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SIGNAL DESIGN FOR MULTIPLE-ANTENNA SYSTEMS AND WIRELESS

NETWORKS

Xiaofei Song, PhD

University of Pittsburgh, 2007

This dissertation is concerned with the signal design problems for Multiple Input and Multiple

Output (MIMO) antenna systems and wireless networks. Three related but distinct problems are

considered.

The first problem considered is the design of space time codes for MIMO systems in the case

when neither the transmitter nor the receiver knows the channel. We present the theoretical concept

of communicating over block fading channel using Layered Unitary Space Time Codes (LUSTC),

where the input signal is formed as a product of a series of unitary matrices with corresponding

dimensionality. We show the channel capacity using isotropically distributed (i.d.) input signaling

and optimal decoding can be achieved by layered i.d. signaling scheme along with a low complex-

ity successive decoding. The closed form layered channel capacity is obtained, which serves as

a design guideline for practical LUSTC. In the design of LUSTC, a successive design method is

applied to leverage the problem of optimizing over lots of parameters.

The feedback of channel state information (CSI) to the transmitter in MIMO systems is known

to increase the forward channel capacity. A suboptimal power allocation scheme for MIMO sys-

tems is then proposed for limited rate feedback of CSI. We find that the capacity loss of this simple

scheme is rather small compared to the optimal water-filling solution. This knowledge is applied

for the design of the feedback codebook. In the codebook design, a generalized Lloyd algorithm

is employed, in which the computation of the centroid is formulated as an optimization problem

iv



and solved optimally. Numerical results show that the proposed codebook design outperforms the

existing algorithms in the literature.

While it is not feasible to deploy multiple antennas in a wireless node due to the space lim-

itation, user cooperation is an alternative to increase performance of the wireless networks. To

this end, a coded user cooperation scheme is considered in the dissertation, which is shown to be

equivalent to a coding scheme with the encoding done in a distributive manner. Utilizing the cod-

ing theoretic bound and simulation results, we show that the coded user cooperation scheme has

great advantage over the non-cooperative scheme.
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1.0 INTRODUCTION

1.1 WIRELESS COMMUNICATIONS CHALLENGES

The past decade has witnessed a tremendous surge in wireless communications industry. The

second generation of cellular network has achieved huge success in providing digital voice service,

and wireless network has also become indispensable for millions of people’s requirements in data

access. With dazzling new products and services emerging based upon foundations of wireless

communications, wireless has and will continue to impact people’s daily life in many ways.

The widespread acceptance of wireless technologies has in return triggered a huge demand

for increased data rate and quality of service. The quality of service and data rate provided by

wireless systems though have increased rapidly over the past years, they are still not comparable

to their wireline counterparts. However, people expect to ”see” the same quality of services any-

where anytime even in a wireless networks. The customers’ desire for seamless and high quality

connectivity has driven wireless engineers to seek all possible means to increase the capacity and

quality of wireless network.

Two possible ways of increasing the throughput are to use more bandwidth and more transmit

power. A celebrated result in Shannon’s 1948 paper states that the capacity of an Additive White

Gaussian Noise (AWGN) channel is given by:

C = Bw log(1 +
P

BwN0

),

where N0 is the power spectral density, Bw is the total available bandwidth and P is the transmit

power. This is the fundamental limit in throughput of reliable communications over the AWGN
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channel, and which can be used to understand other types of channels, in particular, wireless envi-

ronment.

While both approaches are possible to improve the throughput in a point to point wireless chan-

nel, they are not desired in a wireless network. The spectrum is a scarce and expensive resource and

the available bandwidth for most applications, e.g. cellular system, is fixed and limited. Increasing

the bandwidth for one user reduces other users’ data rate within the network. On the other hand, as

the capacity scales only logarithmatically with the transmit power, increasing the transmit power is

inefficient to improve the throughput and reduces the battery life of the mobile devices. Moreover,

the overall throughput of some wireless systems, e.g. CDMA cellular networks, is interference

limited and boosting up the transmit power for one user will pose strong interference to the other

users. From the perspective of the entire system, increasing the transmit power can not efficiently

improve the overall throughput of the network. Therefore, it is of interests to develop approaches

to enhance the throughput without increasing the bandwidth or the transmit power.

1.2 MULTIPATH FADING AND MULTIPLE ANTENNAS SYSTEM

The limitation in the throughput for wireless communication is largely attributed to the physical

channel. Due to the effect of physical environment on radio signal propagation such as reflection,

refraction, and scattering, a transmitted signal will travel along different paths to arrive at the

intended receiver. The signals from different paths have different phase shifts and signal strengthes.

They can add up constructively or destructively, which causes the overall signal strength to go up

and down. This random fluctuation in signal level, known as fading, severely affects the quality

and reliability of wireless communication.

Over the years, multipath induced fading has been widely considered to be an impairment to

wireless communications and wireless engineers were seeking various approaches to compensate

or eliminate the fading effect. One of the means to mitigate multipath fading and to improve the

link reliability is to deploy multiple receive antennas. If these antennas are put sufficiently apart,

2
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Figure 1: Multiple input and multiple output antennas system

the signal from the transmit antenna will undergo independent fading to arrive at each receive

antenna. As the number of receive antenna grows, the probability that all of the received signals

are in deep fading decays by a power law. This power law decay is called the diversity gain and

this use of multiple antennas is to mitigate the fading effect to achieve the diversity gain.

Another view of multipath fading was offered by the landmark works [3,4]. The main result in

these works states that the capacity of a wireless channel equipped with M transmit and N receive

antennas (shown in Fig.1) in a rich scattering environment is given by:

C ≈ min(M,N) log(SNR),

in the high Signal to Noise Ratio (SNR) region. That is the capacity of a MIMO system scales lin-

early with the minimum number of transmit and receive antennas. The scaling factor min(M,N) is

also called the multiplexing gain. The remarkable capacity improvement of MIMO systems owes

largely to the effect of multipath fading. Fading can now also be seen as providing an opportunity

3



to significantly improve the capacity of such systems. This use of multiple antennas is to exploit

the fading effect and achieve the multiplexing gain.

Zheng and Tse [5] show that one can exploit the diversity and multiplexing gains promised by

the MIMO channel simultaneously with an existence of a fundamental tradeoff between the two.

Motivated by the two fold gains offered by MIMO system, lots of researches are currently being

done to increase the throughput and reliability of wireless systems.

1.3 MOTIVATIONS OF THE DISSERTATION

The tremendous capacity and diversity gains in MIMO wireless systems rely heavily on the

availability of the channel state information (CSI). With regard to the availability of CSI, MIMO

systems can be categorized as follows: 1) No CSI is available at both the transmitter and receiver,

2) CSI is available at the receiver only and 3) CSI is available at both the transmitter and receiver.

While most works in the literature consider the second scenario, the main focus in this dissertation

is on the other two.

1.3.1 Space Time Code Design without CSI

It is well known that the capacity achieving input signal of a MIMO system is Gaussian dis-

tributed when the channel fading is known to the receiver (CSI at the receiver only or CSI at both

the transmitter and the receiver). In contrast, the optimal input signal distribution in the case of

no CSI, is still not known except for some special cases. In the high SNR region, the throughput

of an unknown MIMO fading channel is shown to be maximized by isotropically distributed (i.d.)

unitary matrix input signals [6]. Motivated by this finding, a practical coding scheme called Uni-

tary Space Time Coding (USTC) is also designed in [7] to realize the diversity and capacity gains

promised by MIMO system in such a case. Nonetheless, the decoding complexity of USTC signals

is exponential in the transmission rate and thus making USTC impractical for MIMO systems.

4



In the context of receiver CSI, an efficient decoding - sphere decoding can be performed to

implement the maximum likelihood detector [8, 9]. The prerequisite to the sphere decoder is to

decompose the channel matrix first via a QR factorization. This raises the following question yet

to be answered:

Can we still implement the maximum likelihood decoding efficiently without CSI at the re-

ceiver?

The answer is ”Yes”. Rather than the decomposition of the channel, we seek a somewhat

analogous approach - decomposition of the transmit signal. We show any i.d. unitary matrix can

be written as a product of a number of i.d. unitary matrices. Via this decomposition, we transfer the

original channel with USTC into a number of equivalent layered sub-channels with the input signal

being the corresponding i.d. layered unitary matrix. According to the chain rule in information

theory, the channel capacity with USTC can be actually achieved by using the layered i.d. unitary

signalling scheme in the transmitter and successive decoding in the receiver. We give three different

detection algorithms for LUSTC, namely successive cancelation, Generalized Likelihood Ratio

Test (GLRT) decoding and sphere decoding. These three practical decoding algorithms all have

low complexity as compared to the exponentially complex decoding of USTC. Roughly speaking,

the LUSTC scheme can be generally viewed as the non-coherent version of the Bell Lab Layered

Space Time coding scheme (BLAST) [9].

1.3.2 Limited Feedback Codebook Design

When available, CSI at the transmitter can be utilized to adapt resources and the transmission

strategy to improve the throughput of a MIMO system. While full knowledge of CSI at the re-

ceiver can be assumed, CSI at the transmitter (CSIT) assumption is not reasonable in general. In

practice, the channel estimates are obtained at the receiver through training with pilot signals, and

the estimated CSI somehow needs to be fed back in order for the transmitter to know the channel.

5



Unlike for a scalar channel case, for a MIMO system, the number of channel coefficients

which need to be fed back to the transmitter is large and a naive feedback method (feedback

the scaler quantization of each and every channel coefficients) would require a large capacity in

the feedback channel. Thus, the design of limited feedback codebook for MIMO system is an

important problem.

Our goal of feedback codebook design is to maximize the forward channel capacity under the

constraint on the feedback rate. Thus, each codeword in the codebook shall contain the most es-

sential information to enhance the forward channel capacity. To this end, we address the following

question first :

Are all the channel state information equally important to the forward channel capacity?

The answer to this question is ”No”. We first investigate the information theoretic loss of a Sub-

optimal Water-Filling (WF) scheme compared to the optimal WF scheme with full CSIT. Using

the simple Talyor series expansion, a family of bounds are derived, which offer great insights into

the capacity difference between the two schemes. Making use of the analysis, we determine that

the most important factor for the SWF scheme is the identification of those subchannels to which

nonzero transmit power should be allocated.

This knowledge is then applied for the design of the limited rate feedback mechanism and

codebook. In the codebook design, a similar generalized Lloyd algorithm as in [1] is employed, in

which different from [1] the computation of the centroid is formulated as an optimization problem

and solved optimally rather than approximately. The proposed algorithm is also adaptive to the

channel statistics and the SNR variation. Numerical results show that the proposed codebook

design outperforms the existing algorithms reported in the literature.

1.3.3 Cooperation in Wireless Networks

Inspired by the great capacity and diversity improvement promised by MIMO system, lots of

researchers are now seeking to improve the reliability of wireless networks by employing multiple

antennas. Unfortunately, it is usually not feasible to deploy multiple antennas in a single wireless

6



node due to the limitation in node size. One example is the uplink of cellular systems, where the

size of the mobile device is the limiting factor. In such a case, cooperation among wireless nodes

can be exploited to increase the communication capability and information transmission reliability.

Various user cooperation schemes have appeared in the literature. They can be roughly divided

into two categories, namely diversity cooperation and coded cooperation schemes. In the diversity

cooperation scheme, the transmit node utilizes neighbors as ”virtual” antennas to achieve transmit

diversity and thus only diversity gain can be obtained. On the other hand, coded user cooperation

scheme can realize another gain - coding gain on top of the diversity gain that can be obtained.

We focus on a specific coded user cooperation protocol in the dissertation. The two phase

transmission protocol is defined and by the protocol the coded user cooperation scheme is equiv-

alent to a channel coding with the encoding done in a distributed manner. A number of analytical

tools have been developed to understand the coded user cooperation scheme. Simulation results

show a huge gain of the coded user cooperation over non-cooperation scheme can be obtained.

1.4 OUTLINE OF THE DISSERTATION

The rest of the dissertation is composed of three major parts. In Chapter 2, we consider the

design of space time code for non-coherent MIMO system. We review the block-faded channel

model and summarize some known results about USTC in Section 2.2. In Section 2.3, we intro-

duce LUSTC and get the coding theorem of achieving the channel capacity via layered unitary

signaling scheme at the transmitter and successive decoding at the receiver. The layered capac-

ity of the equivalent channel is analyzed in Section 2.4. In Section 2.5, three different practical

decoding algorithms for LUSTC are introduced. The practical layered signal constellation design

was considered in Section 2.6. In Section 2.7, the simulation results are given. In Section 2.8, the

conclusions are drawn.

When the CSI is perfectly known to the receiver, it needs to be fed back to the transmitter to

improve the forward channel capacity. In Chapter 3, we study the design of feedback codebook

7



when the feedback channel has a rate limitation. In Section 3.2, the MIMO channel model con-

sidered in this chapter is introduced and two different transmission schemes with transmitter CSI,

the optimal Water-filling and a sub-optimal water-filling schemes are defined. In Section 3.3.1,

bounds on the capacity difference between WF and SWF are developed. Numerical results on the

capacity difference between the two schemes are also obtained in this section. In Section 3.3.2, the

possible transmission scheme based on SWF scheme with limited rate feedback is discussed. The

limited rate feedback codebook design algorithm is shown in Section 3.4 and the numerical results

are presented in Section 3.5. Conclusions are drawn in Section 3.6.

We study coded user cooperation scheme in Chapter 4. The basic scenario considered is dis-

cussed in Section 4.2 and the coded user cooperation protocol is also defined there. In Section 4.3,

we identify the similarity and difference between coded user cooperation scheme and conventional

channel coding. A number of analytical tools are given in Section 4.4 and Section 4.5. These

analytical prediction of the performance along with simulation results are shown in Section 4.6.

Conclusions are drawn in Section 4.7.

Chapter 5 contains some future research directions.
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2.0 LAYERED UNITARY SPACE TIME CODING

2.1 INTRODUCTION

It has been shown in [3] [4] that Multiple-antenna wireless communication links promise very

high date rates in Rayleigh flat fading environment, provided that the complex-valued propagation

coefficients between all pairs of transmitter and receiver antennas are statistically independent.

Motivated by the huge potential throughput increase, practical schemes [10, 11, 9, 12] have also

been developed, which indeed exhibit much better performance (in terms of throughput or error

probability) over single transmit and receive antenna system.

However, these results are derived under the assumption that the instantaneous fading coeffi-

cients are perfectly known to the receiver (but not to the transmitter). This assumption is reasonable

in slow fading environment, where the transmitter can send training sequence that allows the re-

ceiver to track the channel. In mobile or other ”fast” fading environment, the fading coefficients

can change quite rapidly and the estimation of channel parameters becomes difficult particularly

as the number of transmit and receive antennas grows. In such a situation, an alterative approach

is non-coherent space time communication, for which it is not required to explicitly estimate the

fading coefficients.

A line of work [6,7,13,14] was initiated by a group of researchers (Hochwald, Marzetta, Has-

sibi, et al.) to study both the theoretical capacity limit and practical design of non-coherent Space

Time Codes. The capacity-achieving signal is shown [6] [15] to be the product of an isotrop-

ically distributed (i.d.) unitary matrix (orthonomal column matrix) and a diagonal matrix with

9



non-negative real elements on it’s diagonal. In high SNR region, the diagonal matrix becomes

deterministic and all the information is carried in the i.d. unitary matrix. Therefore, the prob-

lem of designing signal constellations becomes finding a finite set of good (in terms of certain

performance measure) matrices with orthonomal columns in such case. Related work on such sig-

nal constellation design – so called Unitary Space Time Codes (USTC) can be found in [13] by

systematic design approach and in [14] by numerical methods.

