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We focus on the power consumption problem for a downlink multiuser small-cell network (SCN) considering both the quality of
service (QoS) and power constraints. First based on a practical power consumption model taking into account both the dynamic
transmit power and static circuit power, we formulate and then transform the power consumption optimization problem into a
convex problem by using semidefinite relaxation (SDR) technique and obtain the optimal solution by the CVX tool.We further note
that the SDR-based solution becomes infeasible for realistic implementation due to its heavy backhaul burden and computational
complexity. To this end, we propose an alternative suboptimal algorithm which has low implementation overhead and complexity,
based on minimum mean square error (MMSE) precoding. Furthermore, we propose a distributed correlation-based antenna
selection (DCAS) algorithm combining with our optimization algorithms to reduce the static circuit power consumption for the
SCN. Finally, simulation results demonstrate that our proposed suboptimal algorithm is very effective on power consumption
minimization, with significantly reduced backhaul burden and computational complexity.Moreover, we show that our optimization
algorithms with DCAS have less power consumption than the other benchmark algorithms.

1. Introduction

Power consumption has increased considerably with the
explosive rise of mobile data traffic demand over the past
decade. Base stations have to consume much power to
transmit a large amount of data traffic to meet the higher
quality of service (QoS) required by the users. As pointed
out in [1], base stations consume much more than sixty
percent of the total power in the cellular networks. However,
this is not in conformity with the lower power consumption
and higher energy efficiency (EE) advocated by the green
communications.

Spurred by growing environmental and economic con-
cerns about how to sustain the exponential traffic growth, it
is important to design energy saving wireless networks. The
small-cell network (SCN) andmassiveMIMO are recognized
as the key technologies for the decrease of power consump-
tion because they have a great potential to enhance the EE

[2, 3]. However, massive MIMO improves the EE, but at the
cost of deploying more hardware infrastructure whichmeans
high power consumption. Besides, SCN achieves higher EE
thanmassiveMIMO inwhatever crowded or sparse areas [4].
Unlike massive MIMO, SCN consists of a number of small-
cell access points (SAPs), where each SAP is connected to
a central processing unit (CPU) through a limited-capacity
backhaul. SCN has less propagation losses and higher spatial
reuse due to the short access distance provided [5], thereby
resulting in higher EE.

So far, methods of improving the SCN’s EE have been
focused on in many related investigations such as com-
munication mode [6], hardware improvement [7], and net-
work deployment [8, 9]. All the above literature provides
comprehensive insights into how the EE can be improved,
while the optimization for power consumption minimiza-
tion of the SCN has also been well investigated in [10–
12]. However, the optimization methods in [10–12] are all
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based on coherent joint transmission, which requires full
channel state information (CSI) of all jointly processed SAPs,
a strict synchronization across the SAPs, and large backhaul
capacity for information exchange [13]. Since the overhead of
exchanging all information and computational complexity of
joint processing is usually prohibitive for practical implemen-
tations, it is not suitable for coherent joint transmission in the
SCN. Facing these challenges, we aim at designing efficient
transmission schemes on the coordination and loosening the
backhaul requirements for the SCN.

In addition, it is well known that antenna selection can
significantly reduce the complexity and power consumption
to improve the spectral efficiency (SE) [14] and the EE [15,
16], which has been extensively studied for MIMO systems.
However, most of these previous works for enhancing the SE
and the EE ignored the fact that increasing the number of
antennas is not always the best choice because of more power
consumed in the circuits part [17]. Therefore, we believe that
antenna selection is also an efficient approach to further
reduce power consumption for the SCN.

