construction satisfies Property 2 with high probability.

Consider the block of Bi = 1s×s, of A for any i ∈ [m/s]. First we show that for any block and

a random set R of honest machines, the weights of every column concentrates around it expected

values.

For any block i ∈ [m/s] and row in block j ∈ [s], we define an event Fi,j as follows:

Fi,j =

1 if row j in block i ∈ R

0 otherwise.
(A.142)

From (A.141), we know that

Pr{Fi,j = 1} = 1− pt. (A.143)

Therefore, for any fixed block i of s rows, we have

E

[
s∑

j=1

Fi,j

]
= s(1− pt). (A.144)

Utilizing Chernoff bound, for any γ ∈ (0, 1), we have

Pr

{∣∣∣∣∣
s∑

j=1

Fi,j − s(1− pt)

∣∣∣∣∣ ≥ γs(1− pt)

}
≤ 2e−

γ2s(1−pt)
3 . (A.145)

So, with high probability, the random set of Byzantines leave about s(1−pt)(1±γ) rows unaffected

in each block. So summing over the rows in block i of AR, we get that with probability at least

137

1− e−Ω(s(1−pt)),

s(1− pt)(1− γ)1T
s ≤

∑
j∈[s]

Fi,jBi,j ≤ s(1− pt)(1 + γ)1T
s .

where, Bi,j denotes the j-th row in the i-th block Bi.

Setting γ = δ
2+δ

, then with high probability the following holds for a given j ∈ [m].

1T
s ≤

1

(1− γ)s(1− pt)

∑
j∈[s]

Fi,jBi,j ≤ (1 + δ)1T
s . (A.146)

Taking union bound over all blocks i ∈ [m/s], we have with the probability at least 1−m
s
e−Ω(s(1−pt)),

1T
s ≤

1

(1− γ)s(1− pt)

∑
j∈[s]

Fi,jBi,j ≤ (1 + δ)1T
s , ∀i ∈ [m/s]. (A.147)

The result then follows from the fact that all the blocks are in mutually exclusive rows of A.

Setting s = O(logm) for a constant pt, we see that the assignment scheme satisfies Property 2

with probability at least 1−O(1/m) and ρ = 1
(1−γ)s(1−pt)

, where γ = δ
2+δ

.

A.24 Proof of Theorem 4.12

The proof follows from the observation that on deleting any set of t rows, the column weights in

AR are almost preserved with high probability.

Let B ⊂ [m] denote a fixed set of t Byzantines. the rows of A indexed by B ⊂ [m], the

expected weight of a fixed column j is p(m − t). Therefore, from standard Chernoff bounds it

follows that

Pr[|wt(A′
j)− p(m− t)| ≥ γp(m− t)] ≤ e−

γ2

3
p(m−t),

where wt(A′
j) denotes the number of non-zero entries in the j-th column of AR - the submatrix of

A obtained from deleting the rows in B.

138

By a union bound over all
(
m
t

)
subsets of rows and all n columns of A, we get that with

probability at least

1− n ·mt · e−
γ2

3
p(m−t),

all columns of A will have weight in the range [(1 − γ)p(m − t), (1 + γ)p(m − t)]. Therefore,

setting ρ = (1− γ)p(m− t), we get that for any set of B of t rows,

1T
n ≤ ρ

∑
i∈[m]\B

ai ≤ (1 + δ)1T
n

for δ = 2γ
1−γ

.

Setting p = O(1/ logm), the result follows for any t = O(m/ log2m), with probability at least

1− 1/m.

A.25 Proof of Theorem 4.13

Let G = (L∪R,E) be the double cover of a c-regular expander graph on m vertices with expansion

λ = max{|λ2|, |λn|}

We construct the m ×m assignment matrix A from G by setting Au,v = 1 if there is an edge

between (u, v) ∈ G for any u ∈ R and, v ∈ L. Note that each column of A has weight exactly

c. Also, any set of t Byzantines will now correspond to a set of t vertices in R. We show that

removing any set of t vertices from R does not reduce the individual degrees of any vertex v ∈ L

by a lot. This implies that the column weight in AR is almost preserved.