Nonetheless, the existing problem of these signal constellations is their detection algorithm

suffers from exponential complexity, i.e., the receiver has to test all possible candidates to get the

optimal estimate of the transmitted signal. To alleviate this problem, unitary space time codes via

Cayley transformation was proposed in [16], where polynomial time algorithms – successive can-

cellation or sphere decoding [17] can be used for decoding the transmitted signal. Albeit efficient,

the sphere decoding algorithm is only an approximate rather than the exact Maximum Likelihood

(ML) decoding of the Cayley codes and the exploitation of it for decoding consequently subjects

to certain performance penalty. In [18, 19, 20] the author proposed a layered unitary space time

coding (LUSTC) scheme, wherein the overall transmitted signal is built as the product of a num-

ber of layered signals with each of them having different dimensionality. In contrast to the Caley

codes, this layered unitary signal structure allows the receiver to perform an exact ML decoding

by implementing the sphere decoding algorithm.

Unfortunately, no design guideline (e.g. how many signals should we put in each and every

layer) on the layered signals is provided in these papers, which consequently makes the LUSTC

scheme not achieving the potential benefits as it shall. In this chapter, we attempt to offer a theoret-

ical design methodology on designing the non-coherent layered space time signal constellations.

To this end, however, the layered signal structure in this chapter differs from [18, 19, 20] in the

layered signal dimensionality setting. By imposing this change of signal structure, we are able to

give the theoretical concept of layered unitary space time coding and provide the design guideline

for practical signal constellation design. The main contribution of this chapter is summarized as

follows:

10



• We first show any D × M (D > M ) i.d. unitary matrix can be decomposed into product

of a number of i.d. unitary matrices, where each of the i.d. unitary matrix of dimensionality

d×(d−1) (M+1 ≤ d ≤ D) is called a layered signal. Via this decomposition, we transfer the

original channel with USTC into a number of equivalent layered sub-channels with the input

signal being the corresponding i.d. layered unitary matrix.

• We give a coding theorem of this LUSTC. According to the chain rule in information theory,

the channel capacity with USTC and ML decoding can be actually achieved by using the lay-

ered i.d. unitary signalling scheme in the transmitter and successive decoding in the receiver.

In essence, the LUSTC scheme can be generally viewed as the non-coherent version of the

Bell Lab Layered Space Time coding scheme (BLAST) [9].

• We derive the closed form layered channel capacity of applying i.d. layered unitary signalling

scheme in the transmitter and successive decoding scheme in the receiver. The numerical

values of the layered capacity are also obtained and then used as a design guideline in building

the practical layered signal constellations.

• We give three different detection algorithms for LUSTC, namely successive cancelation, gen-

eralized likelihood ratio test decoding (GLRT) and sphere decoding. These three decoding

algorithms have low complexity as compared to the exponentially complex decoding of USTC.

• In designing of the layered signal constellation set, we employ a successive design approach

to search for the optimal layered signal constellations layer by layer. The signal constellation

design starts from the innermost layer. Once the signals of the inner layers are designed, they

are taken into account for designing the outer layer signals. Iterating this process layer by

layer, we can then eventually design all the layered signal set. The successive design approach

can decrease the overall design complexity.

11



2.2 OVERVIEW OF UNITARY SPACE TIME CODING

2.2.1 Channel Model

We adopt the usual block-fading channel model with multiple transmit and multiple receive

antennas, where the channel is constant for some time interval D, after which it changes to an

independent value and holds for another interval D, and so on. Within one block of D symbols,

the received signal is of the form

X =

√
ρD

M
SH + W, (2.1)

where X is aD×N received complex signal matrix, the dimensionN is the number of receive

antennas. The transmitted signal is S, aD×M complex matrix whereM is the number of transmit

antennas. H is M ×N matrix, with entries independent identically complex Gaussian distributed

CN (0, 1). W is D × N noise with complex Gaussian CN (0, 1) i.i.d entries. We impose an extra

power constraint on the transmitted signal S, i.e.,

1

M

M∑
m=1

E|Stm|2 =
1

D
, t = 1, 2, ...D.

or tr(SS∗) = M , which means the average expected power over the M transmitted antennas is

kept constant for each channel use. Hence, here ρ represents the expected SNR at each receive

antenna.

2.2.2 Unitary Space Time Coding

We cite theorem 2 in [6] (which is also theorem 2 in [7]) as the following lemma:

Lemma 1 (Structure of signal that achieves capacity) The signal matrix that achieves capacity

can be written as S = ΦV, where Φ is an D ×M isotropically distributed unitary matrix, and

V is an independent M ×M real, nonnegative, diagonal matrix. Furthermore, we can choose the

joint density of the diagonal elements of V to be unchanged.
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Definition: An isotropically distributed (i.d.) D ×M matrix Φ has a probability density that

is unchanged when pre-multiplied by any deterministic D × D unitary matrix or post-multiplied

by any deterministic M ×M unitary matrix.

This Lemma characterizes the structure of the input signal structure, but the optimal distri-

bution of V that achieves capacity is generally unknown. However, it has been shown that it is

optimal to choose a deterministic V = IM in high SNR region when M ≤ min(D/2, N) [21] (or

D � M [6]), which means that the diagonal matrix V doesn’t bear any information and all the

information is carried in the i.d. unitary matrix Φ in these cases. In the sequel, we only consider

the input signal to be unitary, which is called Unitary Space Time Coding (USTC).

2.2.3 Unitary Space Time Coding Signal Design

Even though the input signal matrix distribution of USTC is fully characterized to be i.d.

unitary in high SNR region, in practice, the designed signal codebook needs to form a finite set to

be decodable. Assume we have a set of unitary signals {Φ}Lk=1 where L is the cardinality of this

signal set. Then from the channel model (2.1), conditioned on transmitted signal Φk, the received

signal X is zero-mean circularly symmetric complex Gaussian distributed. Thus, the likelihood

function is

p(X|Φk) =
1

πDN detN
(
ID + ρD

M
ΦkΦ∗k

) · exp

(
−tr

{
X∗
[
ID +

ρD

M
ΦkΦ

∗
k

]−1

X

})
,

where tr denotes ”trace” of a matrix and det denotes the ”determinant” of a matrix. The optimal

ML detector for the transmitted signal is

k̂ = arg max p(X|Φk).

Given the unitary structure of the signals {Φk}Lk=1, the optimal ML detector reduces to

k̂ = arg max tr(X∗ΦkΦ
∗
kX).
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Thus, the problem of designing signal constellations for USTC becomes searching for a set of

unitary matrices such that the probability of making errors using this detector is minimized. As

the exact probability of making errors is difficult to derive, the researchers in [13] turned to use the

Chernoff bound of the pairwise error probability. The pairwise error probability (the probability of

receiving Φk given Φk′ is transmitted) can be upper-bounded as

Pk,k′ ≤
1

2

M∏
m=1

[
1

1 + (ρD/M)2(1−d2m)
4(1+ρD/M)

]N
, (2.2)

where {dm}Mm=1 are the singular values of the M ×M correlation matrix Φ∗kΦk′ .

This chernoff bound can be further upper-bounded as

Pk,k′ ≤
1

2

[
1

1 + (ρD/M)2

4(1+ρD/M)

]N(M−dM‖Φ∗kΦk′‖F e2)

. (2.3)

Accordingly, a much simpler measure

δ = max
1≤k,k′≤L
k 6=k′

‖Φ∗kΦk′‖F = max
1≤k,k′≤L
k 6=k′

tr(Φ∗k′ΦkΦ
∗
kΦk′)

is applied in [13] that needs to be minimized to design the optimal signal constellations. This

performance measure is the so called chordal distance in grassmannian space and it has been widely

studied on packing spheres in Grassman manifold [22].

In the past, the unitary space time signal constellations design falls largely into two different

approaches. One is systematic construction of signals [13] [23], where by constraining the signal

constellations to form a finite group, the signal constellations can either be constructed or searched

with relatively less effort. (In some references, similar ideas are also employed in designing signal

constellations for differential unitary space time coding, see e.g. [24] [25] [26]). The other ap-

proach is to design signal matrices using numerical methods as in [14] [16]. The numerical design

is in general a cumbersome and difficult optimization problem and requires certain parameteriza-

tions the unitary matrix. In [14], the optimization is based on Givens angles parameterizations of

unitary matrix, whereas in [16] the search is based on the Cayley transform.
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2.3 LAYERED UNITARY SPACE TIME CODING

One drawback of the USTC is it’s high complexity decoding algorithm which makes it not fea-

sible in practical communications system. In order to build signals that can be efficiently detected

at the receiver, layered unitary signal design was first proposed in [18, 19, 20]. The layered struc-

ture of signal constellations entails the use of a low complexity sphere decoding algorithm [17] for

detection at the receiver.

2.3.1 Layered Signal Structure

The overall input signals in [18, 19, 20] are formed from the product

S = SDSD−1 · · ·S2ME,

where

E =

 IM

0(D−M)×M

 ,
and

Sd =

 Kd 0d×(D−d)

0(D−d)×d I(D−d)

 . (2.4)

Notice that for each layeredD×D signal Sd, the information is carried only in the d×d sub-matrix

Kd. Thus, the signal constellations are totally specified by Kd’s for 2M ≤ d ≤ D1.

By imposing this layered structure, the signals can be efficiently detected via the low com-

plexity sphere decoding algorithm. Two practical layered signal design examples are also given

to illustrate the performance in these papers. However, the number of signals put in each layer is

chosen in an ad hoc way as no design rules are given. This degrades the potential performance of

the layered signalling scheme. To solve this problem, we attempt to analyze the layered capacity

in this chapter and use the numerical values of layered capacity as a guideline to build the layered

12M ≤ d is necessary for designing signal constellations that achieve full diversity. If design of full diversity
signal constellations is not an issue, we can in general have d ≥M + 1.
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signals. To this end, however, the layered signals structure imposed in this chapter is somewhat

different, and which is shown in the following lemma.

Lemma 2 (Decomposition of i.d. unitary matrix) Any i.d. D×M (D > M ) unitary matrix S can

be written as the product of a series of i.d. unitary matrices, i.e.,

S = SDSD−1 · · ·SM+1

=
D∏

d=M+1

Sd, (2.5)

where Sd is i.d. d× (d− 1) unitary matrix.

Proof See Appendix.

Via this lemma, our transmitted unitary signals can be formed by the product of a series of i.d.

unitary matrices. Each of the i.d. unitary matrix with corresponding dimensionality is also called

a layered signal. The layered structure differs from the above mentioned one in the following:

• Our layered signals have different dimensionality as compared to the previously introduced

one. By careful examination, one can see that the square unitary structure (2.4) is not neces-

sary as the last column of Sd does not contribute to the overall resultant signal S when it is

multiplied with the matrix E.

• Our layered signal structure ensures the overall input signal to be i.d. unitary. Therefore, in

information theoretic sense this layered structure does not incur any capacity loss as compared

to USTC.

2.3.2 Equivalent Layered Channel Model

By lemma 2, we can transform the channel model (2.1) as

X =

√
ρD

M
SH + W

=

√
ρD

M
SDSD−1...SM+1H + W. (2.6)
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To facilitate the analysis, we define Qd−1 := Sd−1Sd−2 · · ·SM+1 and Pd+1 := SDSD−1 · · ·Sd+1

for convenience purpose. According to Lemma 2, Qd−1 and Pd+1 are i.d. unitary matrix with di-

mensionality (d − 1) ×M and D × d respectively. Substitute Qd−1 and Pd+1 into (2.6), we then

have an equivalent channel model for each layer d (d > M + 1)

X =

√
ρD

M
Pd+1SdQd−1H + W. (2.7)

Assume the outer layer signals have been decoded successfully, i.e., Pd+1 is known, we can then

rewrite the equivalent channel model (2.7) as the following by multiplying both sides by P∗d+1,

P∗d+1X =

√
ρD

M
SdQd−1H + P∗d+1W. (2.8)

Thus, the following equivalent channel model is obtained,

Xd =

√
ρD

M
SdQd−1H + Wd, d > M + 1, (2.9)

where Xd = P∗d+1X and Wd = P∗d+1W. Notice that statistically each of the elements in Wd is

still CN (0, 1) as the columns of Pd+1 are orthonormal.

For the innermost layer (d = M + 1), as there is no inner layer signal, the equivalent channel

model is simply

XM+1 =

√
ρD

M
SM+1H + WM+1. (2.10)

2.3.3 Layered Unitary Space Time Coding Theorem

Theorem 1 (Layered unitary space time coding theorem) The non-coherent isotropically distributed

(i.d.) Unitary Space Time Coding capacity C is equal to the sum of the layered i.d. unitary space

time coding capacities Cd, i.e.,

C =
D∑

d=M+1

Cd,

where {Cd}Dd=M+1 are the corresponding layered capacities for layer d .
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Proof : Apply the chain rule of mutual information [27], we get

I(X; S) = I (X; SM+1,SM+2, ...,SD)

= I(X; SD) + I(X; SD−1|SD) + ...+ I(X; SM+1|SD,SD−1, ...,SM+2)

= I(X; SD) + I(XD−1; SD−1) + ...+ I(XM+1; SM+1), (2.11)

where (2.11) follows directly from the equivalent channel model (2.9). Therefore, the capacity of

non-coherent communications via USTC is equal to the LUSTC capacities, that is

C =
D∑

d=M+1

Cd.

To achieve the capacity, we can use i.d. layered signaling scheme in the transmitter and successive

decoding scheme in the receiver. The layered transmitted signals can be decoded layer by layer

starting from the outmost layer. Once the transmitted signals of the outer layers are known, they can

be taken into account to decode the inner layer signals. According to Shannon’s Channel Coding

theorem, as long as the individual rate of each layer is chosen to be less than the corresponding

capacity of that layer, the transmitted signal can be decoded without error.

Conversely, if any of the individual rate Rd is greater than the layered capacity Cd, no error

free transmission is possible.

Remarks:

1. When the fading channel is known to the receiver, a well known BLAST system (it has

various forms such as V-BLAST, H-BLAST) was proposed in [9] [12], wherein layered signalling

scheme and the successive cancellation are also employed to perform a low complexity detection.

The low complexity detection of BLAST is achieved by performing certain matrix decomposition

(e.g. QR decomposition) of the known channel, whereas in our channel knowledge unknown case

it is achieved by the decomposition of the transmitted signal. However different in nature, the

LUSTC resembles the BLAST system and it can be generally viewed as a non-coherent version of

it.
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2. The layering setup is not necessarily d × (d − 1). For example, when D = 8, M = 1,

in principal the signals can have up to 7 layers (d = 2, 3, · · · , 8), with each layered signal having

dimensionality d× (d− 1). One the other hand, if we only want 3 layers, we then can group d =

2, 3, 4 as the innermost, d = 5, 6 as the middle one and the rest as the outmost layer respectively.

However, it’s worthwhile to note that the more the layers, the more efficient the detection will be

under the same condition.

2.4 LAYERED CAPACITY ANALYSIS

In designing layered signals for use in LUSTC, one fundamental question to be asked is: What

the rate should be chosen in each and every layer? To answer this question, in this section, we

calculate the capacity of each layer, and use the numerical values of the layered capacity as the

design rule.

As the equivalent channel model for the innermost layer (2.10) differs from that for all other

layers (2.9), the innermost layer capacity calculation also varies from that for all other layers. For

the innermost layer, the channel model (2.10) is almost the same as USTC case except that the

received SNR at each receiver antenna in this case is ρD
M+1

in stead of ρ. The channel capacity

of USTC is already derived in [28] and hence is omitted here (Please see Theorem 2 in [28] and

references therein). The results in [28] can be directly used to calculate the innermost layer capacity

with the modification of SNR.

For all other layers but the innermost one, to compute the channel capacity of the equivalent

channel model (2.9), the following quantity need to be evaluated.

I(Xd; Sd) =
1

D
E

{
log

p(Xd|Sd)
p(Xd)

}
, (2.12)

where E{·} is the expectation over all random matrices inside the brackets and log is base 2.