To the best knowledge of the authors, the power con-
sumption optimization, which combines the antenna selec-
tion and transmission scheme design for the SCN, is not
presented before. Therefore, it is attractive to analyze and
optimize this issue. In this work, we aim to minimize the
power consumption under the quality of service (QoS)
constraint per user and the power constraint per antenna of
each SAP. First, we transform the initial power consumption
minimization problem into a convex problem by using
semidefinite relaxation (SDR) to obtain the system power
consumption minimization and find the relationship among
power consumption, the number of users, and the number
of antennas per SAP. However, we know that it is difficult for
this optimal algorithm to implement precoding in real-time
due to heavy backhaul burden and high computational com-
plexity when the number of SAPs is large. Then we propose
a suboptimal algorithm which is on the basis of noncoherent
joint transmission, for example, multi-SAP minimum mean
square error (MMSE) precoding, to reduce the backhaul
overhead and computational complexity. In addition, SAPs
equipped with redundant antennas would consume a large
amount of power consumption. In this case, we propose joint
antenna selection and precoding optimization algorithms to
further reduce power consumption. The simulation results
show that there exists a small performance gap between the
optimal algorithm and our proposed suboptimal algorithm.
Moreover, our optimization algorithms with distributed
correlation-based antenna selection (DCAS) are effective
ways to minimize power consumption when the number of
antennas is larger than the number of users per SAP.

The rest of this paper is organized as follows. In Sections
2 and 3, we present the system model and formulate the
power consumption minimization problem, respectively. In
Section 4, we propose a low overhead and complexity
suboptimal algorithm. In Section 5, we propose the DCAS
algorithm to further reduce the power consumption. The
simulation results are presented in Section 6. Finally, the
paper is concluded in Section 7.

Notation. Capital and small bold letters represent matrices
and vectors, respectively; A𝐻 and A𝑇 stand for conjugate
transpose and transpose of matrix A, respectively. C𝑀×𝑁 is
the set of complex matrix with 𝑀 rows and 𝑁 columns,
tr(A) is the trace of matrix A, I is an identity matrix,
and ⟨a, b⟩ denotes correlation of a and b. CN(⋅, ⋅) stands
for a multivariate circularly symmetric complex Gaussian
distribution and we use ‖ ⋅ ‖ and | ⋅ | to denote the Euclidean
norm and absolute value, respectively.The basic notations are
given in the Notations.

2. System Model

As shown in Figure 1, we consider a downlink multiuser SCN
consisting of 𝑆 small cells, where each small cell deploys a SAP
with𝑁𝑡 antennas and all the SAPs are connected to the CPU
through the high-speed backhaul, via which some critical
information, such as the CSI, is shared among all SAPs.There
are 𝐾 single-antenna users simultaneously being served on
the same frequency band. We assume the following aspects
for the SCN:

(i) Constant User Number. Each SAP serves 𝐾𝑟 (≤ 𝑁𝑡)
users and the number of users being served stays
constant in each small cell.

(ii) Uniform Network Topology. SAPs are deployed uni-
formly and randomly in the SCN and the users are
distributed uniformly and randomly in the coverage
area of each SAP.

(iii) Perfect CSI. Perfect CSI is globally available at all SAPs
and users.

Conventionally, each user is associatedwith only one SAP.
Named as single-SAP transmission, it means that each SAP
only serves the users in its own coverage area.However, in this
paper, we assume a user can be associated withmultiple SAPs
and consider noncoherent multi-SAP transmission, which
is much less complicated to be implemented in practice as
compared to the coherent joint transmission which requires
strict phase-synchronization [18]. Under noncoherent multi-
SAP transmission, each user can be associated by multiple
SAPs but the information flow is encoded and transmitted
independently at every SAP. In this way, it is able to strike a
compromise between low implementation complexity (e.g.,
the single-SAP transmission) and good performance (e.g.,
the coherent joint transmission); thereby the noncoherent
multi-SAP transmission can be attractive for practical system
setups.

The channel vector between SAP 𝑗 and user 𝑘 is denoted
by h𝑘𝑗 ∈ C𝑁𝑡×1, modeled as

h𝑘𝑗 = √𝛽𝑘𝑗g𝑘𝑗, (1)

where g𝑘𝑗 is the small scale fading componentwhose elements
are independent and identically distributed (i.i.d.) complex
Gaussian randomvariables with zero-mean and unit variance
and 𝛽𝑘𝑗 represents the large scale fading including shadow
fading, path loss, and penetration loss [3].
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Figure 1: The system model of SCN.