Using Expander Mixing Lemma, we get that for any vertex v ∈ L, and any set of t vertices

B ⊂ R,

|E({v}, B)| ≤ c

m
t+ λ

√
t

= c

(
t

m
+

λ

c

√
t

)
.

139

Therefore, for
(

t
m
+ λ

c

√
t
)
= γ, all vertices v ∈ L are connected to at most cγ machines in any

set of t machines in R. So on deleting any set of t vertices in R all the vertices v ∈ L will have

degree deg(v) ∈ [(1− γ)c, c].

Therefore, setting ρ = 1
c(1−γ)

, we satisfy
∑

i∈R ai ≤ 1
1−γ

1T
n = (1 + δ)1T

n , for γ = δ
1+δ

.

Using the expander constructions in [8], we get an assignment scheme that is resilient to any

set of t = O(
√
logm/ log logm) Byzantines with an overhead of O(logm) tasks per machine.

140

REFERENCES

[1] D. Alistarh, Z. Allen-Zhu, and J. Li, “Byzantine stochastic gradient descent,” in Advances in

Neural Information Processing Systems 31. Curran Associates, Inc., 2018, pp. 4613–4623.

27, 28, 29, 30, 31, 32, 34, 35, 105

[2] Z. Allen-Zhu, F. Ebrahimian, J. Li, and D. Alistarh, “Byzantine-resilient non-convex

stochastic gradient descent,” arXiv preprint arXiv:2012.14368, 2020. 29

[3] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep learning via over-

parameterization,” in International Conference on Machine Learning. PMLR, 2019, pp.

242–252. 10

[4] P. Awasthi, M. Balcan, and C. White, “General and robust communication-efficient algo-

rithms for distributed clustering,” CoRR, vol. abs/1703.00830, 2017. 46

[5] A. Bakshi, R. Jayaram, and D. P. Woodruff, “Learning two layer rectified neural networks

in polynomial time,” in Conference on Learning Theory. PMLR, 2019, pp. 195–268. 10

[6] M.-F. F. Balcan, S. Ehrlich, and Y. Liang, “Distributed k-means and k-median clustering on

general topologies,” Advances in neural information processing systems, vol. 26, 2013. 46,

47

[7] A. Bhaskara and M. Wijewardena, “Distributed clustering via lsh based data partitioning,”

in International Conference on Machine Learning. PMLR, 2018, pp. 570–579. 46

[8] Y. Bilu and N. Linial, “Lifts, discrepancy and nearly optimal spectral gap,” Combinatorica,

vol. 26, no. 5, pp. 495–519, 2006. 72, 139

141

[9] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer, “Machine learning with adver-

saries: Byzantine tolerant gradient descent,” in Advances in Neural Information Processing

Systems 30, 2017, pp. 119–129. 27, 28, 29, 30, 47

[10] V. Braverman, V. Cohen-Addad, H.-C. S. Jiang, R. Krauthgamer, C. Schwiegelshohn, M. B.

Toftrup, and X. Wu, “The power of uniform sampling for coresets,” in 2022 IEEE 63rd

Annual Symposium on Foundations of Computer Science (FOCS). IEEE, 2022, pp. 462–

473. 63

[11] V. Braverman, D. Feldman, H. Lang, and D. Rus, “Streaming coreset constructions for

m-estimators,” in Approximation, Randomization, and Combinatorial Optimization. Algo-

rithms and Techniques (APPROX/RANDOM 2019). Schloss Dagstuhl-Leibniz-Zentrum

fuer Informatik, 2019. 63

[12] V. Braverman, D. Feldman, H. Lang, A. Statman, and S. Zhou, “Efficient coreset construc-

tions via sensitivity sampling,” in Asian Conference on Machine Learning. PMLR, 2021,

pp. 948–963. 48, 63, 130

[13] S. Bubeck et al., “Convex optimization: Algorithms and complexity,” Foundations and

Trends® in Machine Learning, vol. 8, no. 3-4, pp. 231–357, 2015. 81

[14] S. Bulusu, V. Gandikota, A. Mazumdar, A. S. Rawat, and P. K. Varshney, “Byzantine re-

silient distributed clustering with redundant data assignment,” in 2021 IEEE International