One can see from this equation that in order to obtain the layered capacity the two density

functions p(Xd) and p(Xd|Sd) need to be computed beforehand.
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2.4.1 Computation of p(Xd)

As a direct consequence of lemma 2, the input signal SdQd−1 is an i.d. d×M unitary matrix

as well. To obtain a closed form density of the received signal p(Xd), we follow our previous

notation and rewrite SdQd−1 = Qd, thus

p(Xd) = E|Qd
p(Xd|Qd)

= E|Qd

exp
{
− tr [X∗d(Id + ρβQdQ

∗
d)
−1Xd]

}
πdN detN (Id + ρβQdQ∗d)


=

E|Qd
exp

{
tr[−X∗dQd(IM + 1

ρβ
IM)−1Q∗dXd]

}
πdN detN(IM + ρβIM)

=
1

πdN
· exp [−tr(X∗dXd)]

(1 + ρβ)MN
· E|Qd

exp [tr(αX∗dQdQ
∗
dXd)] , (2.13)

where we define β := D
M

and α := ρβ
1+ρβ

, E|Qd
{·} is the expectation taken over Qd only.

Therefore, to calculate the layered capacity, the only thing left is to compute the density func-

tion p(Xd|Sd) for the layers other than the innermost one2.

2.4.2 Computation of p(Xd|Sd)

One way of computing the conditional density p(Xd|Sd) is to treat Qd−1H in (2.9) as the new

channel H̃ and obtain the density p(H̃) first. Once the distribution of H̃ is known, the conditional

density p(Xd|Sd) can then be readily derived as the entries of the additive noise are assumed to be

complex Gaussian. At first glance, one may think that the distribution of new channel matrix H̃ is

also gaussian as Qd−1 is unitary and H is gaussian distributed. However, Qd−1 has orthonormal

columns in stead of orhonormal rows, the equivalent channel H̃ is thus not gaussian any more.

To circumvent the tedious approach of first obtaining p(H̃) and then p(Xd|Sd), we pursue an

alternating approach to calculate the conditional density p(Xd|Sd) directly. For all the layers but

the innermost one, as all random matrices appeared in both sides of (2.9) are i.d., then statistically

2For the innermost layer, p(Xd|Sd) is nothing but Gaussian distributed.
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the input output relationship stay unchanged when pre-multiply both sides of (2.9) by any d × d

unitary matrix Ψ(or it’s conjugate transpose Ψ∗), that is

p
(
Ψ∗Xd|Ψ∗Sd

)
= p(Xd|Sd).

We choose Ψ particularly as

Ψ =
[

Sd S⊥d

]
,

where the d× 1 unitary matrix S⊥d denotes the orthogonal complement of Sd, i.e.,

SdS
∗
d + S⊥d S⊥∗d = Id and S⊥∗d S⊥d = Id−M .

This yields

Ψ∗Xd =

 √ρβQd−1H

01×N

+ Ψ∗Wd ≡

 √ρβQd−1H

01×N

+ Wd,

where ≡ means statical equivalence.

This leads to

p(Xd|Sd) = p


 √ρβQd−1H

01×N

+ Wd

∣∣∣
 Id−1

01×(d−1)


= p


 √ρβQd−1H + Wd(1 : d− 1, :)

Wd(d, :)


= p

{
Xd−1,Wd(d, :)

}
,

where Wd(d, :) denotes the d-th row of d×N Gaussian distributed matrix Wd.
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Let W̄ = Wd(d, :), thus

p(Xd|Sd)

= p(W̄)p(Xd−1)

= p(W̄) ·
exp

[
−tr(X∗d−1Xd−1)

]
πN(d−1) detN(IM + ρβIM)

· E|Qd−1
exp

[
tr(αX∗d−1Qd−1Q

∗
d−1Xd−1)

]
(2.14)

=
exp

[
−tr(W̄∗W̄)

]
πNd

·
exp

[
−tr(X∗d−1Xd−1)

]
detN(IM + ρβIM)

· E|Qd−1
exp

[
tr(αX∗d−1Qd−1Q

∗
d−1Xd−1)

]
=

1

πNd
· exp [−tr(X∗dXd)]

(1 + ρβ)MN
· E|Qd−1

exp
[
tr(αX∗d−1Qd−1Q

∗
d−1Xd−1)

]
. (2.15)

(2.14) follows from (2.13) by replacing d with d− 1 and (2.15) follows from the fact that

tr(X∗dXd) = tr(Ψ∗X∗dXdΨ) = tr(W̄∗W̄) + tr(X∗d−1Xd−1).

2.4.3 An Alternative Derivation of p(Xd|Sd)

From (2.9), Xd is Gaussian distributed given the transmitted signal SdQd−1,

p(Xd|Sd,Qd−1) =
1

πdN
·

exp
{
−tr

[
X∗d(Id + ρβSdQd−1Q

∗
d−1S

∗
d)
−1Xd

]}
detN (Id + ρβSdQd−1Q∗d−1S

∗
d)

. (2.16)

Rewrite (2.16), we have the following

p(Xd|Sd,Qd−1) =
1

πdN
·

exp
{
−tr

[
X∗dXd −X∗dSdQd−1(IM + 1

ρβ
IM)−1Q∗d−1S

∗
dXd

]}
detN (IM + ρβIM)

=
1

πdN
· exp [−tr(X∗dXd)]

detN(IM + ρβIM)
· exp

[
tr(αX∗dSdQd−1Q

∗
d−1S

∗
dXd)

]
=

1

πdN
· exp [−tr(X∗dXd)]

(1 + ρβ)MN
· exp

[
tr(αX∗d−1Qd−1Q

∗
d−1Xd−1)

]
,

where the last step is due to S∗dXd = Xd−1.

Thus, averaging out Qd−1, we get exactly the same expression for p(Xd|Sd) as shown in (2.15).
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2.4.4 Layered Capacity Calculation

According to the previous derivation of p(Xd) (2.13) and p(Xd|Sd)(2.15), the equivalent chan-

nel capacity for all layers but the innermost one is:

I(Xd; Sd) = E

{
log

(
p(Xd|Sd)
p(Xd)

)}
= E

{
log

(
E|Qd−1

exp
[
tr(αX∗d−1Qd−1Q

∗
d−1Xd−1)

]
E|Qd

exp [tr(αX∗dQdQ∗dXd)]

)}
. (2.17)

In order to calculate the layered capacity numerically, we include the results in [28] as the

following lemma:

Lemma 3 : For T ×N matrix X =
√

ρD
M

ΦH + W, where Φ T ×M i.d. unitary matrix and W

is T ×N matrix with complex normal distribution CN (0, 1), we have

E|Φ exp tr(αX∗ΦΦ∗X) = (−1)M(M−1)/2 · Γ(T )...Γ(T + 1−M)

Γ(M)...Γ(1)
det F,

where F is a M ×M Hankel matrix whose entries are given by

Fmn =
K∑
k=1

1∏
l 6=k(ασk − ασl)

∞∑
q=0

(ασk)
q

(q + T − (m+ n+K) + 2)!
,m, n = 1, ...,M

where K = min(T,N), and σk are the nonzero eigenvalues of XX∗.

or, equivalently,

E|Φ exp tr(αX∗ΦΦ∗X) = (−1)(T−M)(T−M−1)/2 · Γ(T )...Γ(M + 1)

Γ(T −M)...Γ(1)
det G,

where G is a (T −M)× (T −M) Hankel matrix whose entries are given by

Gmn =
K∑
k=1

1∏
l 6=k(ασk − ασl)

∞∑
q=0

(−ασk)q

(q + T − (m+ n+K) + 2)!
,m, n = 1, ..., T −M
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Using Lemma 3, we can rewrite (2.17) as follows,

I(Xd; Sd) = E

{
log

(
Γ(d−M)

Γ(d)
· det Fd−1

det Fd

)}
,

where {Fd}Dd=M+1 are the corresponding Hankel matrices w.r.t. {Xd}Dd=M+1.

Or, equivalently

I(Xd; Sd) = E

{
log

(
(−1)d−M−1 exp(αX∗d−1Xd−1)

exp(αX∗dXd)
· Γ(d−M)

Γ(d)
· det Gd−1

det Gd

)}
.

In summary, we have the following theorem:

Theorem 2 (Mutual Information for Layered Isotropically Distributed Unitary Input) Consider

the channel model

X =

√
ρD

M
SH + W

=

√
ρD

M

(
D∏

d=M+1

Sd

)
H + W,

where H ∈ CND×M(0, 1) and W ∈ CND×N(0, 1) and the channel is constant for D channel

use, the layered channel capacity at each layer by using i.d. unitary signalling scheme is

Cd =


ρDN log e− log Γ(M+1)...Γ(2)

Γ(M)...Γ(1)
− E

{
log
(
(−1)M(M−1)/2 det Fd

)}
for d = M + 1

E
{

log
(

Γ(d−M)
Γ(d)

det Fd−1

det Fd

)}
for d ≥M + 1.

(2.18)

or equivalently,

Cd =


− 1

1+ρβ
ρβN log e− log Γ(M+1)

Γ(1)
− E {log (det Gd)} for d = M + 1

E
{

log
(

(−1)d−M−1 exp(αX∗d−1Xd−1)

exp(αX∗dXd)
· Γ(d−M)

Γ(d)
· det Gd−1

det Gd

)}
for d ≥M + 1.

(2.19)
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Remarks:

1. The capacity for the innermost layer are derived using exactly the same approach as in [28].

2. In principal, both (2.18) and (2.19) can be used to compute the mutual information via

Monte Carlo simulation. As explained in [28], however, (2.18) may be numerically instable when

SNR is high or the number of transmit and receive antennas is large. Due to this reason, the

numerical values of the layered capacity shown in Section 2.7 are all obtained by using (2.19).

3. We follow the same layered setting convention as the previous section for no particular

reason other than convenience. The capacities of any other valid layering setting can be obtained

in a similar way or by simply adding some layered capacities up.

2.5 LAYERED UNITARY SIGNAL DETECTION

In this section, we present three different detection rules for LUSTC when the input unitary

signals are constrained to form a finite set. These rules are respectively the multistage or succes-

sive cancellation, generalized likelihood ratio test detection (GLRT) and sphere decoding. The

performance of GLRT detector and sphere decoding detector is explored in Section 2.7.

2.5.1 MultiStage Decoding or Successive Cancellation

The chain rule of mutual information (2.11) suggests one natural low complexity detection

algorithm – multistage decoding (MSD) as in [29] or the successive cancellation as in [9]. The

detection process starts from the outmost layer signal set. Once the outer layer signals are de-

coded successfully, they can be taken into account for decoding the second outmost layer signals.

Iterating this process layer by layer, one can eventually decode the signals at all layers successfully.

Assume the d-th layered signal constellations form a finite set with cardinality Ld and the

signals for layers less than d are all i.d., the detection rule for the d-th layer signal can be rewritten
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as:

k̂ = arg max
1≤k≤Ld

p(Xd|Skd)

= arg max
1≤k≤Ld

E|Qd−1
exp

[
tr(αX∗dS

k
dQd−1Q

∗
d−1S

k∗
d Xd)

]
(2.20)

= arg max
1≤k≤Ld

(−1)M(M−1)/2 det Fk
d−1, (2.21)

where Fk
d−1 is the Hankel matrix w.r.t. Sk∗d Xd.

The prerequisite of this detector is that the outer layer signals have been decoded successfully,

otherwise error propagation from outer layers becomes an issue especially when the code rate is

not properly chosen. In practice, we can apply capacity achieving channel codes (e.g. LDPC code

or Turbo code) in concatenation with LUSTC scheme to improve the reliability of transmission in

each and every layer. As long as the individual rate in each layer is chosen to be the equivalent

channel capacity, asymptotically in the code length, this detection rule subjects to no penalty as

compared to the overall ML decoding.

Nevertheless, in stead of choosing the inner layer signals being i.d., in practice, each of the

inner layer signal codebook needs to form a finite set as well. In such case, assuming all the

previous layered signals are transmitted equally probable, the decoding metric for the d-th layer

signal can be derived as

k̂ = arg max
1≤k≤Ld

∑
j

exp
{

tr
[
αX∗dS

k
dQ

j
d−1Q

j∗
d−1S

k∗
d Xd

] }
(2.22)

Unfortunately, as the presence of the summation over the previous layered signals in this de-

tection rule, it is actually more complex rather than simpler as compared to the ML decoding rule

of the unitary signal. Therefore, it is not desirable to use this detection rule especially when the

spectral efficiency is high.

In order to circumvent this drawback, it is convenient to resort to the Generalized Likelihood

Ration Test (GLRT) approach as it does not require knowing any previous layer signal informa-

tion.
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2.5.2 GLRT Detection

Notice that from the equivalent channel model (2.9), we can treat Qd−1H := H̃ as the new

channel. Assume the channel matrix H̃ is fully known to the receiver, then the optimum coherent

ML detector can be shown as

k̂ = arg min
1≤k≤Ld

tr
{

(Xd − SkdH̃)∗(Xd − SkdH̃)
}
. (2.23)

When no knowledge is assumed for the new channel propagation H̃, the receiver needs to first

estimate H̃. The optimal least square estimate of H̃ can be shown as

H̃ = (Sk∗d Skd)
−1Sk∗d Xd

Treat the estimate of H̃ as true and take it into the coherent detector (2.23), the detection rule can

be written as

k̂ = arg max
1≤k≤Ld

tr
{

X∗dS
k
d(S

k∗
d Skd)

−1Sk∗d Xd

}
.

When the input signal Skd is further constrained to be unitary, the detector reduces to

k̂ = arg max
1≤k≤Ld

tr
{

X∗dS
k
dS

k∗
d Xd

}
.

This is the GLRT detector for the d-th layered signals. Similarly to the successive cancellation,

GLRT detector can also decode the layered signals successively starting from the outmost layer.

The advantages of the GLRT lies in it’s low complexity as it does not require any operation with

the inner layer signals while decoding the current layer signals. Nonetheless, from the perspective

of symbol error probability, the GLRT detector is suboptimal relative to the ML decoding of the

unitary signals. Moreover, it also has error propagation problem as successful decoding of the

inner layer signals depends upon the outer layer signals being successfully decoded.
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2.5.3 Sphere Decoding

The sphere decoding algorithm was illustrated in [18, 19, 20] to detect the layered signals.

Even though the layered signal structure in this chapter is somewhat different, the sphere decoding

algorithm can still be used as an efficient detection rule for our layered signals.

As the signals in each layer are all constrained to be unitary, the resultant overall input signal

QD is then consequently unitary. Thus, the optimal detector is:

k̂ = arg max
1≤k≤L

tr(X∗DQk
DQk∗

D XD),

where L =
∏D

d=M+1 Ld. Let Qk
D = SmDQn

D−1, with 1 ≤ m ≤ LD and 1 ≤ n ≤
∏D−1

d=M+1 Ld then

we have

k̂ = arg max
1≤m≤LD

1≤n≤
∏D−1

d=M+1 Ld

tr[X∗DSmDQn
D−1Q

n∗
D−1S

k∗
D XD]

= arg max
1≤m≤LD

1≤n≤
∏D−1

d=M+1 Ld

{
tr[X∗DSmDSm∗D XD]− tr[X∗DSmDQn⊥

D−1Q
n⊥∗
D−1S

m∗
D XD]

}
= arg min

1≤m≤LD

1≤n≤
∏D−1

d=M+1 Ld

{
tr
[
X∗DSm⊥D Sm⊥∗D XD

]
+ tr

[
X∗DSmDQn⊥

D−1Q
n⊥∗
D−1S

m∗
D Xd

] }
(2.24)

This minimization search over all possible signal candidates can be done efficiently via the tree

search sphere decoding algorithm. We can first find the set of signals from the outmost layer D

such that

tr
{

X∗DSm⊥D Sm⊥∗D XD

}
< r2,

for some pre-chosen sphere radius r. This can prune a portion of signal candidates at the outmost

layer D.