The received signal at user 𝑘 is given by

𝑦𝑘 = 𝑆∑
𝑗=1

h𝐻𝑘𝑗x𝑗 + 𝑛𝑘, (2)

where 𝑛𝑘∼CN(0, 𝜎2𝑘) is the circularly symmetric complex
Gaussian noise. At SAP 𝑗, the transmitted signal x𝑗 is given
by

x𝑗 = 𝐾∑
𝑘=1

w𝑘𝑗𝑓𝑘𝑗, 𝑗 = 1, . . . , 𝑆, (3)

where 𝑓𝑘𝑗 ∈ CN(0, 1) is the transmitted signal from SAP 𝑗
to user 𝑘 and w𝑘𝑗 ∈ C𝑁𝑡×1 is the precoding vector, which is
to be optimized to minimize the power consumption in the
next section.

3. Power Consumption Optimization

The goal of our work is to minimize the power consump-
tion in the considered SCN and show how the result is
affected by the system parameters. We first formulate the
power consumptionminimization problemas follows.Unlike
most ideal power consumption models where the circuits
consumption is ignored, in this work, we consider a practical
power consumption model which consists of two terms,
respectively, corresponding to the transmitted power and the
cost of circuits [19, 20] and denoted by 𝑃1 and 𝑃2 as follows:

𝑃1 = 𝑆∑
𝑗=1

𝜌𝑗 𝐾∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩w𝑘𝑗󵄩󵄩󵄩󵄩󵄩2 , (4)

𝑃2 = 𝑆∑
𝑗=1

𝛼𝑗𝑁𝑡, (5)

where 𝜌𝑗 ≥ 1 and 𝛼𝑗 ≥ 0 are parameters describing
the inefficiency of the power amplifier at SAP 𝑗 and the

power dissipation in the circuits of each antenna, respectively.
The objective is to minimize 𝑃1 + 𝑃2, under two practical
constraints stated in the following.

(1) The power constraint per antenna of each SAP:
𝐾∑
𝑘=1

w𝐻𝑘𝑗D𝑗𝑔w𝑘𝑗 ≤ 𝑞𝑗, ∀𝑗, 𝑔, (6)

where D𝑗𝑔 is a positive semidefinite weighting matrix whose𝑔th diagonal elements are one and zero elsewhere. The
weighting matrix can describe any combination of per-
antenna constraints. 𝑞𝑗 is fixed power constraint for each
antenna at SAP 𝑗, defined in mW.

(2) The QoS constraint per user (defined as the informa-
tion rate in bits/s/Hz):

log2 (1 + SINR𝑘) ≥ 𝛾𝑘, ∀𝑘, (7)

where 𝛾𝑘 is a fixed QoS target and the signal-to-interference-
and-noise ratio of user 𝑘 is given by

SINR𝑘 = ∑𝑆𝑗=1 󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑘𝑗󵄨󵄨󵄨󵄨󵄨2
∑𝐾𝑖=1,𝑖 ̸=𝑘∑𝑆𝑗=1 󵄨󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑖𝑗󵄨󵄨󵄨󵄨󵄨󵄨2 + 𝜎2

𝑘

. (8)

The first and second part of the denominator in (8) are
interference and noise, respectively.

To minimize the power consumption of the system, the
optimization problem is formulated as

min
w𝑘𝑗, ∀𝑘,𝑗

𝑃1 + 𝑃2
s.t. log2 (1 + SINR𝑘) ≥ 𝛾𝑘, ∀𝑘

𝐾∑
𝑘=1

w𝐻𝑘𝑗D𝑗𝑔w𝑘𝑗 ≤ 𝑞𝑗, ∀𝑗, 𝑔.
(9)

Due to the fact that 𝑃2 is not related to w𝑘𝑗 in expres-
sion (5), 𝑃2 is considered as a static part which is mainly
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determined by the number of antennas. While 𝑃1 is dynamic,
problem (9) can be solved if we make 𝑃1 minimum while
satisfying the QoS and power constraints. However, the
constraints are not convex so that the CVX cannot work on
problem (9).