Symposium on Information Theory (ISIT), 2021, pp. 2143–2148. 48, 49

[15] S. Bulusu, P. Khanduri, P. Sharma, and P. K. Varshney, “On distributed stochastic gradient

descent for nonconvex functions in the presence of byzantines,” in ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2020, pp. 3137–3141. 29

142

[16] S. Bulusu, Q. Li, and P. K. Varshney, “On convex stochastic variance reduced gradient for

adversarial machine learning,” in 2019 IEEE Global Conference on Signal and Information

Processing (GlobalSIP). IEEE, 2019, pp. 1–5. 29

[17] B. Buyukates, E. Ozfatura, S. Ulukus, and D. Gündüz, “Gradient coding with dynamic

clustering for straggler mitigation,” in ICC 2021-IEEE International Conference on Com-

munications. IEEE, 2021, pp. 1–6. 47

[18] J. Byrka, K. Sornat, and J. Spoerhase, “Constant-factor approximation for ordered k-

median,” in Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Com-

puting, 2018, pp. 620–631. 57

[19] Y. Cao and Q. Gu, “Tight sample complexity of learning one-hidden-layer convolutional

neural networks,” Advances in Neural Information Processing Systems, vol. 32, 2019. 10

[20] Z. Charles, D. Papailiopoulos, and J. Ellenberg, “Approximate gradient coding via sparse

random graphs,” arXiv preprint arXiv:1711.06771, 2017. 69

[21] J. Chen, H. Sun, D. Woodruff, and Q. Zhang, “Communication-optimal distributed cluster-

ing,” Advances in Neural Information Processing Systems, vol. 29, pp. 3727–3735, 2016.

46

[22] S. Chen, A. R. Klivans, and R. Meka, “Learning deep RELU networks is fixed-parameter

tractable,” in IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS).

IEEE, 2022, pp. 696–707. 10

[23] ——, “Learning deep relu networks is fixed-parameter tractable,” in 2021 IEEE 62nd An-

nual Symposium on Foundations of Computer Science (FOCS), 2022, pp. 696–707. 78

[24] Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning in adversarial settings:

Byzantine gradient descent,” Proceedings of the ACM on Measurement and Analysis of

Computing Systems, vol. 1, no. 2, pp. 1–25, 2017. 16, 27, 47

143

[25] V. Cohen-Addad, K. G. Larsen, D. Saulpic, and C. Schwiegelshohn, “Towards optimal

lower bounds for k-median and k-means coresets,” in Proceedings of the 54th Annual ACM

SIGACT Symposium on Theory of Computing, ser. STOC 2022. New York, NY, USA:

Association for Computing Machinery, 2022, p. 1038–1051. 60

[26] V. Cohen-Addad, D. Saulpic, and C. Schwiegelshohn, “A new coreset framework for cluster-

ing,” in Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing,

2021, pp. 169–182. 60

[27] C. Daskalakis, T. Gouleakis, C. Tzamos, and M. Zampetakis, “Efficient statistics, in high di-

mensions, from truncated samples,” in 2018 IEEE 59th Annual Symposium on Foundations

of Computer Science (FOCS). IEEE, 2018, pp. 639–649. 4, 13, 14, 15, 81, 82

[28] D. Data and S. Diggavi, “On byzantine-resilient high-dimensional stochastic gradient de-

scent,” in 2020 IEEE International Symposium on Information Theory (ISIT), 2020, pp.

2628–2633. 47

[29] D. Data, L. Song, and S. Diggavi, “Data encoding methods for byzantine-resilient dis-

tributed optimization,” in 2019 IEEE International Symposium on Information Theory

(ISIT), 2019, pp. 2719–2723. 47

[30] D. Data and S. Diggavi, “Byzantine-resilient high-dimensional federated learning,” arXiv

e-prints, pp. arXiv–2006, 2020. 47

[31] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed online pre-

diction using mini-batches,” Journal of Machine Learning Research, vol. 13, no. Jan, pp.

165–202, 2012. 27

[32] I. Diakonikolas, G. Kamath, D. Kane, J. Li, A. Moitra, and A. Stewart, “Robust estimators

in high-dimensions without the computational intractability,” SIAM Journal on Computing,

vol. 48, no. 2, pp. 742–864, 2019. 4, 10

144

[33] I. Diakonikolas and D. M. Kane, “Recent advances in algorithmic high-dimensional robust

statistics,” arXiv preprint arXiv:1911.05911, 2019. 4, 10

[34] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global minima of deep

neural networks,” in International Conference on Machine Learning. PMLR, 2019, pp.