In a similar manner, the second term inside the minimization (2.24) can also be expanded as

two summations with one term has only the second outmost layer signals involved. Thus, we

can employ a similar search to eliminate some signal candidates in the second outmost layer,

with a recomputed radius. Iterate this process layer by layer, essentially a large portion of possible
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candidates can be pruned by a carefully chosen radius r. This approach greatly reduce the detection

complexity via pruning the possible signal candidates in every layer.

Unlike the GLRT decoding algorithm, sphere decoder does not make decision at each step but

only gives admissible signal candidates. Whenever the final admissible signal set is not empty,

it must include the optimal ML estimate of the transmitted signal. The GLRT detector, however,

can be viewed as first minimize the first term in (2.24), and then treat the estimated signal for the

outmost layer as true to minimize the second term. This is in general not equivalent to minimize

the sum of the two as in (2.24) and therefore no optimality of this approach is guaranteed. In

practice, we expect this detector will outperform the GLRT detector, albeit more complex, which

will be verified later in the simulation.

2.6 DESIGN OF LAYERED UNITARY SPACE TIME CODING

Although the input signal in each layer is characterized as i.d. unitary matrix, the practical

LUSTC signal constellations have to be constrained in a finite set to be decodable as the USTC

case. Nonetheless, different from the USTC codebook design, for LUSTC we need to build D −

2M + 1 3 layers signal constellations. Each of the layered signal constellations has orthonormal

columns, i.e, for any codeword Skd ∈ Sd with k ≤ Ld (Ld is the cardinality of Sd and is determined

by the layered capacity), we have

Skd ∈


U(d× (d− 1)), if d > 2M

U(2M ×M), if d = 2M

, where U is the set of matrices with orthonormal columns.

The layered signal constellation design closely relates to the specific decoding algorithm. For

the different detection rules introduced in Section 2.5, the design criteria also varies. In this section,

3We set the d = 2M as the first layer to design the signal constellations that achieve full diversity. If this require-
ment is relaxed, the first layer can start as d = M + 1.
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we design the signal constellations based on ML or the sphere decoding of the layered signals. The

design approach based on the GLRT receiver, though interesting, is not investigated in this chapter

as 1) the design criteria is not directly available for the non-gaussian new channel propagation

matrix H̃ 2) the GLRT detector in principal under performs the sphere decoding algorithm.

We present a successive design approach to construct the layered unitary signal constellations.

This design approach is based on a numerical optimization through the Given’s angle parametriza-

tion of unitary matrices, which we will introduce next.

2.6.1 Parametrization of Unitary Matrix

We only briefly introduce the parametrization below, please refer to [14] and references therein

for details. As shown in [14], any unitary matrix can be written as the product of a set of basic

rotation matrices and one diagonal matrix. The basic d× d rotation matrix Upq(φ, σ) specified by

p < q and φ, σ ∈ [−π, π) is

Upq
jk(φ, σ) =



1 if j = k and j 6= p, q

cos(φ) if j = k and j = p, q

−sin(φ) exp(−iσ) if j = p and k = q

sin(φ) exp(iσ) if j = q and k = p

0 otherwise.

Thus, any d× d unitary matrix U can be rewritten as

U = V
d−1∏
p=1

d∏
q=p+1

Up,q(φp,q, σp,q),

where V = diag(exp(−iδ1) exp(−iδ2) · · · exp(−iδd)).

To parameterize a d× d unitary matrix, totally d2 parameters are needed. In a similar manner,

we can parameterize the set of d×M (where d > M ) unitary matrices by 2dM −M2 parameters.

However, to simplify the parametrization, we choose to over parameterize any d × M unitary
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matrix by d2 parameters as well. Practically, we need only to choose the first M columns of d× d

unitary matrix as our desired matrix.

One good property of this Given’s angle parametrization is it turned the constraint optimization

problem into an unconstraint one.

2.6.2 Performance Measure

Different from the design criteria used in the previous literature, we adopt an alternative perfor-

mance measure that is independent of the SNR and the number of receive antennas in this chapter

to design the layered signals. On the high SNR region (ρ → ∞), minimizing the chernoff bound

of the pairwise error probability (2.2) is equivalent to minimize the following

M∏
m=1

(1− d2
m)−1 =

1

det(I−Φ∗kΦkΦ∗k′Φk′)
. (2.25)

We utilize the union of the asymptotic pairwise result as the performance measure

L∑
k=1

L∑
k′>k

1

det(I−Φ∗kΦkΦ∗k′Φk′)
, (2.26)

where L is the cardinality of the codebook.

In [30], it was proved that the codebook achieves full diversity if for any pair of codewords Φk

and Φk′ , the matrix  Φ∗k

Φ∗k′

[ Φk Φk′

]
=

 Rkk Rkk′

Rk′k Rk′k′


has full rank.

It’s not hard to show that the determinant of this matrix is equal to the denominator of (2.25)

given the unitary structure of the signals. Thus, (2.26) ensures the designed codebook to achieve

full transmit diversity as long as it’s finite.

As pointed out in [31], one necessary condition to have full diversity signal constellations is the

coherence time of the channel is greater than 2M . Therefore, we restrict our innermost layer signal

to have the dimensionality d = 2M to construct signal constellations that achieve full diversity.
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2.6.3 Layered Unitary Signal Design

Via Given’s angle parametrization, in principal an unconstrained optimization problem can be

set up to design the optimal layered unitary signal constellations for all d (2M ≤ d ≤ D) at

once. However, as there are generally too many parameters to optimize over, this method is not

feasible even for small D. As a matter of fact, in [20], the authors admit that they are not able to

find satisfactory designs based on Given’s angle parametrization for more than two layers signal

constellations.

To alleviate the problem of optimizing over too many parameters, we choose to design our

signal constellations successively. We start to build the signals from the innermost layer. Once the

innermost layer signals are designed they can be taken into account to further design the second

innermost layer signals. Iterate this process layer by layer, we are able to design the optimal signal

constellations with relative low complexity.

For the innermost layer d = 2M , the signal constellation design problem is the same as

usual USTC case. We use (2.26) as the objective function and minimize it over the Given’s an-

gle parametrization parameters. Detailed approach on designing USTC signal constellations via

Given’s angle parametrization can be found in [32] and is omitted here.

The signal constellation design for all other layers but the innermost one varies with the detec-

tion rule. If the ML or sphere decoding algorithm is applied for detection, then essentially we can

view SdQd−1 in (2.9) as the input signal for USTC. Motivated by this, we need also minimize the

performance measure (2.26) w.r.t. {Φ} = Sd
⊗
Qd−1. Here

⊗
is the Kronecker product. As the

inner layer signal constellationsQd−1 are already obtained in the previous step, we then need only

to design Ld signal constellations for layer d, where Ld is determined by the layered capacity4.

In summary, the design algorithm of layered signal constellations can be stated as follows:

step 1: Set d = 2M

step 2. Design L2M 2M ×M unitary matrices {Φk}L2M
k=1 according to the design metric (2.26)

4For designing signal constellations that work below the capacity, other design rule (e.g. error exponent) is of
practical interests and needs further investigation
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and set Q2M = {Φk}L2M
k=1

step 3. Repeat the following until d = D

• Set d = d+ 1

• Design Ld d × (d − 1) unitary matrices Sd according to (2.26), where {Φk}
∏d

d′=2M Ld′
k=1 =

Sd
⊗
Qd−1

• Set Qd = {Φk}
∏d

d′=2M Ld′
k=1

2.6.4 A Heuristic Design for the Layered Signals

Applying the successive design algorithm at each layer d, we have totally Ld · d2 parameters

to optimize over, which may make the optimization problem inefficient while designing higher

spectral efficiency signal constellations especially as d increases. To solve this problem, we present

a heuristic design approach to design the layered signals as the layer d or Ld is large.

Rather than pursue the time consuming approach to minimize (2.26) numerically, we can sim-

ply generate the Given’s angle parameters σ’s, φ’s and δ’s randomly. Using (2.26) of the optimized

signal constellations as the baseline, we get that we can generate fairly good signal constellations

by choosing all the parameters according to normal distribution N (0, 1). Practically, we can ran-

domly generate the set of parameters a hundred times and choose the best set of parameters (in

terms of (2.26)).

2.7 SIMULATION RESULTS

2.7.1 Numerical Examples of the Layered Channel Capacity

The equivalent channel capacity of the LUSTC is evaluated numerically using Monte-Carlo

simulation. In the simulation, we randomly generate i.d. (d − 1) × M unitary matrix Qd−1,

d× (d− 1) i.d. unitary matrix Sd and complex normal channel matrix H and W. The i.d. unitary
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matrix, say Qd−1, can be generated by first performing singular value decomposition of a complex

matrix with it’s entries being i.i.d normal distributed and then choose the first M columns of any

of the two unitary matrices.

In Fig.2, the equivalent channel capacity is evaluated for M = N = 2, D = 20 with different

SNR values. In Fig.3, the simulation parameters chosen are M = N = 4, D = 20. The layered

channel capacities are normalized by the channel coherence time D. As can be seen from the

simulation results, the capacity of equivalent layered channel is decreasing with layer increasing.

In Fig.4, the normalized layered capacity is plotted as a function of SNR for M = 2, N = 1,

D = 6. In Fig.5, the normalized layered capacity iss plotted for M = 2, N = 2 and D = 6 case.

Similarly as the previous obtained results, the layered capacity decreases as layer increases. These

numerical values of the layered capacities are used next to design practical layered unitary signal

constellations. As suggested by these results, in designing the practical LUSTC, we shall put more

signals in the inner layers and less in the outer layers.

2.7.2 Simulation Results on the Performance of Designed LUSTC with Practical Decoding

Algorithms

In Fig.6, we compare the performance of our successively designed layered signal constella-

tions with the optimized unitary space time constellations. The simulation parameters are D = 6,

M = 2, N = 1. According to the previous layered capacity analysis (Fig.4), we put 17, 3, 2

signals respectively in layer 4, 5, 6. The spectral efficiency is then log(102)/6 ≈ 1.1 Bits/Sec/Hz.

The USTC signal constellations ( totally 102 6 × 2 unitary matrices) are obtained by numerically

optimizing (2.26). It can be seen from the figure, the successively designed LUSTC has less than

2 dB performance degradation as compared to USTC signal constellations. However, as pointed

out earlier, the LUSTC enjoys lower decoding complexity. We further plot the performance of

the same LUSTC signal constellations when GLRT detector is used for decoding. Seen from the

figure, the GLRT decoding has around 8 dB performance loss compared to sphere decoding at

the symbol error rate around 10−3. It’s worthwhile to note that the signal constellation designed
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Figure 2: Layered capacity at different SNR, M = N = 2, D = 20
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Figure 3: Layered capacity at different SNR, M = N = 4, D = 20
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Figure 4: Layered capacity vs SNR, M = 2, N = 1, D = 6
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Figure 5: Layered capacity vs SNR, M = N = 2, D = 6
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according to our successive design approach is not optimal in terms of the GLRT detector. We

conjecture that the optimal design based on the GLRT detector can make the gap smaller.

Using the obtained successively designed LUSTC signal constellations, we plot the perfor-

mance of GLRT detection rule at every layer in Fig.7. We observe that the performance of the

inner layer signals is always worse than that of the outer layers and the overall GLRT detector

performance is almost identical to that of the innermost layer. This is due to error propagation in

decoding the layered signals thus the overall performance is bounded below by the innermost layer

signals. In practice, the reliability of the outer layer decoding can be strengthened by combining

the LUSTC with channel codes (e.g. LDPC or Turbo Codes).

In Fig.8, the performance of the successive designed signal constellations with two different

practical decoding algorithms is shown. The parameters in the simulation areD = 6, M = 2, N =

2. The number of signals put in layer 4, 5, 6 is 171, 6, 4 respectively according to the previously

obtained layered capacity and the spectral efficiency is 2.005 Bits/Sec/Hz. The layered signals

are designed according to our heuristic algorithm. The same spectral efficiency optimized unitary

space time codes (totally 4104 6×2 unitary matrices) is not available for comparison as it becomes

very inefficient to perform the optimization. Seen from the figure, the sphere decoding outperforms

the GLRT algorithm for roughly 4 dB .

2.8 CONCLUSION

We considered the problem of communicating over MIMO fading channels using layered uni-

tary space time codes (LUSTC), where no channel information is assumed, but the fading coeffi-

cients remain constant for a coherence interval of length D symbol times. A coding theorem of

Layered Unitary Space Time Coding scheme was given in the chapter. We showed the channel

capacity of applying Unitary Space Time Coding (asymptotically optimal in SNR or channel co-

herence time) can be achieved by layered signaling in the transmitter and successive decoding in

the receiver, with no loss in optimality. The advantage of LUSTC over USTC scheme lied in it’s
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Figure 6: Comparison of optimized USTC and Successive deisgned LUSTC D = 6, M = 2,

N = 1
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Figure 7: Comparison of GLRT at different layer D = 6, M = 2, N = 1
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Figure 8: Performance of successive designed signal constellations D = 6, M = 2, N = 2
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low complexity decoding algorithm. This coding theorem laid the information theoretic foundation

of LUSTC.

We then gave a theoretical design guideline for LUSTC through the layered capacity analysis.

The numerical values of the layered capacity were obtained via Monte-carlo simulation then used

to design practical LUSTC codebook. Our simulation indicated that more signals should be put in

inner layer rather than outer layers. We applied a successive algorithm to effectively design LUSTC

signal constellations. The design example given in this chapter was a numerical optimization based

on Given’s angle parametrization of unitary matrices. In case of designing high spectral efficiency

signal constellations with large dimensionality, a heuristic design approach was also provided.

Three different layered signal decoding algorithms namely multistage decoding, GLRT de-

coding and sphere decoding algorithms were also given in this chapter. The successive decoding,

though theoretically simpler, is more complex than the ML decoding of the unitary signals when

all the layered signals are constrained in a finite set. The performances of two promising practical

decoding algorithms – GLRT and sphere detector were shown in the simulation.
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3.0 LIMITED FEEDBACK MIMO SYSTEM

3.1 INTRODUCTION

A well known result of information theory establishes that feedback (of the received symbol at

channel output) does not improve the capacity of a discrete memoryless channel [27]. On the other

hand, for the cases where the channel is selective in either time, frequency or space, feedback of

the channel state to the transmitter can bring substantial benefits to the forward communications

system in terms of either capacity, performance or complexity.

The theoretical study of capacity and coding with channel state information at the transmitter

(CSIT) can be traced back as early as to Shannon [33] and Dobrushin [34]. For practical applica-

tions, researchers have long utilized the channel information for antenna array beamforming which

has been known as an effective way to combat fading in wireless environment [35]. More recently,

information-theoretic capacity on channels with both perfect [36, 37, 38] and imperfect [39] CSIT

and practical coding schemes using CSIT [40] [41] have been extensively studied.

With the advent of Multiple Input and Multiple Output (MIMO) antenna systems, investigation

on the potential benefits of CSIT for MIMO systems has been intensified and design of a practical

scheme to achieve the potential benefits as closely as possible has become very important. The

channel estimation done at the receiver needs to be sent back to the transmitter to obtain the po-

tential CSIT benefit. Unlike for a scalar channel case, for a MIMO system, the number of channel

coefficients which need to be fed back to the transmitter is large and a naive feedback method

(feedback the scaler quantization of each and every channel coefficients) would require a large
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capacity in the feedback channel. Thus, the study of MIMO system with a limited rate feedback

is of practical interests. In the past, various options in MIMO transmit beamforming with limited

rate feedback have been considered in [42, 43, 44, 45, 46]. In the beamforming setting, however,

one notes that the capacity loss is usually large, as compared to the optimal waterfilling (WF) so-

lution [3], especially in high SNR region when multiple receive antennas are used. To remedy this

shortcoming, in [1, 2], the problem is approached from the perspective of designing a codebook

which contains a finite number of pre-determined matrices. The optimal WF solution is a mixture

of optimal antenna phase rotation and power adaptation, which changes subject to a particular real-

ization of the channel. The proposed codebook design methodology in [1] includes both the phase

rotation and power allocation matrix. Whereas in [2], the authors propose a codebook design based

only on the phase rotation which consequently has some performance degradation as compared to

the method in [1].

