126 research outputs found

    Joint Antenna Selection and Precoding Optimization for Small-Cell Network with Minimum Power Consumption

    Get PDF
    We focus on the power consumption problem for a downlink multiuser small-cell network (SCN) considering both the quality of service (QoS) and power constraints. First based on a practical power consumption model taking into account both the dynamic transmit power and static circuit power, we formulate and then transform the power consumption optimization problem into a convex problem by using semidefinite relaxation (SDR) technique and obtain the optimal solution by the CVX tool. We further note that the SDR-based solution becomes infeasible for realistic implementation due to its heavy backhaul burden and computational complexity. To this end, we propose an alternative suboptimal algorithm which has low implementation overhead and complexity, based on minimum mean square error (MMSE) precoding. Furthermore, we propose a distributed correlation-based antenna selection (DCAS) algorithm combining with our optimization algorithms to reduce the static circuit power consumption for the SCN. Finally, simulation results demonstrate that our proposed suboptimal algorithm is very effective on power consumption minimization, with significantly reduced backhaul burden and computational complexity. Moreover, we show that our optimization algorithms with DCAS have less power consumption than the other benchmark algorithms

    Joint Beamforming Design and Stream Allocation for Non-Coherent Joint Transmission in Cell-Free MIMO Networks

    Full text link
    We consider joint beamforming and stream allocation to maximize the weighted sum rate (WSR) for non-coherent joint transmission (NCJT) in user-centric cell-free MIMO networks, where distributed access points (APs) are organized in clusters to transmit different signals to serve each user equipment (UE). We for the first time consider the common limits of maximum number of receive streams at UEs in practical networks, and formulate a joint beamforming and transmit stream allocation problem for WSR maximization under per-AP transmit power constraints. Since the integer number of transmit streams determines the dimension of the beamformer, the joint optimization problem is mixed-integer and nonconvex with coupled decision variables that is inherently NP-hard. In this paper, we first propose a distributed low-interaction reduced weighted minimum mean square error (RWMMSE) beamforming algorithm for WSR maximization with fixed streams. Our proposed RWMMSE algorithm requires significantly less interaction across the network and has the current lowest computational complexity that scales linearly with the number of transmit antennas, without any compromise on WSR. We draw insights on the joint beamforming and stream allocation problem to decouple the decision variables and relax the mixed-integer constraints. We then propose a joint beamforming and linear stream allocation algorithm, termed as RWMMSE-LSA, which yields closed-form updates with linear stream allocation complexity and is guaranteed to converge to the stationary points of the original joint optimization problem. Simulation results demonstrate substantial performance gain of our proposed algorithms over the current best alternatives in both WSR performance and convergence time
    • …
    corecore