1675–1685. 10

[35] S. Dutta, G. Joshi, S. Ghosh, P. Dube, and P. Nagpurkar, “Slow and stale gradients can

win the race: Error-runtime trade-offs in distributed sgd,” in International conference on

artificial intelligence and statistics. PMLR, 2018, pp. 803–812. 47

[36] D. Feldman and M. Langberg, “A unified framework for approximating and clustering data,”

in Proceedings of the forty-third annual ACM symposium on Theory of computing, 2011, pp.

569–578. 60

[37] D. Feldman, M. Monemizadeh, C. Sohler, and D. P. Woodruff, “Coresets and sketches for

high dimensional subspace approximation problems,” in Proceedings of the Twenty-First

Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’10. USA: Society for

Industrial and Applied Mathematics, 2010, p. 630–649. 60

[38] D. Feldman, M. Schmidt, and C. Sohler, “Turning big data into tiny data: Constant-size

coresets for k-means, pca and projective clustering,” in Proceedings of the Twenty-Fourth

Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’13. USA: Society for

Industrial and Applied Mathematics, 2013, p. 1434–1453. 52, 60

[39] ——, “Turning big data into tiny data: Constant-size coresets for k-means, pca, and projec-

tive clustering,” SIAM Journal on Computing, vol. 49, no. 3, pp. 601–657, 2020. 60

[40] Z. Feng, P. Kacham, and D. Woodruff, “Dimensionality reduction for the sum-of-distances

metric,” in International conference on machine learning. PMLR, 2021, pp. 3220–3229.

60

145

[41] P. Fränti and O. Virmajoki, “Iterative shrinking method for clustering problems,” Pattern

Recognition, vol. 39, no. 5, pp. 761–775, 2006. 72

[42] S. Frei, Y. Cao, and Q. Gu, “Agnostic learning of a single neuron with gradient descent,”

Advances in Neural Information Processing Systems, vol. 33, pp. 5417–5428, 2020. 10

[43] V. Gandikota, A. Mazumdar, and A. S. Rawat, “Reliable distributed clustering with re-

dundant data assignment,” in 2020 IEEE International Symposium on Information Theory

(ISIT), 2020, pp. 2556–2561. 48, 49

[44] W. Gao, A. V. Makkuva, S. Oh, and P. Viswanath, “Learning one-hidden-layer neural net-

works under general input distributions,” in The 22nd International Conference on Artificial

Intelligence and Statistics. PMLR, 2019, pp. 1950–1959. 3

[45] A. Ghosh, R. K. Maity, S. Kadhe, A. Mazumdar, and K. Ramchandran, “Communication-

efficient and byzantine-robust distributed learning,” in 2020 Information Theory and Appli-

cations Workshop (ITA). IEEE, 2020, pp. 1–28. 47

[46] M. Glasgow and M. Wootters, “Approximate gradient coding with optimal decoding,” arXiv

preprint arXiv:2006.09638, 2020. 47, 71

[47] S. Goel, S. Karmalkar, and A. Klivans, “Time/accuracy tradeoffs for learning a ReLU with

respect to gaussian marginals,” Advances in Neural Information Processing Systems, vol. 32,

2019. 10

[48] S. Goel, A. Klivans, and R. Meka, “Learning one convolutional layer with overlapping

patches,” in International Conference on Machine Learning. PMLR, 2018, pp. 1783–1791.

10

[49] T. F. Gonzalez, “Clustering to minimize the maximum intercluster distance,” Theoretical

computer science, vol. 38, pp. 293–306, 1985. 46

146

[50] S. Guha, Y. Li, and Q. Zhang, “Distributed partial clustering,” in Proceedings of the 29th

ACM Symposium on Parallelism in Algorithms and Architectures, ser. SPAA ’17. Associ-

ation for Computing Machinery, 2017, p. 143–152. 46

[51] ——, “Distributed partial clustering,” ACM Transactions on Parallel Computing (TOPC),

vol. 6, no. 3, pp. 1–20, 2019. 51

[52] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, and W. A. Stahel, Robust statistics: The

approach based on influence functions. John Wiley & Sons, 2011, vol. 196. 10

[53] S. Han, “Systematic design of decentralized algorithms for consensus optimization,” IEEE

Control Systems Letters, vol. 3, no. 4, pp. 966–971, 2019. 79

[54] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P.