In this chapter, we attempt to strike a balance between the sub-optimality and the signal pro-

cessing complexity of the CSI feedback mechanism and propose a new CSI feedback methodology

for MIMO systems which maximizes the forward channel capacity at a given feedback rate. Our

design is based on a suboptimal waterfilling (SWF) scheme. Under this scheme, either a fixed

level of constant power or no power at all is assigned to each subchannel based on a threshold test

on the (eigen) channel gain. Making use of upperbound analysis on the capacity difference, we

determine that the most important factor for the SWF scheme is the identification of those subchan-

nels to which nonzero transmit power should be allocated. The transmit power is equally divided

among these channels, and thus the SWF is simple for implementation. In addition, it incurs small

capacity loss.

Inspired by the small capacity loss of the SWF as compared to the WF, we then propose a SWF

based transmission scheme due to the smaller feedback rate requirement and implementation sim-

plicity. As the feedback channel subjects to a rate constraint, the practicality of the scheme depends

on whether a good limited rate feedback codebook can be designed. We use the generalized Lloyd

algorithm [47] and design the codebook which is a finite set of unitary (orthonormal column) ma-
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trices. The codebook for a given rate is constructed by a gradient search method applied on Given’s

angle parameterizations of the unitary matrix. The proposed algorithm, although it is based on a

sub-optimal SWF scheme rather than on the optimal WF as in [1], surprisingly outperforms the

algorithm in [1] as the numerical results indicate. We believe the gain in performance is largely

owing to the optimal computation of the centroid. On the other hand, our proposed algorithm also

presents superior performance over the multimode precoding scheme in [2], where the codebook

is also a set of unitary matrices. The gain over [2] comes mainly from the fact that the cardinality

distribution of the designed codebook employing our proposed algorithm is much closer to optimal

(if not exactly optimal) as compared to the precalculated one in [2].

3.2 SYSTEM OVERVIEW

3.2.1 System Model

We consider a MIMO system with M inputs and N outputs. The [N × 1] output signal vector

is modeled as

r = Hs + n, (3.1)

where H is a [N ×M ] channel matrix with circularly symmetric complex Gaussian entries of zero

mean and unit variance; s is a [M × 1] transmitted column vector with total power constraint Pt,

such as E[s∗s] ≤ Pt; n is a [N × 1] column vector representing the additive white Gaussian noise

present at the receiver, with E[nn∗] = σ2IN×N . Without loss of generality, we assume σ2 = 1

throughout the chapter.

3.2.2 Optimal and Sub-optimal Waterfilling

Assume the channel matrix is perfectly known to the receiver. By the singular value decom-

position, the channel matrix H can be decomposed as H = UΛV∗, where both U and V are the

unitary matrices and Λ is a diagonal matrix with the singular values of H on its diagonal. The
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capacity achieving power allocation solution in such a case is the well known Water Filling (WF),

with the analogy of pouring water over a surface. The instaneous WF capacity as given in [3] is:

Cw =
m∗∑
i=1

log(µλi).
1 (3.2)

µ is the water level and λi is the corresponding i-th sub-channel gain (the square of the i-th diagonal

element in Λ) and log is the logarithmic with base 2. The parameterm∗ denotes the number of sub-

channels whose channel gain is greater than the inverse water level, namelym∗ =
∑

i I(λi > µ−1),

where I(·) denotes the indicator function. The water level relates to Pt by satisfying the total power

constraint

Pt =
m∗∑
i=1

(µ− λ−1
i ). (3.3)

Dividing both sides in (3.3) by m∗ and defining S0 := Pt

m∗
, we have

S0 :=
Pt
m∗

= µ− 1

m∗

m∗∑
i=1

λ−1
i = µ− ḡ, (3.4)

where we define the sub-channel losses as gi := 1/λi and the sample-mean of the sub-channel

losses as ḡ := 1
m∗

∑m∗

i=1 gi. For convenience, we define the set of good sub-channels as E = {gi :

µ− gi > 0, i = 1, 2, . . . ,M}.

Under the SWF scheme, a fixed identical transmit power is allocated to every good sub-channel

whose channel gain λi is greater than µ−1, i.e., the sub-channels which belong to the set E . A

typical allocation of power in SWF is depicted in Fig.9. The instaneous channel capacity of the

SWF scheme is

Ce =
m∗∑
i=1

log(1 + Ptλi/m
∗). (3.5)

1WLOG, we assume the eigenvalues are ordered decreasingly, i.e., λj ≥ λk, for j < k.
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Figure 9: Optimal and Sub-optimal Power Allocation
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3.3 TRANSMISSION SCHEMES WITH FINITE RATE FEEDBACK

Under the SWF scheme, only partial information – the first m∗ columns of the optimal rotation

matrix V is needed to be fed back to the transmitter; whereas for the WF, the matrix Λ needs to be

transmitted back as well. This will decrease the amount of feedback traffic. In this section, we will

focus on the design of practical transmission schemes under the SWF due to the lower feedback

rate requirement and implementation simplicity of the scheme. However, before we proceed, the

capacity loss of the SWF scheme will be examined first.

3.3.1 Capacity Difference between WF and SWF

The instaneous capacity difference between WF and SWF, using (3.5) and (3.2) can be written

as

∆C : = Cw − Ce = −
m∗∑
i=1

log
1 + Ptλi/m

∗

µλi

= −
m∗∑
i=1

log(1 +
gi − ḡ
µ

), (3.6)

where the last step follows from (3.4).

The capacity difference (3.6) depends on the optimal power level µ. Thus, it can only be

evaluated numerically as no analytical solution to µ exists. To offer an insight into the capacity

difference, we expand the summand in (3.6) by the Taylor series and obtain a series of upper- and

lower-bounds. In the following theorem, we have a couple of upper bounds.

Theorem 3 The capacity difference between the WF and the SWF scheme is upper bounded by

∆C ≤ 1

ln 2
m∗

σ2(g)

µ2
, (3.7)
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where σ2(g) denotes the sample-variance of the sub-channel losses (inverse sub-channel gains) in

the set of good sub-channels E . Meanwhile, by using the absolute value of the first order term, we

have

∆C ≤
1

ln 2

m∗∑
i=1

|gi − ḡ|
µ

. (3.8)

Proof See Appendix B.

These bounds, though easy to obtain, are tight and provide useful tools to make inference on the

loss of a suboptimal solution. It shall be noted that the SWF scheme subsumes the beamforming

scheme in low SNR regime and the equal power allocation scheme to all transmit antennas in high

SNR regime (when M ≤ N ). Therefore, making use of these upper bounds, we can explain why

beamforming and the equal power allocation are asymptotically optimal in the low and the high

SNR regime respectively. In the high SNR regime, i.e., Pt � 1 and µ� 1, the upper bound (3.7)

becomes zero, and thus the equal power allocation is optimal; in the low SNR regime, i.e., Pt � 1,

m∗ = 1 and σ2(g) = 0, the upper bound also goes to zero, thus beamforming is optimal in this

case.

In [48] [49], the authors obtained an upper bound using the duality concept in convex pro-

gramming. They first set up a constraint optimization problem and solved it partly by using the

Lagrangian multiplier method. However, they did not solve for all the optimal values of the La-

grangian multiplier problem; then consequentially, obtained a duality gap. When the power allo-

cation scheme is constrained to be the so called SWF in this chapter, the gap is enlarged further.

For the purpose of comparison of tightness, we include here one of the main results of the paper –

equation (24) in [49], which is given as:

∆C ≤
1

ln 2

m∗∑
k=1

pk(
σ2/λk

S0 + σ2/λk
), (3.9)

where the parameters pk and σ2 need to be set. This upper bound (3.9) is a general result which

can be applied to a variety of channels with different fading statistics. For the system given in

this chapter, the parameters needs to be set as: pk = 1 for all k (This setting makes the prob-

lem formulated in [49] become comparable to ours) and σ2 = 1. Then, (3.9) can be written as
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∆C ≤ 1
ln 2

∑m∗

i=1
gi

S0+gi
=: Uw where the right hand side is defined as Uw and S0 is shown in (3.4).

Comparing Uw with the first order upper bound (3.8), we note that the summand in Uw is equiva-

lent to gi

µ
. That is, the denominator S0 + gi can be replaced with µ as an approximation since the

mean value of S0 + gi is µ, as shown in (3.4). Now, let us make a comparison of gi

µ
with |gi−ḡi|

µ

the summand of the first order upper bound. We note that gi

µ
� |gi−ḡ|

µ
. This provides us with an

approximate idea why even the coarse first order upper bound (3.8) provides tighter bound than

Uw does.

Based on the ensemble of randomly generated channel matrix H, the cumulative distribution

function (CDF) on the capacity difference between SWF and WF is plotted in Fig.10. The true

difference is compared with the lower and upper bounds derived. Selected system parameters are

M = N = 16 and SNR = 10 dB. The Yu-Cioffi bound is also provided for the purpose of

comparison. We confirm that even the first order upper bound (3.8) is much tighter than the Yu-

Cioffi bound. More importantly, the capacity difference between WF and SWF is indeed small as

reflected in this figure. This suggests the low complexity SWF scheme can be used at the cost of

negligible capacity loss.

3.3.2 SWF Based Transmission Scheme with Limited Rate Feedback

The small capacity difference between WF and SWF indicates that feedback of the first m∗

columns of the rotation matrix V is sufficient when a negligible throughput loss is acceptable.

However, even feedback of the first m∗ columns of V itself may not be feasible due to the feed-

back channel rate constraint. Thus, one important issue in SWF implementation is the design

of the limited rate feedback codebook. In practice, a designed codebook C can be stored at

both the transmitter and the receiver. Each time when the channel H changes, the receiver se-

lects a codeword Vk∗ according to the selection criteria used in codebook design. For example,

k∗ = arg maxCp(H,Vk), which will be discussed in the codebook design in section 3.4. The

receiver will feedback the index k∗ to the transmitter. At the transmitter side, the codeword Vk∗

will be used as a precoding matrix. Under the SWF, the feedback codeword Vk∗ is a M × m
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Figure 10: Cumulative Distribution Function of Capacity Difference
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Figure 11: SWF based transmission scheme with limited rate feedback

(1 ≤ m ≤ M ) unitary matrix and the total transmit power Pt is equally divided among the m

eigenmodes. Equal power allocation reduces the implementation complexity, compared to WF

solution, which requires different power allocation to different eigenmode. The block diagram of

MIMO system with limited rate feedback is shown in Fig.11.

The practicality of the SWF based transmission scheme depends largely upon whether a good

limited rate feedback codebook can be designed as it is key to the actual performance of the

scheme. The feedback codebook design is a lossy source coding problem and in principal the

conventional rate distortion theory can be applied to find the ultimate limit of rate distortion curve.

However, a couple of reasons prohibit the use of the rate distortion theory for designing the feed-

back codebook. First, the rate distortion theory is nonconstructive, which gives the ultimate limit

but not a constructive design method. Second, the optimal rate distortion curve is available only

in very special cases, such as compression of the Gaussian source with the mean square error dis-
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tortion measure or use of Blahut’s algorithm [50] to numerically derive the optimal rate distortion

curve for discrete sources.

In this chapter, we restrict our codebook design specifically as a vector quantization problem

without caring about the information theoretic limit. Under the SWF scheme, the problem of code-

book design is to find the optimal quantizer, a deterministic mapping, from the spaceH of channel

realization to the space U of unitary (orthonormal columns) matrices with the codebook cardinality

constraint. Due to the randomness of the channel matrix H and consequently the number of good

sub-channelsm∗, the space of unitary matrices should have the form U =
⋃M
m=1 Um with Um being

the set of complex M ×m unitary matrix.

To solve the problem, one direct way as shown in [2] is to find the cardinality distribution

and then design the codewords within each set Um. However, finding the optimal cardinality dis-

tribution itself is not easy as the distribution changes with the given total cardinality constraint.

Moreover, intuitively the optimal cardinality distribution has to be dependent upon the channel

statistics and the SNR value, which further complicates the problem. Even though the authors

in [2] indeed found the cardinality distribution by expressing the system performance, such as ca-

pacity and probability of error in terms of the cardinality distribution, the distribution derived there

is not exact and does not adapt to the channel statistics and the SNR value.

In Section 3.4, we circumvent the problem of finding the cardinality distribution by using the

generalized Lloyd algorithm [47] to directly design the codebook. Utilizing the Lloyd algorithm,

the codewords are searched over the whole space U with the total cardinality constraint rather than

over each and every space Um and thus the derivation of the cardinality distribution becomes un-

necessary. The codebook designed this way naturally has codewords with different dimensionality

and the cardinality distribution is adaptive to the channel statics and SNR value.
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3.4 FEEDBACK CODEBOOK DESIGN

We now consider the problem of designing the feedback codebook C which is a finite set

of orthonormal column matrices, i.e., C ⊂ U , under the the cardinality constraint |C| = Ntot.

Assuming the feedback channel is error free, a feedback codeword Vk ∈ C (k = 1, 2, ..., |C|) from

the receiver serves as the precoding matrix at the transmitter. This then yields a modified input

output relationship

r = HVks + n. (3.10)

As discussed in section 3.3.2, the problem of codebook design can be formulated as a vector

quantization problem and hence the conventional generalized Lloyd algorithm will be applied to

find a codebook that optimizes an overall distortion measure. Depending upon the interests of

system performance, various criteria, such as probability of error [2, 51], capacity [2, 1] and the

error exponent [52] can be utilized to design the codebook. In this section, our design goal is

to find the codebook C using the Lloyd algorithm which maximizes the forward channel (3.10)

capacity. It is equivalently the codebook that minimizes capacity loss compared to the optimal

WF. The capacity loss is thus employed as our distortion measure, i.e.,

d(H,Vk) = Cw(H)− Cp(H,Vk), (3.11)

where Cw is the water-filling capacity defined in (3.2) and Cp is the forward channel capacity with

Vk as the precoder

Cp(H,Vk) = log det(IN +
Pt
m

HVkV
∗
kH
∗), (3.12)

where Vk has the dimensionality M ×m.

According to the generalized Lloyd algorithm, a set of channel matrix H will be generated ran-

domly according to a given channel statistics as the training sequence. We also randomly generate

Ntot number of orthonormal column matrices as the initial codebook. The key to the generalized
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Lloyd algorithm is to iteratively convert a given codebook to a new and improved one in the sense

that the distortion measure with respect to the updated one is decreased.

In each iteration of updating the codebook, we first find the optimal partition of the training

sequence according to the given codebook, i.e.,

Vk∗ = arg min
Vk∈C

{
Cw(H)− Cp(H,Vk)

}
︸ ︷︷ ︸

T (H)

= arg max
Vk∈C

Cp(Vk). (3.13)

Define the k-th cluster as Rk =
{
H : T (H) = Vk

}
and the k-th partial distortion can be

written as

D(Vk) = E [d(H,Vk)|H ∈ Rk] . (3.14)

To update the codebook, we need to recompute the optimal centroid (new codeword) within

each clusterRk such that the distortion in the cluster is minimized, i.e.,

Vk = arg max
Vk∈U

D(Vk),

where different from (3.13), the maximization is taken over the space of all unitary matrices U

rather than a finite set of unitary matrices.

Once the new codebook is generated, we can repeat the previous process until the overall dis-

tortion D =
∑|C|

k=1D(Vk)pk has changed little since the last iteration, where pk is the probability

that a specific channel matrix H falls into the clusterRk.