To solve this problem, we reformulate (9) as a convex
optimization problem by using SDR method. According to
the definition in (7), we have

SINR𝑘 ≥ 2𝛾𝑘 − 1 ≜ 𝛾𝑘. (10)

Plugging (8) into (10) yields

1𝛾𝑘
𝑆∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑘𝑗󵄨󵄨󵄨󵄨󵄨2 −
𝐾∑
𝑖=1,𝑖 ̸=𝑘

𝑆∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 ≥ 𝜎2𝑘 , (11)

which is alternatively expressed as

1𝛾𝑘
𝑆∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑘𝑗󵄨󵄨󵄨󵄨󵄨2 − ( 𝐾∑
𝑖=1

𝑆∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑖𝑗󵄨󵄨󵄨󵄨󵄨2 −
𝑆∑
𝑗=1

󵄨󵄨󵄨󵄨󵄨h𝐻𝑘𝑗w𝑘𝑗󵄨󵄨󵄨󵄨󵄨2)
≥ 𝜎2𝑘 .

(12)

Then, we define the positive semidefinite matrix

V𝑘𝑗 = w𝑘𝑗w
𝐻
𝑘𝑗 ≥ 0 (13)

with rank(V𝑘𝑗) ≤ 1.
Using the above results, we obtain the inequality

𝑆∑
𝑗=1

h𝐻𝑘𝑗((1 + 1𝛾𝑘)V𝑘𝑗 − 𝐾∑
𝑖=1

V𝑖𝑗) h𝑘𝑗 ≥ 𝜎2𝑘 . (14)

In addition, we can further relax the rank constraint
rank(V𝑘𝑗) ≤ 1. The constraint can be removed with definitely
satisfying the optimality as before [21]. Now (9) can be
rewritten as

min
V𝑘𝑗≥0, ∀𝑘,𝑗

𝑆∑
𝑗=1

𝜌𝑗 𝐾∑
𝑘=1

tr (V𝑘𝑗) + 𝑃2
s.t. 𝐾∑

𝑘=1

tr (D𝑗𝑔V𝑘𝑗) ≤ 𝑞𝑗, ∀𝑗, 𝑔
𝑆∑
𝑗=1

h𝐻𝑘𝑗((1 + 1𝛾𝑘)V𝑘𝑗 − 𝐾∑
𝑖=1

V𝑖𝑗) h𝑘𝑗 ≥ 𝜎2𝑘 ,
∀𝑘.

(15)

Thus we can transform the initial power consumption
minimization problem (9) into a convex problem (15), which
can be solved by using CVX [22].

4. Proposed Suboptimal Algorithm

Solving the optimization problem in (15) requires centralized
processing, for which the CSI of all SAP-user links should

be known at the CPU. This induces large backhaul overhead
and high computational complexity, which cannot be ignored
especially when 𝑆 becomes large. In this section, we propose
a suboptimal algorithm, which first alleviates the backhaul
overhead by designing the multi-SAP MMSE precoding.
Then, we transform (9) into a convex power allocation
problem, reducing the computational complexity. The details
of our proposed algorithmare shown as in the following steps.

Proposed Suboptimal Algorithm

Step 1. Each SAP computes its MMSE precoding vector; for
example, SAP 𝑗 designs the precoding vector for user 𝑘 given
by

e𝑘𝑗 = w𝑘𝑗󵄩󵄩󵄩󵄩󵄩w𝑘𝑗󵄩󵄩󵄩󵄩󵄩 , ∀𝑗, 𝑘, (16)

wherew𝑘𝑗 = (∑𝐾𝑖=1 h𝑖𝑗h𝐻𝑖𝑗 +𝜏I)−1h𝑘𝑗 and 𝜏 = 𝐾𝜎2𝑘 in this paper;
then each SAP can easily obtain the following parameters.