Xing, “More effective distributed ml via a stale synchronous parallel parameter server,” in

Advances in neural information processing systems, 2013, pp. 1223–1231. 27

[55] S. Hoory, N. Linial, and A. Wigderson, “Expander graphs and their applications,” Bulletin

of the American Mathematical Society, vol. 43, no. 4, pp. 439–561, 2006. 71

[56] P. J. Huber, “Robust Estimation of a Location Parameter,” The Annals of Mathematical

Statistics, vol. 35, no. 1, pp. 73 – 101, 1964. 12

[57] ——, Robust statistics. John Wiley & Sons, 2004, vol. 523. 10

[58] IHS, “Internet of things (iot) connected devices installed base world-wide from 2015 to

2025,” 2016. 1

[59] X. Jia, K. Sheth, and O. Svensson, “Fair colorful k-center clustering,” in International Con-

ference on Integer Programming and Combinatorial Optimization, 2020, pp. 209–222. 80

[60] B. Jiang and S. Zhang, “Iteration bounds for finding the ϵ-stationary points for structured

nonconvex optimization,” arXiv preprint arXiv:1410.4066, 2014. 32

147

[61] P. Jiang and G. Agrawal, “A linear speedup analysis of distributed deep learning with sparse

and quantized communication,” in Advances in Neural Information Processing Systems,

2018, pp. 2525–2536. 30, 35, 37

[62] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous univariate distributions, volume

1. John wiley & sons, 1995, vol. 289. 14

[63] R. Johnson and T. Zhang, “Accelerating stochastic gradient descent using predictive vari-

ance reduction,” in Advances in Neural Information Processing Systems 26. Curran Asso-

ciates, Inc., 2013, pp. 315–323. 27

[64] D. M. Kane, “Robust learning of mixtures of Gaussians,” in Proceedings of the 2021 ACM-

SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2021, pp. 1246–1258. 10

[65] C. Karakus, Y. Sun, S. Diggavi, and W. Yin, “Straggler mitigation in distributed optimization

through data encoding,” Advances in Neural Information Processing Systems, vol. 30, 2017.

47

[66] M. Kleindessner, P. Awasthi, and J. Morgenstern, “Fair k-center clustering for data summa-

rization,” in International Conference on Machine Learning, 2019, pp. 3448–3457. 80

[67] P. Kothari, P. Manurangsi, and A. Velingker, “Private robust estimation by stabilizing convex

relaxations,” in Conference on Learning Theory. PMLR, 2022, pp. 723–777. 79

[68] K. A. Lai, A. B. Rao, and S. Vempala, “Agnostic estimation of mean and covariance,” in

2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS), 2016,

pp. 665–674. 10

[69] L. Lamport, R. Shostak, and M. Pease, “The Byzantine generals problem,” ACM Trans-

actions on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, 1982. 27,

47

148

[70] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up dis-

tributed machine learning using codes,” IEEE Transactions on Information Theory, vol. 64,

no. 3, pp. 1514–1529, 2018. 47

[71] L. Lei, C. Ju, J. Chen, and M. I. Jordan, “Non-convex finite-sum optimization via scsg

methods,” in Advances in Neural Information Processing Systems, 2017, pp. 2348–2358.

27, 30, 36, 94, 95, 101, 102, 113

[72] Q. Lei, J. Lee, A. Dimakis, and C. Daskalakis, “SGD learns one-layer networks in WGANs,”

in International Conference on Machine Learning. PMLR, 2020, pp. 5799–5808. 10

[73] L. Li, W. Xu, T. Chen, G. B. Giannakis, and Q. Ling, “RSA: Byzantine-robust stochastic

aggregation methods for distributed learning from heterogeneous datasets,” in Proceedings

of the AAAI Conference on Artificial Intelligence, vol. 33, 2019, pp. 1544–1551. 28, 29, 30,

31

[74] X. Liu, W. Kong, S. Kakade, and S. Oh, “Robust and differentially private mean estimation,”