The detailed design algorithm is summarized as follows:

step 0. Specify the total available transmit power Pt.

step 1. Randomly generate the channel matrix H as the training sequence according to a given

distribution.

step 2. Randomly generate an initial codebook C with Ntot codewords.

step 3. Repeat the following steps until the distortion has changed only by a small enough

amount since the last iteration.
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(a). Given a codebook C redistribute each channel matrix H into one of the clusters in C by

selecting the one whose centroid is closer to H, i.e.,

H ∈ Rk∗ ⇐⇒ d(H,V∗k) ≤ d(H,Vk) for k∗ 6= k.

(b). Recompute the centroid for each cluster Rk just created, i.e., Vk = arg minVk∈U D(Vk)

to obtain a new codebook C.

(c). Compute the overall distortion D for the new generated codebook C.

(d). If an empty cluster was generated in (a), randomly generate an alternative codeword Vk.

The generalized Lloyd algorithm finds the codebook in iterations. A few issues of the algorithm

need to be further addressed.

3.4.1 Random Generation of Initial Codebook

In the second step of the algorithm, we randomly generate Ntot unitary matrices as the initial

codebook. However, noting from (3.12), the capacity of SWF applying any unitary precoding ma-

trix Vk with dimensionalityM×M isCp(H,Vk) = log det
(
IN+ Pt

M
HVk(HVk)

∗) = Cp(H, IM).

This means that when more than one M ×M codewords are presented, they essentially act as a

single one. Thus, any codewords with dimensionality M ×M can be replaced by IM for practical

design purpose. In our design algorithm, we start the initial codebook with at most one M ×M

unitary matrix. This is to ensure that the final codebook C meets the cardinality constraint, i.e.,

|C| = Ntot; otherwise, the final codebook generated using the algorithm will have less than Ntot

number of codewords.

3.4.2 Computation of the Centroid

One difficult part of the Lloyd algorithm is the computation of the centroid (3.14). In con-

ventional scaler or vector quantization problems with the Euclidian distance measure [53], an

explicit expression of computing the centroid can be obtained. However, this is mathematically in-

tractable in our problem as the distortion measure (3.11) employed is non-linear. In [1], the authors
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employed a similar Lloyd algorithm with a difference such that their design combines optimal an-

tenna phase rotation and power adaptation, as compared to phase rotation only in the SWF scheme.

They used a heuristic approximation to compute the centroid rather than an exact derivation. Their

approximation enjoyed a closed form expression, but it inevitably has a performance degradation.

In this chapter, we setup an optimization problem to compute the centroid (3.14). In our SWF

scheme, Vk is constrained to be unitary. To facilitate the solution of the optimization problem, we

parameterize the unitary matrix using the Given’s angle rotation introduced in Chapter 2.

By this parametrization, any M ×M unitary matrix U can be written as a product of Given’s

rotation matrices and a diagonal matrix, i.e.,

U = UΛ

M−1∏
p=1

p+1∏
q=M

Up,q(φp,q, σp,q), (3.15)

where UΛ = diag
(

exp(iδ1), · · · , exp(iδM)
)
. We choose to parameterize any M × m unitary

matrix Um in a similar manner as

Um = U

 Im

0(M−m)×m

 .

Let Θ be the collection of M2 parameters (σ, φ and δ). By this parametrization, the compu-

tation of centroid problem (3.14) becomes an unconstraint optimization over the parameter set Θ.

To obtain the optimal solution, we randomly generate the initial values of the parameters and then

update them along the direction of the gradient. The gradient with respect to the parameter set Θ

is derived in Appendix C.

The optimization problem is solved for each and every m with 1 ≤ m < M . For m = M ,

we simply set Vk = IM as discussed in Section 3.4.1. We then choose from those M optimized

unitary matrices the one that gives the minimum D(Vk) as the k-th centroid.
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3.4.3 Adaptive Codebook Design

The proposed codebook design algorithm works not only for uncorrelated fading, it can also be

applied to generate codebooks for correlated fading environments. In the case when the fading has

a certain correlation, the only required modification is to randomly generate a training sequence

(channel matrices) according to the correlated distribution (Step-1 of the algorithm). We can then

utilize the algorithm to obtain the codebook for the particular distribution.

On the other hand, the designed codebook should vary with the SNR of the system as discussed

in section 3.3.2. However, codebook for each SNR is burdensome in design overhead as well as in

adaptive feedback effort. It would be desirable in some cases to use a codebook which can work

for a range of SNR. In practice, we can partition the whole SNR region of the system into smaller

regions and design codebooks for each one. As long as the operating SNR of the system does not

change very fast, we can designate a codebook to use with little overhead incurred.

The goal of designing the codebook that works for a range of SNR can be achieved with slight

modifications of the proposed algorithm. Specifically, Step-0 of the algorithm needs to be modified.

We assume the instaneous operating SNR is a random variable taking values in a range according to

a given SNR distribution. Then, in Step-0 of the algorithm, other than specifying a single value for

power Pt, we randomly generate Pt according to the given distribution for each and every training

channel matrix. On the other hand, as the distortion measure (3.11) is a function of Pt, we need to

modify it as well to strike a design balance among different SNR values. The distortion measure

employed in this case is the normalized capacity difference, i.e., d′(H,Vk) = 1− Cp(H,Vk)

Cw(H)
.

3.5 NUMERICAL RESULTS

The empirical cumulative distribution function of the instaneous channel capacity with feed-

back is shown in Fig.12 for a 3 × 3 MIMO system. Our codebook was designed according to the

generalized Lloyd algorithm. In the design, 1000 channel matrices H were randomly generated as
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Figure 12: Cumulative Distribution Function of Capacity with Limited Rate Feedback for 3× 3

MIMO System
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Figure 13: Cumulative Distribution Function of Capacity with Limited Rate Feedback for 4× 4

MIMO System
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the training sequence.2 The targeted operating SNR is 0 dB. It is worthwhile to point out that as

the codeword distribution in the feedback codebook is not necessarily uniform, the feedback rates

(2, 3, 4 and 6 bit) listed in the figure are essentially upperbounds on the rate. We then randomly

generated 10000 samples of H and calculated the forward channel capacity with the designed

codebook at SNR = 0 dB. The numerical results indicate that larger forward channel capacity will

be achieved with more feedback rate. However, the benefit obtained from increasing the feedback

rate from 1 bit to 2 bit is much larger than the benefit obtained by increasing the rate from 2 bit

to 3 bit. As shown in the figure, the capacity with 6 bit feedback is very close to the infinite rate

feedback SWF capacity. Similar result is also shown in Fig.13.

In Fig.14, the normalized (with respect to the optimal WF capacity) average channel capacity

with feedback is shown for 4 × 4 MIMO system. The scheme by Lau, Liu and Chen (covari-

ance feedback scheme) in [1] and the multimode precoding scheme in [2] are also depicted for

comparison purpose. In multimode precoding, we use the codebook distribution derived from the

capacity allocation criterion in [2] for fair comparison. For example, for 3 bit feedback case, we

have card(U1) = 4, card(U2) = 3, card(U4) = 1. The codebook in multimode precoding scheme

is generated to minimize the Fubini-study distance of each mode as in [2]. The codebook in co-

variance feedback scheme is designed according to [1], which is a combination of power allocation

and antenna phase rotation matrices.

From the simulation results, we see our SWF scheme outperforms both the covariance feed-

back and the multimode precoding schemes throughout all SNR. The gain of our SWF scheme

over multimode precoding scheme comes from the fact that the codebook distribution according

to the generalized Lloyd algorithm is closer to optimal as compared to the precalculated one in the

multimode precoding scheme. On the other hand, our designed codebook based on a sub-optimal

SWF scheme surprisingly outperforms the optimal WF based covariance feedback scheme. We

believe that the gain comes from the more exact computation of the centroid.

2Based on the numerical results, changing the number of training sequence from 1000 to 10000 or even larger did
not bring much benefit.
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Figure 14: Capacity comparison of SWF limited rate feedback capacity with covariance feedback

[1] and multimode precoding [2] schemes for 4× 4 MIMO system
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In Fig.15, the normalized average channel capacity with feedback is shown for 4 × 4 MIMO

system with correlated channel matrix H. The spatially correlated channel matrix H is generated

by H = Ψ
1/2
t Hw(Ψ

1/2
r )∗ [54], where Hw is uncorrelated channel matrix. In the simulation, we

set Ψr = IM and Ψt is a Teoplitz matrix with the first row as (1, 0.9048, 0.8187, 0.7408). Similar

to the results in Fig.14, our scheme outperforms the multimode precoding scheme throughout all

SNR with the same feedback rate. In some SNR region, even a lower rate feedback rate SWF

scheme surpasses the performance of a higher rate feedback multimode scheme. For example, our

3 bit feedback SWF scheme performs better in low SNR region and almost the same in high SNR

region as compared to the 4 bit feedback multimode scheme. Moreover, the superiority of our

scheme to the multimode precoding scheme is more noticeable than that in Fig.14. This is due

to the fact that the codebook distribution in the multimode scheme is derived from uncorrelated

fading statistics. Ideally the gap would be smaller if the exact codebook distribution based on the

specific fading statistics can be derived. However, deriving such an exact codebook distribution

would be very difficult in the multimode precoding scheme if not impossible.

In Fig.16, we depict the normalized forward channel capacity of our SWF codebook design

in the case when the operating SNR of the system varies. As pointed out in [2], it is assumed the

codebook has to be redesigned when SNR changes in covariance feedback scheme. Thus, we only

compare our SWF scheme with the multimode precoding scheme for fair comparison.

The results given in Fig.16 are for the uncorrelated 4 × 4 MIMO channel. In our adaptive

codebook design, the SNR of the system is assumed to be uniformly distributed from −3 to 3

dB. Different from the previous setting, the training sequence used to design the codebook has

10000 channel matrices in our SWF scheme. Seen from Fig.16, our adaptive SWF scheme again

outperforms the multimode precoding scheme for the same feedback rate, although the difference

is smaller as compared to that in Fig.14. In some SNR region, even the performance of a lower

rate feedback adaptive codebook surpasses that of a higher rate multimode scheme. For example,

our 2 bit feedback SWF scheme outperforms 3 bit feedback multimode precoding scheme at SNR

from −1 to 3 dB.
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Figure 15: Capacity comparison of SWF limited rate feedback capacity with multimode precoding

[2] for 4× 4 spatially correlated MIMO system
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Figure 16: Capacity comparison of adaptive SWF limited rate feedback capacity with multimode

precoding [2] for 4× 4 MIMO system
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3.6 CONCLUSION

In this chapter, we examined two different power allocation schemes over multiple input mul-

tiple output (MIMO) antenna system. They are namely the optimal water filling (WF) and sub-

optimal water-filling (SWF) schemes. For SWF, equal power is allocated to every sub-channel

whose gain is above a threshold level. A number of bounds on the capacity difference between WF

and SWF are obtained in this chapter. These bounds explain why SWF is close to optimal WF in

throughput.

Utilizing this SWF scheme, a limited feedback codebook design methodology is proposed

which is to find a mapping from the space of channel realization to a finite set of unitary matri-

ces. We used the generalized Lloyd algorithm to design the optimal codebook with respect to a

distortion measure – the loss of forward channel capacity of limited feedback scheme compared to

the optimal WF. One novelty of our design methodology lies in the computation of the centroid,

which we set it as an optimization problem by the Given’s angle parametrization of unitary matrix.

The proposed algorithm is adaptive to the channel statistics and the SNR value. Numerical results

showed that the proposed algorithm outperforms comparable algorithms reported in the literature.
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4.0 CODED USER COOPERATION IN WIRELESS NETWORKS

4.1 INTRODUCTION

Inspired by the great capacity and diversity improvement of multiple input multiple-output

(MIMO) systems using arrays of antennas, lots of researchers are now trying to improve the per-

formance of the wireless networks by utilizing multiple transmit and receive antennas. However,

it may not be feasible to deploy multiple antennas in a single wireless node due to the space limi-

tation. Thus, user cooperation among different wireless nodes has been widely studied to increase

the communication capability and information transmission reliability of the wireless nodes and

thus to improve the overall performance of the networks.

The study of user cooperation was first initiated in the seventies by Van Der Meulen in his

pioneering work ”Three-terminal communication channels” [55]. Later on, Cover and El Gamal

considered the information theoretic aspect of the relay channel and came up with an achievable

coding scheme [56]. Recently, inspired by the huge diversity advantage of Space - Time coding,

Laneman and Wornell proposed a distributed Space-Time Coded protocols to exploit the cooper-

ation diversity in wireless networks [57, 58]. In their protocol, two or more active nodes jointly

transmit their messages towards their destinations. Each wireless transmission can be overheard by

neighboring nodes, which then process and retransmit the received signal to the final destination

to provide additional reliability. The partnering nodes act as a virtual antenna and help to improve

the reliability of the wireless link by providing a diversity transmission. Since then, wireless user

cooperation has become one of the most popular topics in wireless networks.
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Hunter and Nosratinia [59,60] proposed a new paradigm for user cooperation - coded user co-

operation. Different from space-time cooperation, coded cooperation integrates user cooperation

with channel coding. Instead of repeating the received information in some form, the user decodes

the partner’s transmission and transmits additional parity symbols (e.g. incremental redundancy)

according to a coding scheme. Bao and Li [61] further generalized the idea of coded coopera-

tion from two users to of many (one thousand) users by utilizing long block code - Low Density

Generator matrix codes (LDGM code). In their scheme, if users send their own information si-

multaneously to a common destination node, e.g., a base station in cellular system or a wireless

access point in wireless LANs, they will cooperate together by randomly forming a LDGM code.

The cooperation scheme has two phases. In the first phase, the transmitting nodes broadcast their

messages to both their neighbors and the final destination node. In the second phase, each node

selects some messages that were received correctly from their neighbor nodes to from a parity

check sum and transmit it to the final destination node. It was shown numerically that by utilizing

LDGM code, huge gain of some 20 - 40 dB can be achieved over conventional repetition schemes.

However, the assumption made in [61] that the cooperating nodes can detect whether the in-

formation received from other nodes is correct and thus only select the correct messages to form

a parity check bit is unrealistic. With their signaling scheme, the information transmitted to the

cooperating nodes in the first phase are un-coded, which results in very high chance of the transmit-

ted bits being corrupted. In this chapter, on the contrary, the inter-user channel (the channel from

the transmitting nodes to their partners) is modeled to be noisy, and no knowledge on whether a

received message is correct is assumed at the partnering node.

The main contribution of the chapter is as follows: Under the realistic inter-user channel model,

we modified the conventional sum-product message passing decoding algorithm for Low Density

Parity Check (LDPC) code and LDGM code to incorporate the presence of the inter-user channel

errors in decoding. The modified algorithm differs from the conventional sum-product algorithm

only in the initialization part of the decoding process. Applying this modified algorithm, em-

pirically we show the performance gain of coded user cooperation scheme over non-cooperative
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Figure 17: Cooperative network model. The active wireless nodes are clustered as different coop-

eration groups by their geographic location.

scheme. We also utilize a number of analysis tools (union bounds and density evolution methods)

and analyzed the performance of the system.

4.2 SYSTEM MODEL

4.2.1 System Description

Fig.17 depicts the model considered throughout the chapter. The model of interests comprises a

set of wireless nodes transmitting messages towards a single common destination D. The model is

applicable to a wide range of wireless networks, such as cellular and wireless LANs. For example,

in cellular system, the wireless nodes are mobile stations and the destination D is the base station.

The transmission from wireless nodes to the destination is then uplink or reverse link transmission,

i.e., from the mobile stations to the base station.
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The links from the transmitting nodes to the destination suffer from signal strength fading

due to multipath propagation in wireless environment. If each of the wireless nodes transmits

information independently, the transmitted signal can be severely attenuated due to fading and it

results in high bit error probability. To improve the link reliability, various forms of diversity,

e.g. temporal diversity, frequency diversity and spatial diversity, need to be exploited. On the other

hand, the information sent to the destination will be overheard by other neighboring wireless nodes

due to the broadcast nature of wireless transmission. In such a case, independently of whether other

forms of diversity can be exploited, the neighboring nodes can choose to cooperate in transmitting

the information. The benefit of diversity which can be obtained from cooperation has been named

as cooperative diversity.