𝑚𝑖𝑘𝑗 = 󵄨󵄨󵄨󵄨󵄨h𝐻𝑖𝑗 e𝑘𝑗󵄨󵄨󵄨󵄨󵄨2 , ∀𝑖, 𝑘,
𝐷𝑗𝑔𝑘 = e𝐻𝑘𝑗D𝑗𝑔e𝑘𝑗, ∀𝑔, 𝑘. (17)

Step 2. The scalar parameters 𝑚𝑖𝑘𝑗 and 𝐷𝑗𝑔𝑘 computed in
(17) are sent back to the CPU to solve the following convex
optimization problem [21].

min
𝑝𝑘𝑗≥0, ∀𝑘,𝑗

𝑆∑
𝑗=1

𝜌𝑗 𝐾∑
𝑘=1

𝑝𝑘𝑗 + 𝑃2
s.t. 𝐾∑

𝑘=1

𝐷𝑗𝑔𝑘𝑝𝑘𝑗 ≤ 𝑞𝑗, ∀𝑗, 𝑔
(18)

𝑆∑
𝑗=1

𝑝𝑘𝑗𝑚𝑘𝑘𝑗 (1 + 1𝛾𝑘) − 𝐾∑
𝑖=1

𝑝𝑖𝑗𝑚𝑘𝑖𝑗 ≥ 𝜎2𝑘 ,
∀𝑘.

(19)

Step 3. The result of power allocation optimized in (18) by the
CPU is sent to each SAP; for example, 𝑝∗𝑘𝑗 is informed to SAP𝑗.
Step 4. Each SAP transmits the data to the served users with
the suboptimal precoding vector

w𝑘𝑗 = √𝑝∗
𝑘𝑗
e𝑘𝑗, ∀𝑘. (20)

We observe that the precoding vector is obtained by
expression (16) rather than optimization (15), which means
the distributed precoding design has been done by each SAP
before the power allocation problem (18) is optimized. As a
result, the CPU needs little backhaul overhead to complete
the power allocation. Compared with the optimal algorithm
which has to share complete CSI of each user, the proposed
suboptimal algorithm exchanges only two scalars, that is,𝑚𝑖𝑘𝑗 and 𝐷𝑗𝑔𝑘, between each SAP and the CPU. Moreover,
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the optimization variable is the vector w in the optimal
algorithm, while it is the scalar 𝑝 in our proposed suboptimal
algorithm. All of these point out that the backhaul overhead
and computational complexity of the proposed suboptimal
algorithm can be significantly reduced as compared to the
original problem in (15).

5. Antenna Selection Algorithm

In this section, we show that the system power consumption
can be further reduced by combining the proposed precod-
ing optimization with properly designed antenna selection
algorithm. Note that when the circuit power consumption
is not considered in the analysis, having more antennas will
always lead to lower power consumption for the reason that
it provides more degree of freedom. However, as we are
considering the practical power consumption model where
the circuit power consumption cannot be ignored, increasing
the number of antennas (i.e., degree of freedom) comes at
a cost of consuming more circuit power. Therefore, it may
be not optimal to use all 𝑁𝑡 antennas at every SAP for
transmission, and there always exists an optimal number of
antennas to minimize the total power consumption.

In general, antenna selection algorithm can be formulated
as a combinatorial optimization problem, which can be
solved by exhaustive search (ES) method, but leading to a
prohibitive computational burden even for a small number of
antennas and users.The simplest antenna selection algorithm
is known as the random antenna selection (RAS) which has
very low complexity but poor performance. Alternatively,
in this work, we propose the DCAS algorithm. With this
algorithm, each SAP individually selects the best 𝐿 out of𝑁𝑡
antennas of its own before doing optimization algorithms.
The channel matrix between SAP 𝑗 and its corresponding𝐾𝑟 users is H𝑗 = [h1𝑗h2𝑗 ⋅ ⋅ ⋅ h𝑘𝑟𝑗] with 𝑁𝑡 rows and 𝐾𝑟
columns (it is shown by simulations that the optimal 𝐿
should be set equal to the number of served users 𝐾𝑟 in the
corresponding small cell).The 𝑎th and 𝑏th row of the channel
matrixH𝑗 are denoted by [H𝑗]𝑎 and [H𝑗]𝑏, respectively. With
these notations, the DCAS algorithm is described as in the
following steps.