Advances in Neural Information Processing Systems, vol. 34, pp. 3887–3901, 2021. 79

[75] X. Liu, W. Kong, and S. Oh, “Differential privacy and robust statistics in high dimensions,”

in Conference on Learning Theory. PMLR, 2022, pp. 1167–1246. 79

[76] A. L’Heureux, K. Grolinger, H. F. Elyamany, and M. A. M. Capretz, “Machine learning

with big data: Challenges and approaches,” IEEE Access, vol. 5, pp. 7776–7797, 2017. 26

[77] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Weinberger, and B. Moseley, “Fast distributed

k-center clustering with outliers on massive data,” in Proceedings of the 28th International

Conference on Neural Information Processing Systems - Volume 1, ser. NIPS’15, 2015, p.

1063–1071. 46, 47

[78] A. Mazumdar and A. S. Rawat, “Representation learning and recovery in the ReLU model,”

arXiv preprint arXiv:1803.04304, 2018. 10

149

[79] A. Mukherjee and R. Muthukumar, “Guarantees on learning depth-2 neural networks under

a data-poisoning attack,” arXiv preprint arXiv:2005.01699, 2020. 10

[80] U. Nations, “World population prospects: The 2015 revisionpopulation database,” 2016. 1

[81] Y. Nesterov, Introductory lectures on convex optimization: A basic course. Springer Sci-

ence & Business Media, 2003, vol. 87. 32

[82] S. Oymak, “Stochastic gradient descent learns state equations with nonlinear activations,”

in Conference on Learning Theory. PMLR, 2019, pp. 2551–2579. 10

[83] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor net-

works,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp. 56–69, 2006. 27

[84] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Proceedings of

the 3rd international symposium on Information processing in sensor networks, 2004, pp.

20–27. 27

[85] N. Raviv, I. Tamo, R. Tandon, and A. G. Dimakis, “Gradient coding from cyclic mds codes

and expander graphs,” IEEE Transactions on Information Theory, vol. 66, no. 12, pp. 7475–

7489, 2020. 47, 71

[86] B. Recht, C. Re, S. Wright, and F. Niu, “Hogwild: A lock-free approach to parallelizing

stochastic gradient descent,” in Advances in neural information processing systems, 2011,

pp. 693–701. 27, 47

[87] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, and A. Smola, “Stochastic variance reduction for

nonconvex optimization,” in Proceedings of The 33rd International Conference on Machine

Learning, ser. Proceedings of Machine Learning Research, vol. 48. PMLR, 20–22 Jun

2016, pp. 314–323. 27

150

[88] F. Saadatniaki, R. Xin, and U. A. Khan, “Decentralized optimization over time-varying

directed graphs with row and column-stochastic matrices,” IEEE Transactions on Automatic

Control, vol. 65, no. 11, pp. 4769–4780, 2020. 79

[89] B. Safaei, A. M. H. Monazzah, M. B. Bafroei, and A. Ejlali, “Reliability side-effects in

internet of things application layer protocols,” in 2017 2nd International Conference on

System Reliability and Safety (ICSRS), 2017, pp. 207–212. 1

[90] C. Sohler and D. P. Woodruff, “Strong coresets for k-median and subspace approximation:

Goodbye dimension,” in 2018 IEEE 59th Annual Symposium on Foundations of Computer

Science (FOCS). IEEE, 2018, pp. 802–813. 60

[91] L. Su and J. Xu, “Securing distributed machine learning in high dimensions,” arXiv preprint

arXiv:1804.10140, 2018. 27, 28, 30, 31, 47

[92] R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding

stragglers in distributed learning,” in Proceedings of the 34th International Conference on

Machine Learning, ser. Proceedings of Machine Learning Research, vol. 70. PMLR, 06–11

Aug 2017, pp. 3368–3376. 47, 53

[93] K. Varadarajan and X. Xiao, “A near-linear algorithm for projective clustering integer

points,” in Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Al-

gorithms. SIAM, 2012, pp. 1329–1342. 60

[94] ——, “On the sensitivity of shape fitting problems,” in IARCS Annual Conference on Foun-

dations of Software Technology and Theoretical Computer Science (FSTTCS 2012), ser.