Motivated by the success of MIMO system, several cooperative protocols appeared in the

literature. Some utilize the cooperating nodes as virtual antennas. In these schemes [57, 58],

the cooperating node either decode or amplify the received message and then retransmit it towards

the destination node. However, rather than single forwarding of the information separately for

each neighboring node, each cooperating node can form a parity check sum and transmit the parity

check bit. This will maximize the diversity and the coding benefit.

4.2.2 Coded Cooperation Protocol

As done in many current wireless networks, we divide the available bandwidth into orthog-

onal channels and allocate these channels to the transmitting nodes. Under this assumption, all

the wireless nodes can transmit information simultaneously to the common destination D without

causing interference with each other. We note that even though this orthogonality constraint in-

curs throughput loss, it can significantly simplify signal processing complexity at the destination

D as the multi-user detection problem is reduced to a number of independent parallel reception

problems.

We will further assume all wireless transmissions are perfectly synchronous through some

central authority, i.e, all the nodes start and stop to transmit simultaneously. Exactly how this syn-
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chronization is achieved, and the effects of small synchronization errors on performance, however,

is beyond the scope of the chapter.

As illustrated in Fig.17, the active wireless nodes (the nodes that are sending information to

the destination) are clustered into different cooperation groups by their geographic locations at

a particular time. The cooperation transmission is done within each cooperation group and we

only consider a particular cooperation group in the sequel. Within a group, say V = {Vi}Ni=1, the

wireless nodes Vi’s are physically close to each other and the destination node is relatively far away

from the group.

The channels from each node Vi to the destination D is modeled as Rayleigh fading and the

fading coefficient αi is assumed to be fixed for a sufficiently long period of time so that no temporal

diversity can be exploited. As the the group of wireless nodes are collocated and the destination

node is relatively far away, we will assume the average fading coefficients αi’s have the same

average magnitude, which is determined by the path loss from the transmitting nodes to the desti-

nation D. As the transmitting wireless nodes are geographically separated, we further assume the

fading channels from different wireless nodes to the destination are independent. Thus, the fad-

ing coefficients αi’s from wireless nodes Vi’s to the destination node D are identically distributed

independent (i.i.d.) Rayleigh random variables. On the other hand, the channels from any trans-

mitting wireless node Vi to a node Vj within the group V are also modeled as Rayleigh fading

channels with fading coefficient βi,j . To simplify our analysis, we further assume the relative dis-

tance among those wireless nodes are more or less the same. Under this assumption, βi,j’s are also

i.i.d. Rayleigh random variables with the same average magnitude determined by the path loss

among them.

The cooperation scheme consists of two phases of transmission, where each phase corresponds

to a different time slot.

4.2.2.1 Phase-I Transmission In the first time slot, each of the wireless nodes Vi broadcasts

information to the destination D and it’s neighboring nodes. Assuming the modulation schemes is

72



Binary Phase Shift Keying(BPSK), the received signal from node Vi at the destination node D in

the first time slot is

r1,i = αi
√
Ec1(2vi − 1) + n,

whereEc1 is the transmitted power in Phase-I and n is the additive white Gaussian noise with power

spectral density N0. The ratio between the average magnitude square of the fading coefficients αi

and N0 is defined as γ, i.e.,

γ = E[
α2
i

N0

],

and thus Ec1γ is the SNR from the transmitting nodes to the destination D in phase-I.

Due to the broadcast nature of wireless transmission, the information sent out at node Vi will

be overheard by node Vj (j 6= i) in the first time slot. The received signal at node Vj in phase-I is

then

yi = βi,j
√
Ec1(2vi − 1) + n.

Here without loss of generality, we assume power spectral density of the noise is also N0.1 The

ratio between the average magnitude square of the fading coefficient βi,j and N0 is defined as γ0,

i.e.,

γ0 = E[
β2
i,j

N0

]

and Ec1γ0 is the SNR for transmissions within the group V , which we will name as inter-user

channel SNR in the sequel.

4.2.2.2 Phase-II Transmission Any node Vi will receive a number of messages from different

transmitting nodes in the first phase. It will then decode a select subsetNi of the received messages

and form a parity check sum

ui =
⊕
j∈Ni

v̂j, (4.1)

where
⊕

is a modulo-2 operation and v̂j is the detected bit transmitted from node Vj . To distin-

guish the first and second phase transmission, we name node Vi as Ui in phase-II.

1This is generally not true as the noise variance at the cooperating node and destination node may not be the same.
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During the second time slot, the parity check bit ui is transmitted again from node Ui towards

the final destination D. The received signal at the destination in phase-II is then

r2,i = αi
√
Ec2(2ui − 1) + n, (4.2)

where Ec2 is the transmitted power in the second phase and the SNR at the destination node in

phase-II is then Ec2γ.

4.3 CODED USER COOPERATION

4.3.1 Coding Perspective of the Cooperative Transmission Scheme

The protocol described in Section 4.2.2 defines a coded user cooperation scheme. In phase-I,

N wireless nodes send out independent information through orthogonal channels. The information

transmitted in those N nodes in phase-I can be represented in a vector as

v = [v1 v2 ... vN ]. (4.3)

The transmitted messages in phase-II at each node as described in Section 4.2.2 are the parity

check bits. We can also represent them in a vector as

u = [u1 u2 ... uN ]. (4.4)

The messages in phase-II u are redundant information of v in phase-I. The vector v and u

can be regraded respectively as the information bits and the parity check bits of an encoder. Thus,

the encoder is systematic. An illustrative example of the coded cooperation scheme is shown in

Fig.18. Each uj is the parity check bit of some vj’s as shown by the bipartite graph in the figure.

For example, the information u1 = v2⊕v3, assuming the v2 and v3 are perfectly received in phase-I,

i.e., the inter-user channel is error free.
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Figure 18: Coded user cooperation scheme and the corresponding bipartite graph representation

We can also write the relationship between the two vectors v and u using the generator matrix

representation as follows

u = vG, (4.5)

where G is an N × N generator matrix with elements as either 0 or 1. G is determined by the

connections of the cooperation scheme. For the cooperative scheme presented in Fig.18, G is

G =



0 1 0 0 0 0

1 0 0 1 0 0

1 0 1 0 0 1

0 1 1 0 0 0

0 0 0 1 1 1

0 0 0 0 1 0
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4.3.2 Random Cooperation vs. Selection Cooperation

One drawback in [61] is that the inter-user channel was assumed to be perfect, which can not

be the case in real communications system, especially when the information bits transmitted in the

first phase is un-coded. In this chapter, we consider imperfect inter-user channel condition and try

to analyze the performance of the system incorporating the inter-user channel error.

The probability of making an erroneous decision using coherent detection on the transmitted

message Vi at a receiving node Vj is

p(v̂i 6= vi) = Q

√2Ec1β2
i,j

N0

 , (4.6)

We note that one underlining assumption made here is that the receiving node can perfectly

estimate the channel such that the coherent detection is possible. Throughout the chapter, we

assume the channel state information is perfectly known to the receiver. In practice, however, the

transmitter needs to send a pilot signal in order for the receiver to estimate the channel.

We consider two different cooperating schemes in the chapter, namely random cooperation

and selection cooperation. In the random cooperation scheme, each cooperating node randomly

(uniformly) selects a number of received messages to decode and compute the parity check bit.

As the transmission within the cooperative group is uncoded, the message is prone to error due to

the channel impairment. This will possibly make the cooperation scheme not performing well as a

result of higher inter-user channel errors.

To improve the inter-user channel reliability, we consider another cooperation scheme in the

chapter - selection cooperation. In the selection cooperation scheme, each cooperating node selects

to decode a number of neighboring nodes’ information based on the channel quality. The cooper-

ating node will select to decode d number from all received messages with best channel qualities

and compute the parity check bit. The selection cooperation makes use of the multi-user diversity

and lowers the inter-user channel error as compared to the random selection scheme.
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If each of the cooperating nodes chooses d of it’s neighboring nodes’ information to form a

parity check sum, then according to (4.1), the transmitted bit ui at node Ui in the second phase will

be
(⊕d

j=1 vj

)
⊕ e, where e = 0 with probability 1− pe and e = 1 with probability pe.

The inter-user channel error probability pe is different for different cooperation scheme. For a

random selection scheme, probabilistically each of the links has equal channel condition, thus pe

can be computed as

pe =
d∑

k=1,k is odd

 d

k

 p̄k(1− p̄)d−k =
1− (1− 2p̄)d

2
. (4.7)

p̄ is the average error probability for a single link, i.e.,

p̄ =
1

2
(1−

√
Ec1γ

Ec1γ + 1
),

by averaging the instaneous error probability (4.6) over the fading coefficient.

The inter-user channel error pe for selection cooperation scheme does not have an as easy

closed form expression as (4.7) due to the fact that channel condition for each link is not the same.

Numerically, pe can be obtained by considering that there are odd number of errors from total d

best channel qualities links.

4.3.3 Decoding Algorithm

Described in Section 4.2.2, the coded cooperation is equivalent to a conventional channel cod-

ing problem. However, unlike the conventional channel coding, the encoding is done distributively

in each and every cooperating node within the cooperative group. The distributive manner of the

encoding process introduces errors in the encoding part, which does not appear at all in conven-

tional channel coding. To facilitate the analysis, however, we will view the error introduced in the

encoding part as due to corruptions in a ”virtual” channel.

We will treat the the transmitted messages in the first phase as information bits, the input to a

systematic encoder. The output of the encoder has two parts. The first output is the information
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Figure 19: View of coded user cooperation scheme as channel coding

bits themselves, which will be sent out over the fading channel to the destination node D in the

first phase. The second output is the parity check bits. The parity check bits can be regarded

as first being sent out in the second phase to a binary symmetric channel (BSC) channel with

crossover probability pe defined in (4.7) and then sent over the air through the wireless channel to

the destination D. This view of the coded user cooperation scheme is shown in Fig.19.

Based upon the argument given above, we have a coded codeword

c = [v; u],

to be transmitted over the fading channel, where v and u are respectively the information bits and

the parity check bits of the code. In conventional channel coding, all the coded bits are passed

through a channel and received at the receiver side. However, in the case of our coded cooperation
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scheme, the parity check bits are first passed through a BSC channel with crossover probability pe.

Thus, the actual transmitted codeword over the fading channel is

c′ = [v; u′],

where each element ui in u′ is u′i = ui ⊕ e and e a binary error introduced by the ”virtual” BSC

channel.

At the receiving side, the access node receives the information bits in the first phase and the

parity check bits in the second phase. Since the cooperation scheme described essentially forms a

channel code, conventional channel decoding can also be applied at the destination node to realize

the coded cooperation gain. As the number of cooperating nodes is large and consequently the

block length of the code is large, we focus on practical sum-product decoding algorithms in the

chapter rather than on the exponential complexity maximum likelihood decoding algorithms. In

order for the sum-product algorithm to work, however, one requirement is that the parity check

matrix needs to be sparse. As the cooperative code is essentially a systematic code, this in turn

requires that the generator matrix G needs to be sparse. In the chapter, we restrict in our cooper-

ative scheme the column weight of the generator matrix d to be much smaller than the number of

cooperating nodes N . Under this assumption, the cooperative coding scheme is naturally a Low

Density Generator Matrix (LDGM) code.

A sum-product message passing algorithm can be used to decode the LDGM and LDPC code.

It is an iterative decoding algorithm. The sum-product algorithm takes the likelihood of the re-

ceived signal conditioned on transmitted bit as input and output the estimation of the transmitted

codeword. The details of implementation of the algorithm are shown in [62].

Unlike conventional LDGM code, in the coded user cooperation scheme the parity check bits

go through two serially concatenated channel (BSC channel + Rayleigh fading channel). To in-

corporate inter-user channel error in the decoding of the LDGM code, we need to modify the

sum-product algorithm. The modification is only done in the initialization part of the algorithm,
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i.e., computation of the likelihood function of the received signal given the transmitted bit ui. If

Log Likelihood Decoding Algorithm is used, the initialization part for the parity check bit is then

Lc(ui) = log
p(r2,i|ui = 0)

p(r2,i|ui = 1)

= log
pep(r2i|e = 1, ui = 1) + (1− pe)p(r2,i|e = 0, ui = 1)

pep(r2,i|e = 1, ui = 0) + (1− pe)p(r2,i|e = 0, ui = 0)
(4.8)

As for the information bits only go through one channel (Rayleigh fading channel), the initializa-

tion part for the parity check bit is the same as the conventional LDGM code.

4.4 PERFORMANCE ANALYSIS

Even though it was shown by simulation in [61] that a huge gain of coded cooperation over

conventional repetition based cooperation scheme can be achieved, no analysis was given. In this

section, we will analyze the performance of the coded user cooperation scheme using a number of

performance bounds.

The first bounding technique we make use of is Gallager’s 1968 error exponent bound [63].

Consider a discrete memoryless channel with K inputs and J outputs and a transaction probability

Pjk, the block error probability can be bounded as

pb ≤ exp [−n (−ρR + E0(ρ, p))] , (4.9)

where R is the information rate in bits if the logarithmic is base 2, and

E0(ρ,p) = − log
J∑
j=1

(
K∑
k=1

pkP
1/(1+ρ)
jk

)1+ρ

, (4.10)

where ρ is an arbitrary number between 0 and 1 and p = [p1, p2, ..., pk] is the probability vector of

the input alphabet. Both ρ and p need to be optimized to get the tightest bound.
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In the case when the output is unquantized (J →∞), the first summation becomes an integral,

consequently

E0(ρ,p) = − log

∫ ∞
−∞

dy

(
K∑
k=1

pkP
1/(1+ρ)
yk

)1+ρ

(4.11)

As discussed in Section 4.2, the coded user cooperation scheme under the considered coop-

eration protocol can be regarded as a channel code. Therefore, Gallager’s error exponent can be

utilized to analyze the performance with a modification.

However, the error exponent bound assumes random code rather than the code ensemble under

the cooperative protocol constraint. Since the minimum distance of the code ensemble under the

cooperative protocol differs significantly from that of a random code, the error exponent bound

does not reflect the actual network code and is not tight in general. In the next, we will try to

develop a bound for the specific coded cooperation scheme.

4.4.1 Error Performance Analysis Based on the Actual Network Code Setup

In the protocol described in Section 4.2.2, each cooperating nodes choose exactly d different

users’ message (possible message from itself as well) to form a parity check bit and transmit it

in the second phase. Under the assumption that the average receiving SNR at each node from

all nodes within the cooperative group is the same, we can further assume that each cooperating

node will choose d of it’s neighbor’s messages uniformly to form a parity check bit regardless of

the cooperative scheme. The N × N generator matrix G in such a case will have the following

properties:

• The column weight of matrix G is exactly d.

• The location of 1’s in each column of the generator G is uniformly distributed.
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4.4.2 Distance Spectrum Analysis

The performance a channel code under maximum likelihood decoding is uniquely determined

by its’ weight distribution. The weight distribution of a particular code is however hard to obtain

as the number of codewords grows exponentially with the block length. Thus, to analyze the

performance of the coded cooperation scheme, we will derive the weight distribution of the code

ensemble defined by the properties of the generator matrix G.

In the protocol, the number of cooperating nodes is exactly equal to the number of transmit-

ting nodes. However, we will relax this requirement a little bit to derive a more general weight

distribution of the ensemble. We assume in the first phase, ni independent nodes are transmit-

ting messages to D, and in the second phase np nodes will participate in the cooperation. This

relaxation translates to a generator matrix G with dimensionality ni × np.