DCAS Algorithm

Step 1. ∀𝑎, 𝑏, SAP 𝑗 computes the correlation ⟨[H𝑗]𝑎, [H𝑗]𝑏⟩,𝑗 = 1, 2, . . . , 𝑆.
Step 2. SAP 𝑗 chooses the correlation ⟨[H𝑗]𝑎, [H𝑗]𝑏⟩which is
the largest, 𝑗 = 1, 2, . . . , 𝑆.
Step 3. If ‖[H𝑗]𝑎‖2 ≤ ‖[H𝑗]𝑏‖2, SAP 𝑗 deletes [H𝑗]𝑎; other-
wise, it deletes [H𝑗]𝑏, 𝑗 = 1, 2, . . . , 𝑆.
Step 4. Repeat Steps 2 and 3 until 𝑁𝑡 − 𝐿 rows are all
deleted; then each SAP obtains a selected channel matrix
Ĥ𝑗 = [ĥ1𝑗ĥ2𝑗 ⋅ ⋅ ⋅ ĥ𝑘𝑟𝑗] with 𝐿 rows and 𝐾𝑟 columns, where
the channel vector between SAP 𝑗 and user 𝑘 is denoted by
ĥ𝑘𝑗 ∈ C𝐿×1.
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Figure 2: Total power consumption versus the number of antennas
per SAP.

This algorithm is explained as follows: we select two rows
in H𝑗 with the highest correlation and eliminate the one
with lower power and then repeat this process until 𝑁𝑡 − 𝐿
rows are all deleted. After this antenna selection procedure,
the dimension of the channel matrix is reduced from 𝑁𝑡 ×𝐾𝑟 to 𝐿 × 𝐾𝑟. The resultant channel matrix will have rows
with minimal correlation and maximal power; therefore a
large capacity is expected for this dimension-reduced channel
matrix.

6. Simulation Results

In this section, we give numerical simulations to evaluate the
power consumption performance of our proposed precoding
optimization and antenna selection algorithms. The simula-
tion is implemented on the Matlab platform with the toolbox
CVX. We set the number of antennas and users per SAP to
be 𝑁𝑡 ∈ {1, 2, 3, 4, 5} and 𝐾𝑟 ∈ {1, 2, 3, 4, 5}, respectively.
The SAPs are deployed arbitrarily in the cell and the users are
distributed uniformly and randomly in the area of each SAP
as shown in Figure 1 (we find that the different SAP density
scenarios will not affect the conclusion in Figure 2 through
extensive simulations). Some of the parameters follow LTE
standard; others are based on [23, 24], as Table 1 shows.

In Figure 2, we show the total power consumption of
the precoding optimization for different numbers of users
per SAP when the QoS target is 2 bits/s/Hz. In ideal power
consumption models, we generally believe that the power
consumption decreases with the increasing number of anten-
nas, while, in our practical model, the power consumption
rises as the number of antennas increases. We find that no
feasible solution can be obtained when the number of users
is larger than the number of antennas per SAP due to QoS
constraint per user.



6 International Journal of Antennas and Propagation

Table 1: Simulation parameters.

Parameters Setting
Inefficiency of power amplifiers 𝜌𝑗 = 19.23, ∀𝑗
Circuit power dissipation per antenna 𝛼𝑗 = 5.6mW, ∀𝑗
Per-antenna power constraint 𝑞𝑗 = 0.08mW, ∀𝑗
Small scale fading distribution g𝑘𝑗∼CN(0, I𝑁𝑡 ) ∀𝑘, 𝑗
Path and penetration loss model between each SAP at distance 𝑑 (km) 148.1 + 37.6 log10(𝑑)dB
Path and penetration loss model in each small cell at distance 𝑑 (km) 127 + 30 log10(𝑑)dB
Noise variance 𝜎2𝑘 = −127 dBm, ∀𝑘
Standard deviation of log-normal shadowing 7 dB
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Figure 3: Distribution of solutions.