Leibniz International Proceedings in Informatics (LIPIcs), vol. 18, Dagstuhl, Germany,

2012, pp. 486–497. 60

[95] S. Vempala and J. Wilmes, “Gradient descent for one-hidden-layer neural networks: Poly-

nomial convergence and SQ lower bounds,” in Conference on Learning Theory. PMLR,

2019, pp. 3115–3117. 10

151

[96] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and J. S. Rellermeyer, “A

survey on distributed machine learning,” ACM Computing Surveys (CSUR), vol. 53, no. 2,

pp. 1–33, 2020. 27

[97] R. Vershynin, High-dimensional probability: An introduction with applications in data sci-

ence. Cambridge university press, 2018, vol. 47. 82

[98] M. J. Wainwright, High-Dimensional Statistics: A Non-Asymptotic Viewpoint, ser. Cam-

bridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press,

2019. 12

[99] H. Wang, Z. Charles, and D. Papailiopoulos, “Erasurehead: Distributed gradient descent

without delays using approximate gradient coding,” arXiv preprint arXiv:1901.09671, 2019.

47

[100] S. Wang, J. Liu, and N. Shroff, “Fundamental limits of approximate gradient coding,” Pro-

ceedings of the ACM on Measurement and Analysis of Computing Systems, vol. 3, no. 3, pp.

1–22, 2019. 47

[101] D. P. Williamson and D. B. Shmoys, The design of approximation algorithms. Cambridge

university press, 2011. 16

[102] S. Wu, A. G. Dimakis, and S. Sanghavi, “Learning distributions generated by one-layer

ReLU networks,” Advances in Neural Information Processing Systems, vol. 32, pp. 8107–

8117, 2019. 10, 12, 13, 14, 16, 19, 20, 82, 91, 92

[103] Z. Wu, Q. Ling, T. Chen, and G. B. Giannakis, “Federated variance-reduced stochastic

gradient descent with robustness to byzantine attacks,” IEEE Transactions on Signal Pro-

cessing, vol. 68, pp. 4583–4596, 2020. 29

[104] C. Xie, O. Koyejo, and I. Gupta, “Generalized byzantine-tolerant SGD,” arXiv preprint

arXiv:1802.10116, 2018. 29

152

[105] ——, “Phocas: dimensional byzantine-resilient stochastic gradient descent,” arXiv preprint

arXiv:1805.09682, 2018. 27, 28, 29, 30, 39

[106] C. Xie, S. Koyejo, and I. Gupta, “Zeno: Distributed stochastic gradient descent

with suspicion-based fault-tolerance,” in International Conference on Machine Learning.

PMLR, 2019, pp. 6893–6901. 27, 28, 29, 30

[107] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu,

“Petuum: A new platform for distributed machine learning on big data,” IEEE Transactions

on Big Data, vol. 1, no. 2, pp. 49–67, 2015. 2

[108] H. Yang, X. Zhang, M. Fang, and J. Liu, “Byzantine-resilient stochastic gradient descent for

distributed learning: A lipschitz-inspired coordinate-wise median approach,” in 2019 IEEE

58th Conference on Decision and Control (CDC). IEEE, 2019, pp. 5832–5837. 29

[109] Z. Yang and W. Bajwa, “Bridge: Byzantine-resilient decentralized gradient descent,” ArXiv,

vol. abs/1908.08098, 2019. 28

[110] Z. Yang and W. U. Bajwa, “Byrdie: Byzantine-resilient distributed coordinate descent for

decentralized learning,” IEEE Transactions on Signal and Information Processing over Net-

works, vol. 5, no. 4, pp. 611–627, 2019. 28

[111] D. Yin, Y. Chen, K. Ramchandran, and P. L. Bartlett, “Defending against saddle point attack

in byzantine-robust distributed learning,” in ICML, 2019. 27, 28, 30

[112] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust distributed learning: To-

wards optimal statistical rates,” in International Conference on Machine Learning, 2018,

pp. 5650–5659. 16

[113] ——, “Byzantine-robust distributed learning: Towards optimal statistical rates,” in Pro-

ceedings of the 35th International Conference on Machine Learning, ser. Proceedings of

153

Machine Learning Research, vol. 80. PMLR, 10–15 Jul 2018, pp. 5650–5659. 27, 28, 30,

