57 research outputs found

    Multiuser Diversity for Secrecy Communications Using Opportunistic Jammer Selection -- Secure DoF and Jammer Scaling Law

    Full text link
    In this paper, we propose opportunistic jammer selection in a wireless security system for increasing the secure degrees of freedom (DoF) between a transmitter and a legitimate receiver (say, Alice and Bob). There is a jammer group consisting of SS jammers among which Bob selects KK jammers. The selected jammers transmit independent and identically distributed Gaussian signals to hinder the eavesdropper (Eve). Since the channels of Bob and Eve are independent, we can select the jammers whose jamming channels are aligned at Bob, but not at Eve. As a result, Eve cannot obtain any DoF unless it has more than KNjKN_j receive antennas, where NjN_j is the number of jammer's transmit antenna each, and hence KNjKN_j can be regarded as defensible dimensions against Eve. For the jamming signal alignment at Bob, we propose two opportunistic jammer selection schemes and find the scaling law of the required number of jammers for target secure DoF by a geometrical interpretation of the received signals.Comment: Accepted with minor revisions, IEEE Trans. on Signal Processin

    On the Non-Coherent Wideband Multipath Fading Relay Channel

    Full text link
    We investigate the multipath fading relay channel in the limit of a large bandwidth, and in the non-coherent setting, where the channel state is unknown to all terminals, including the relay and the destination. We propose a hypergraph model of the wideband multipath fading relay channel, and show that its min-cut is achieved by a non-coherent peaky frequency binning scheme. The so-obtained lower bound on the capacity of the wideband multipath fading relay channel turns out to coincide with the block-Markov lower bound on the capacity of the wideband frequency-division Gaussian (FD-AWGN) relay channel. In certain cases, this achievable rate also meets the cut-set upper-bound, and thus reaches the capacity of the non-coherent wideband multipath fading relay channel.Comment: 8 pages, 4 figures, longer version (including proof) of the paper in Proc. of IEEE ISIT 201

    Advanced wireless communications using large numbers of transmit antennas and receive nodes

    Get PDF
    The concept of deploying a large number of antennas at the base station, often called massive multiple-input multiple-output (MIMO), has drawn considerable interest because of its potential ability to revolutionize current wireless communication systems. Most literature on massive MIMO systems assumes time division duplexing (TDD), although frequency division duplexing (FDD) dominates current cellular systems. Due to the large number of transmit antennas at the base station, currently standardized approaches would require a large percentage of the precious downlink and uplink resources in FDD massive MIMO be used for training signal transmissions and channel state information (CSI) feedback. First, we propose practical open-loop and closed-loop training frameworks to reduce the overhead of the downlink training phase. We then discuss efficient CSI quantization techniques using a trellis search. The proposed CSI quantization techniques can be implemented with a complexity that only grows linearly with the number of transmit antennas while the performance is close to the optimal case. We also analyze distributed reception using a large number of geographically separated nodes, a scenario that may become popular with the emergence of the Internet of Things. For distributed reception, we first propose coded distributed diversity to minimize the symbol error probability at the fusion center when the transmitter is equipped with a single antenna. Then we develop efficient receivers at the fusion center using minimal processing overhead at the receive nodes when the transmitter with multiple transmit antennas sends multiple symbols simultaneously using spatial multiplexing

    Non-coherent MIMO Communication for the 5th Generation Mobile: Overview and Practical Aspects

    Get PDF
    Although there are many theoretical studies on the performance of non-coherent schemes in MIMO systems, their impact on real-world cellular systems is still unknown. This paper focuses on bringing noncoherent techniques into practical systems using CoMP and/or MIMO processing

    Signal design for Multiple-Antenna Systems and Wireless Networks

    Get PDF
    This dissertation is concerned with the signal design problems for Multiple Input and Multiple Output (MIMO) antenna systems and wireless networks. Three related but distinct problems are considered.The first problem considered is the design of space time codes for MIMO systems in the case when neither the transmitter nor the receiver knows the channel. We present the theoretical concept of communicating over block fading channel using Layered Unitary Space Time Codes (LUSTC), where the input signal is formed as a product of a series of unitary matrices with corresponding dimensionality. We show the channel capacity using isotropically distributed (i.d.) input signaling and optimal decoding can be achieved by layered i.d. signaling scheme along with a low complexity successive decoding. The closed form layered channel capacity is obtained, which serves as a design guideline for practical LUSTC. In the design of LUSTC, a successive design method is applied to leverage the problem of optimizing over lots of parameters.The feedback of channel state information (CSI) to the transmitter in MIMO systems is known to increase the forward channel capacity. A suboptimal power allocation scheme for MIMO systems is then proposed for limited rate feedback of CSI. We find that the capacity loss of this simple scheme is rather small compared to the optimal water-filling solution. This knowledge is applied for the design of the feedback codebook. In the codebook design, a generalized Lloyd algorithm is employed, in which the computation of the centroid is formulated as an optimization problem and solved optimally. Numerical results show that the proposed codebook design outperforms the existing algorithms in the literature.While it is not feasible to deploy multiple antennas in a wireless node due to the space limitation, user cooperation is an alternative to increase performance of the wireless networks. To this end, a coded user cooperation scheme is considered in the dissertation, which is shown to be equivalent to a coding scheme with the encoding done in a distributive manner. Utilizing the coding theoretic bound and simulation results, we show that the coded user cooperation scheme has great advantage over the non-cooperative scheme
    corecore