Figure 3 describes the distribution of solutions of the
precoding optimization. Combining with Figure 2, we see
that it is optimal to serve the user by only one SAP which
is the nearest instead of all of the SAPs. It is interesting
to observe that in our practical power consumption model,
under the condition that the ratio of the number of antennas
and the number of users is 1 : 1, the total power consumption
of the SCN is globally minimal. This means that the SCN has
the best performance when the number of selected antennas
equals the number of served users per SAP. Motivated by
the above conclusion, we will consider antenna selection to
further reduce circuit power consumption for the SCN.

In the simulation of Figure 4,we set𝑁𝑡 = 2 and𝐾𝑟 = 2per
SAP. Three schemes are compared: the optimal optimization
algorithm, the suboptimal optimization algorithm, and the
original scheme without any optimization. It is shown that
without any antenna selection, the suboptimal optimization
algorithm shows satisfactory performance as the gap between
the suboptimal algorithm and the optimal algorithm is
narrow and acceptable. It should be emphasized that although
there is slight performance loss as compared with the optimal
algorithm, the proposed suboptimal algorithm is able to
greatly reduce the execution time consumption, as will be
shown later.
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Figure 4: Total power consumption versus QoS target per user.
Results are shown for different optimization algorithms.

Table 2 compares the execution times of simulation
work between the optimal optimization algorithm and the
suboptimal optimization algorithm (the execution time is
measured under the following conditions: Matlab: R2014a
version; CPU: Intel Core i7-4720HQ; RAM: 8GB DDR3L).
We set 𝑆 = 3 and 𝑁𝑡 = 𝐾𝑟 in the simulation. The execution
time shown in Table 2 describes the time used by the optimal
and suboptimal algorithms for the different number of users.
We find that the time used for the suboptimal algorithm is
always in the scale ofmillisecond, which ismuch less than the
time consumption of the optimal algorithm. With increasing
number of users, the gap of the execution time between these
two algorithms becomes larger. The comparison results show
that the optimal optimization algorithm is time-consuming
to be implemented in practice, especially for dense networks,
where the number of users is always large. On the other hand,
the proposed suboptimal algorithm provides a more efficient
solution with negligible performance loss.

Figure 5 demonstrates the effectiveness of the antenna
selection algorithm.We consider𝑁𝑡 = 5 and𝐾𝑟 = 2 per SAP.
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Table 2: Comparison of execution times used by the optimal and suboptimal algorithms.

𝐾𝑟 = 2 𝐾𝑟 = 4 𝐾𝑟 = 6 𝐾𝑟 = 8 𝐾𝑟 = 10
Optimal algorithm 69ms 200ms 680ms 2457ms 7000ms
Suboptimal algorithm 32ms 60ms 88ms 118ms 150ms
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Figure 5: Total power consumption versus QoS target per user.
Results are shown for DCAS algorithm when the number of
antennas is no less than that of users.

Assume that five antennas are all available and we use DCAS
algorithm to select two, three, four, and five of them to serve
the two users, respectively. We can conclude that the total
power consumption increases with the increasing number of
selected antennas when the QoS target is below 3.5 bits/s/Hz.
The total power consumption is minimal if we select the
same number of antennas as the number of users before our
optimization algorithm. The reason is that when the QoS
constraint is in the range of IMT-Advanced requirement,𝑃2 is the major part of the total power consumption (the
downlink SE of the IMT-Advanced requirement is up to 3
bits/s/Hz and 2.25 bits/s/Hz for indoor usage. In this paper,
we mainly consider the QoS target is below 3.5 bits/s/Hz,
which meets the IMT-Advanced requirement [18]). In this
case, the total power consumption depends mostly on the
number of selected antennas. When the QoS target per user
is larger than 3.5 bits/s/Hz, 𝑃1 becomes to dominate the total
power consumption to satisfy all the users’ requirements,
resulting in a better performance by selecting as many
antennas as possible.

Figure 6 focuses on the total power consumption versus
QoS target per user when the number of antennas is larger
than that of users. We consider 𝑁𝑡 = 3 and 𝐾𝑟 = 2 per SAP
and compare the following seven schemes:

(i) S1: The power consumption with optimal algorithm
and DCAS algorithm.

(ii) S2: The power consumption with proposed subopti-
mal algorithm and DCAS algorithm.