47

[114] H. Yu, R. Jin, and S. Yang, “On the linear speedup analysis of communication efficient

momentum sgd for distributed non-convex optimization,” in International Conference on

Machine Learning, 2019, pp. 7184–7193. 30, 35, 37

[115] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix

multiplication: Fundamental limits and optimal coding,” IEEE Transactions on Information

Theory, vol. 66, no. 3, pp. 1920–1933, 2020. 47

[116] X. Zhang, Y. Yu, L. Wang, and Q. Gu, “Learning one-hidden-layer ReLU networks via gra-

dient descent,” in The 22nd International Conference on Artificial Intelligence and Statistics.

PMLR, 2019, pp. 1524–1534. 10

[117] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola, “Parallelized stochastic gradient descent,”

in Advances in neural information processing systems, 2010, pp. 2595–2603. 27

VITA

NAME OF AUTHOR: Saikiran Bulusu

MAJOR: Electrical and Computer Engineering

EDUCATION:

M.Tech. 2012 Indian Institute of Technology Madras, Chennai, India

B.Tech. 2009 Jawaharlal Nehru Technological University, Hyderabad, India

AWARDS AND HONORS:

NSF travel grant, ISIT, 2023

Student travel award, Thirty-sixth Conference on Neural Information Processing Systems

(NeurIPS), 2022

	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Major Contributions
	Organization of the Dissertation
	Notations
	Bibliographic Note

	Learning Distributions Generated by Single-Layer ReLU Networks
	Introduction
	Problem Statement
	Robust Estimation Algorithm
	Error Bounds for Parameter Estimation
	Simulation Results
	Summary

	Byzantine Resilient Non-Convex SCSG with Distributed Batch Gradient Computations
	Introduction
	Related Work
	Major Contributions

	System Model
	Byzantine SCSG Algorithm
	Byzantine Filtering Step

	Convergence Guarantees in Mean
	Convergence Guarantees in Probability
	Simulation Results
	Benchmarking Schemes
	Performance and Comparison Results

	Summary

	Robust Distributed Clustering with Redundant Data Assignment
	Introduction
	Our Results

	System Model
	Preliminaries

	Data Assignment
	Straggler-resilient Data Assignment
	Byzantine-resilient Data Assignment

	Straggler Resilient Clustering
	Straggler-Resilient Distributed k-median Clustering
	Straggler-Resilient Distributed k-means Clustering
	Straggler-Resilient Distributed (r,k)-Subspace Clustering

	Byzantine Resilient Clustering
	Byzantine Resilient Distributed k-Median Clustering
	Improved Byzantine Resilient Distributed k-Median Clustering
	Byzantine Resilient k-means Clustering

	Construction of Data Assignment Matrix
	Randomized Construction for Random Byzantines
	Explicit Construction for Random Byzantines
	Random Construction for Adversarial Byzantines
	Explicit Construction for Adversarial Byzantines

	Simulation Results
	Straggler-resilient Clustering
	Byzantine-resilient Clustering

	Summary

	Conclusion and Future Directions
	Summary
	Future Directions
	Robust Learning of Multi-layer Neural Network
	Byzantine-resilient Decentralized Optimization
	Robust Fair Clustering

	Appendix: Proofs of Various Results
	Toolbox
	Proof of Proposition 2.1
	Proof of Proposition 2.2
	Proof of Theorem 2.1
	Proof of Corollary 2.1
	Proof of Theorem 2.2
	Additional Simulation Results: Errors vs number of iterations
	Proof of Theorem 3.1
	Useful Lemmas for Proof in Appendix A.8
	Proof of Corollary 3.1
	Proof of Theorem 3.2
	Useful Lemmas for Proof in Appendix A.11
	Proof of Corollary 3.2
	Proof of Lemma 4.1
	Proof of Lemma 4.3
	Proof of Theorem 4.3
	Proof of 4.4
	Proof of Lemma 4.4
	Proof of Lemma 4.5
	Proof of Theorem 4.6
	Proof of Theorem 4.7
	Proof of Theorem 4.10
	Proof of Theorem 4.11
	Proof of Theorem 4.12
	Proof of Theorem 4.13

	References