0.5 1 1.5 2 2.5 3 3.5
0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

QoS target per user (bits/s/Hz)
To

ta
l p

ow
er

 p
er

 su
bc

ar
rie

r (
m

W
)

Opt with DCAS
Sub with DCAS
Opt without any AS
Sub without any AS

Opt with RAS
Sub with RAS
Original scheme

Figure 6: Total power consumption versus QoS target per user.
Results are shown for different schemes.

(iii) S3: The power consumption with optimal algorithm
but without any antenna selection.

(iv) S4: The power consumption with proposed subopti-
mal algorithm but without any antenna selection.

(v) S5: The power consumption with optimal algorithm
and RAS algorithm.

(vi) S6: The power consumption with proposed subopti-
mal algorithm and RAS algorithm.

(vii) S7: The original power consumption without any
optimization or antenna selection.

The comparison result demonstrates that the perfor-
mance of our proposed suboptimal algorithm S4 is superior
to the original scheme S7 but a little worse than the optimal
algorithm S3. Table 3 shows the comparison of overhead
and complexity between the optimal algorithm S3 and our
proposed suboptimal algorithm S4. We see that the optimal
algorithm has to exchange 2𝑆𝐾𝑁𝑡 backhaul data in total,
while only 2𝑆𝐾 parameters need to be exchanged in the
proposed suboptimal algorithm, resulting in less backhaul
overhead. The CPU has to compute the trace of matrices
in the optimal algorithm, while the computation of our
proposed suboptimal algorithm just involves scalars, yielding
lower computational complexity.

In addition, Figure 6 shows the gap between the optimal
algorithm and the suboptimal algorithm is rather small,
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Table 3: Comparison of total overhead and complexity.

Overhead Complexity
Optimal algorithm O(2𝑆𝐾𝑁𝑡) O(𝑆𝐾𝑁𝑡3)
Suboptimal algorithm O(2𝑆𝐾) O(𝑆𝐾)

so it is feasible to implement the suboptimal algorithm in
practice rather than the optimal algorithm owing to its
low backhaul overhead and computational complexity. Our
proposed suboptimal algorithm will work well even with
deploying more antennas or dense networks. Moreover, we
see that our optimization algorithms with DCAS can further
reduce the power consumption and have better performance
than the other schemes with RAS. Based on the conclusions
in this paper, our proposed suboptimal power consumption
algorithm with DCAS is the most proper scheme to imple-
ment.

7. Conclusion

In this work, we investigated joint antenna selection and
precoding design for the SCN to minimize the power
consumption while maintaining QoS requirements of the
users. We formulated the power consumption minimization
problem based on a realistic power consumption model.
Using SDR technique, the original nonconvex problem is
converted to convex and efficiently solved by the CVX
toolbox. To further reduce the backhaul overhead and com-
putational complexity, we proposed a suboptimal algorithm
based on noncoherent multi-SAP MMSE precoding, which
requires scalar parameters (other than the complete CSI)
being fed back to the CPU, only optimizing a simple power
allocation problem. Simulation results showed that the pro-
posed suboptimal algorithmgreatly reduces the overhead and
complexitywithout sacrificingmuchperformance.Moreover,
we demonstrated that the power consumption can be further
reduced by combining our optimization algorithms with the
DCAS algorithm.

Notations

𝐾: The total number of users𝐾𝑟: The number of users per SAP𝑆: The number of SAPs𝑁𝑡: The number of antennas per SAP𝑛𝑘: The circularly symmetric complex Gaussian noise
h𝑘𝑗: The channel vector between SAP 𝑗 and user 𝑘𝑦𝑘: The received signal of user 𝑘
x𝑗: The transmitted signal from SAP 𝑗
f𝑘𝑗: The information symbol from SAP 𝑗 to user 𝑘
w𝑘𝑗: The precoding vector from SAP 𝑗 to user 𝑘𝛾𝑘, 𝑞𝑗: The QoS and power constraint target𝜎2𝑘 : The noise variance𝜌𝑗: The inefficiency of the power amplifier at SAP 𝑗𝛼𝑗: The power dissipation in the circuits.
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