To obtain the weight distribution of the ensemble, i.e., the probability of the number of code-

words with weight w, we want to get the probability of the parity check weight being m given

a k information bit weight first. Shown in (4.5), the parity check vector u is vG. Defined by

the protocol, there is no constraint on the weight in each row of G and probabilistically each

bit in u being 1 is identical. Thus, we only consider the bit u1 WLOG. u1 can be expressed as

u1 =
⊕ni

i=1 viGi,1 =
⊕

i∈N1
viGi,1, where N1 := {i : vi = 1,Gi,1 = 1}. The cardinality of N1,

|N1|, is the number of locations where both vectors v and G1 are 1, i.e., the number of overlaps in

the location of 1’s of the two vectors. Given k 1’s in the information vector v and d 1’s in G1, the

probability that |N1| = j is a hypergeometric distribution. The probability of N1 = j is then

pj|k =

 d

j

 ni − d

k − j


 ni

k


,

where max(0, k + d− ni) ≤ j ≤ min(d, k).
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According to modulo-2 operation, the parity check bit is 1 when the cardinality of N1 is odd.

Thus, the probability of u1 = 1 given the weight k of the input information vector v is

p = Pr[u1 = 1] =

min(d,k)∑
j=max(0,k+d−ni),j is odd

pj|k

The output parity check weight m is then a binomial distribution conditioned on the given

input information weight k, and

pmk =

 np

m

 pm(1− p)np−m

Therefore, the total number of codewords with input weight (information bits weight) k and

output weight (parity check bits weight) m is

N(k,m) =

 ni

k

 np

m

 pm(1− p)np−m,

and the total number of codewords with weight w can then be readily calculated as

N(w) =
∑

(k,m)∈{(i,j):i+j=w}

N(k,m)

To illustrate the weight distribution of the coded cooperation scheme, the weight distribution

of the LDGM code ensemble defined by the code cooperation protocol with chosen parameters

ni = np = 200 and d = 7 is depicted in Fig.20.

83



0 50 100 150 200 250 300 350 400
-20

0

20

40

60

80

100

120

140

Weight(w)

E
xp

on
en

t l
og

(N
(w

))

Figure 20: Weight distribution of coded user cooperation protocol defined LDGM code with ni =

np = 200 and d = 7

4.4.3 Average Performance of the Network Code

Based on the weight distribution derived, we are able to provide the union bound by summing

up all the pair-wise errors. For the case of AWGN channel, one trivial union bound (bit error

probability) can be readily derived as

pb ≤
ni∑
k=1

np∑
m=0

N(k,m)
k

ni
Q

k√Ec1 +m
√
Ec2√

(k+m)N0

2

,
where Q(x) is the tail integral of the standard normal Gaussian density function, i.e.,

Q(x) =
1√
2π

∫ ∞
x

exp(−x
2

2
)dx.
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For the case of Rayleigh fading channel, the instaneous union bound (bit error probability) can

also be written as

pb ≤
ni∑
k=1

np∑
m=0

N(k,m)
k

ni
Q


k∑
i=1

α2
i

√
Ec1 +

m∑
i′=1

β2
i′
√
Ec2√

k∑
i=1

α2
i
N0

2
+

m∑
i′=1

β2
i′
N0

2

.

Averaging over the fading coefficients α’s and β’s, we can obtain the average probability of

error.

4.4.4 Performance Analysis Incorporating the Inter-user Channel Error

By the cooperative protocol, the code formed in the coded user cooperation scheme will suffer

from inter-user channel error. To better evaluate the coded user cooperation scheme, we will try to

derive the performance bound that incorporates the imperfect inter-user channel condition.

WLOG, we assume all zero codeword C0 = {0}N is transmitted over the channel, and which

is modulated to S0 = [−
√
Ec · · · −

√
Ec] using BPSK modulation. The received channel output

probability density function for AWGN channel conditioned on the transmitted signal S0 can then

be written as

p(r|S0) =
N∏
i=1

p(ri|S0i) =
1

(πN0)N/2
exp


N∑
i=1

(ri − S0i)
2

N0

 .
The maximum likelihood detector is then

ĵ = argj min
N∑
i=1

(ri − Sji)2

= argj max
N∑
i=1

riSji. (4.12)
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Now we only consider a pair of codewords S0 and Sk. Given S0 is transmitted over the channel,

the detector will choose Sk as transmitted over S0 when

d0,k∑
i=1

(−
√
Ec + ni)(−

√
Ec) <

d0,k∑
i=1

(−
√
Ec + ni)

√
Ec,

i.e.
d0,k∑
i=1

ni > d0,k

√
Ec,

where d0,k is the hamming distance between the two codewords S0 and Sk. This probability can

be derived readily as

p0→k = Q(d0,k

√
2Ec
N0

)

Next, we consider the analysis of incorporating the inter-user channel error. Suppose S0 was

transmitted over the channel and due to the inter-user channel error totally l bits got flipped. Let

us further assume that among those l bits j of them are in the same positions where the codeword

Sk also has 1.

In such a case, given S0 is transmitted over the channel, the detector will choose Sk as trans-

mitted over S0 when

d0,k−j∑
i=1

(−
√
Ec + ni)(−

√
Ec) +

d0,k∑
i=d0,k−j+1

(
√
Ec + ni)(−

√
Ec) <

d0,k−j∑
i=1

(
√
Ec + ni)(−

√
Ec) +

d0,k∑
i=d0,k−j+1

(
√
Ec + ni)(

√
Ec), (4.13)

i.e.
d0,k∑
i=1

ni > (d0,k − 2j)
√
Ec,

This probability can also be derived readily as

p0→k = Q

(
(d0,k − 2j)

√
2Ec
N0

)
.

In the coded cooperation scheme, only the parity check bits suffer from the inter-user channel

error, thus we need to differentiate the parity check bits and information bits and deal with them
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separately. However, the probability of decision error can be derived in a similar manner as pre-

vious cases. The probability of choosing S(k,m) (a codeword with k information bits and m parity

check bits) over the transmitted signal S0 can be written as

p0→k = Q

k√Ec1 + (m− 2j)
√
Ec2√

(k+m)N0

2



Therefore, an upper bound on the probability of bit error can be derived as summing up all the

pairwise probabilities, i.e.,

pb ≤
ni∑
k=1

np∑
m=0

N(k,m)
k

ni

np∑
l=0

min(m,l)∑
j=max(0,m+l−np)

 m

j

 np −m

l − j

 ·
ple(1− pe)np−lQ

k√Ec1 + (m− 2j)
√
Ec2√

(k+m)N0

2

 (4.14)

For the case Rayleigh fading channel, the instaneous probability of error is thus

pb ≤
ni∑
k=1

np∑
m=0

N(k,m)
k

ni

np∑
l=0

min(m,l)∑
j=max(0,m+l−np)

 m

j

 np −m

l − j

 ·

ple(1− pe)np−lQ


k∑
i=1

α2
i

√
Ec1 +

m−2j∑
i′=1

β2
i′
√
Ec2√

k∑
i=1

α2
i
N0

2
+

m∑
i′=1

β2
i′
N0

2

,

 (4.15)

and the average error probability can be obtained by averaging out all the fading coefficients.
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4.5 DENSITY EVOLUTION ANALYSIS OF CODED USER COOPERATION SCHEME

4.5.1 Density Evolution

Density evolution is one of the most powerful analytical technique which has been used to

understand limits of performance of Low Density Parity Check (LDPC) code under the practical

sum-product decoding algorithm. It also provides a tool which can be used in the design of families

of LDPC codes, since their performance can be predicted using density evolution much more

rapidly than the performance can be simulated.

In the sum-product message-passing algorithm, messages as the Log-Likelihood ratio were

sent back and forth along the edges of bipartite graph. Variable nodes and check nodes receive

messages from each edge that they are connected to, calculate them, and then send new messages

to each edge. Consequently, messages are iteratively refreshed.

Since the code is linear and the channel is output symmetric, it suffices to assume that the

all-zero codeword is sent. Let ν [l] be the LLR message from a degree dv variable nodes to a check

node in the l-th iteration, and µ[l] be the LLR message from a degree dc check node to a variable

node in the l-th iteration. For a regular LDPC code with degree (dv, dc), the messages transmitted

from the variable node to the check node at iteration l is

ν [l] = µ0 +
dv−1∑
i=1

µ
[l−1]
i

The message transmitted from the check node to the variable node at iteration l is

tanh
µ[l]

2
=

dc−1∏
j=1

tanh
ν

[l]
j

2

According to these two update equations and the initial probability density function µ0 we can

update the PDF of µ and ν iteratively until it goes to a delta function located at plus infinity or it

converges to a probability density function that has certain fractions below zero.
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4.5.2 Density Evolution for Coded User Cooperation Scheme

To analyze the performance of the coded user cooperation scheme using density evolution, we

need to modify the density evolution analysis for regular LDPC code according to the cooperative

protocol. Described by the coded user cooperation scheme, the generator matrix described in

Section 4.4.2 has column weight d. Thus, the check node degree is exactly d+ 1.

To get the variable node degree distribution, we need to treat the information bit variable nodes

and parity check bit variable nodes separately. As shown in Fig.18, only one edge is associated

with each parity check variable node, thus the degree of the parity check variable node is fixed to

be 1. On the other hand, for the information bit variable node, the degree is a Poisson distributed

random variable with average weight d due to the fact that each column of G has weight d and the

location of 1’s is uniformly distributed. The probability that a particular information bit variable

node has degree i is thus

χi =
e−ddi

i!
.

The distribution of the variable node weights can thus be represented as

χ(ν) =
∞∑
i=1

ρiν
i−1, (4.16)

where

ρi =
iχi∑∞
k=1 kχk

.

The variable node weight distribution is plotted in Fig.21. Even though the information bit

variable node degree can go up to infinity, noted in Fig.21, the probability that an information

bit variable node has degree i drops to 0 very fast as i grows. For our practical purpose, we can

truncate the weight greater than 30 in the sum in (4.16) for d < 10.

Once the degree distribution is obtained, we can modify the density evolution analysis for

regular LDPC code. For the proposed coded user cooperation scheme, the messages transmitted

from the variable node (information bit part) to the check node at iteration l is

ν [l] = µ0 +
30∑
k=1

(
ρk

k−1∑
i=1

µ
[l−1]
i

)
,
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Figure 21: Probability Mass Distribution of Variable Node Weights

where µ[0] is the initial LLR for the information bits from the channel. In the Gaussian channel,

the initial likelihood ratio is

µ0 =
2
√
Ec
σ2

(
√
Ec + n),

which is Gaussian distributed with mean and variance as

m = E[µ0] =
2Ec1
σ2

var(µ0) =
4Ec1
σ2

The message transmitted from the check node to the variable node at iteration l is

tanh
µ[l]

2
= tanh

ν0

2

d−1∏
j=1

tanh
ν

[l]
j

2

where ν0 is the initial LLR for the parity check bits from the channel. As there is only one edge

connected to the parity check bits variable node, thus the information from them to the check node
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stays the same as the iterations go on. As the parity check bits will first go through a BSC channel,

thus the initial likelihood ratio, for the case of Gaussian channel, is

ν0 = (1− pe)
2
√
Ec2
σ2

(
√
Ec2 + n) + pe

2
√
Ec2
σ2

(−
√
Ec2 + n),

Given the two input PDF for µ0 and ν0, we can update the densities µ[l] and ν [l] in each iteration.

Exactly how the density can be computed iteratively from these two initial densities is shown

in [64] using a discrete density evolution method.

Density evolution can predict the water-fall region of the LDPC code. It introduces the idea of

a channel threshold, above which the code performs well and below which the probability of error

is non-negligible. This provides a single parameter characterizing code performance which may

be used to gauge the performance compared to the ultimate limit of the channel capacity.

Unlike the LDPC code, due to the minimum distance of the code formed in the coded user

cooperation scheme does not scale with the block length, the code will exhibit an error floor at

relative high SNR. Thus, no single vaue parameter - the threshold can be determined from the

density evolution. However, we can still make use of the density evolution as an powerful analytical

tool to predict the performance of the coded cooperation scheme. .

4.6 SIMULATION RESULTS

4.6.1 Performance Bounds vs. Simulation Results

In Fig.22, the simulation result of LDGM code is shown and compared with the union bound

and density evolution analysis. The selected parameter for the LDGM code is N = 1000 and

d = 7. The simulation result shows that for the same bit error rate both the union bound and

the density evolution analysis result are within 1 dB difference from the simulation result. This

indicates the effectiveness of both analytical tools in predicting the performance of the LDGM

code and then the coded user cooperation scheme.
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Figure 22: Comparison of simulation results with union bound and density evolution analysis for

AWGN channel
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4.6.2 Random Cooperation vs. Selection Cooperation

In Fig.23, the numerical results of random cooperation scheme and selection cooperation

scheme for different inter-user channel conditions are shown. We see that under the same inter-

user channel condition, selection user cooperation indeed performs better than the random user

cooperation scheme. For 25 dB inter-user channel SNR, the gain of selection cooperation scheme

is around 2dB at the bit error rate of 10−5. For 15 dB inter-user channel SNR, the gain of selection

cooperation scheme is greater than 6dB at the bit error rate of 10−5.

4.6.3 Coded User Cooperation Scheme v.s. Non-cooperative Scheme

The performance of coded cooperation scheme versus non-cooperative scheme is plotted in

Fig.24. In the coded user cooperation scheme, the number of wireless nodes in the cooperating

group is N = 200, and each node select (based on the estimated channel quality) d = 7 users’

messages to form a parity check sum and transmit it in phase-II. From the simulation results, we

see that even under our realistic inter-user channel assumption, the performance of coded user

cooperation scheme still have a huge gain over non-cooperative scheme. For example, at bit error

rate 10−4, the gain of coded user cooperation over non-cooperation scheme is over 20 dB. The

performance bound for coded user cooperation scheme is also plotted in the figure. The bound

even though is around 5 dB off the simulation result, it has the same trend with the simulation

curve and can be unutilized in practice to predict the performance of the coded user cooperation

scheme quickly.

4.7 CONCLUSION

In this chapter, we considered the problem of coded user cooperation in the wireless networks.

A similar coded user cooperation scheme as in [61] was considered to realize both the diversity

and coding gain. Differerent from [61], the inter-user channel was modeled to be noisy rather than
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perfect. To incorporate the practical inter-user channel condition, the conventional sum-product

decoding algorithm was modified for better decoding.

Two different cooperation schemes were considered in the chapter, namely random cooperation

and selection cooperation. By doing selection cooperation, the multiuser diversity can be employed

to lower the inter-user channel error. A number of analytical tools (union bounds and density

evolution analysis) were also developed to analyze the performance the coded user cooperation

scheme. Simulation results indicate great performance advantage of this coded user cooperation

scheme over non-cooperative scheme even in the case the inter-user channel is not perfect.
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5.0 FUTURE DIRECTIONS

In this concluding chapter, we discuss future research directions in light of the results derived

in this dissertation.

One direction to extend the work in Chapter 2 is to design the signal constellations that can

optimize the performance under the Generalize Likelihood Ratio Test (GLRT) detection rule. This

study of signal design under GLRT detector is of practical interests for its’ simplicity.

Another possible direction is to come up with a design rule using the error exponent analysis in

non-coherent MIMO system. While the design rule applied in the dissertation is layered capacity,

the error exponent design rule would be extremely appealing to design a system with a targeted

rate lower than the capacity. The computational complexity analysis of the various detectors can

also be a direction of further research.

In Chapter 3, the feedback codebook design was considered primarily in a single user Multiple

Input and Multiple Output (MIMO) antennas system. However, there are a rich set of problems in a

multi-user MIMO setting, e.g. MIMO multi-access or MIMO broadcasting, to which the codebook

design methodology developed in this dissertation can be generalized.

Finally, an important future direction is to utilize the analytical tools provided in Chapter 4 in

the design of better coded user cooperation scheme.
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APPENDIX A

PROOF OF LEMMA 2

We first show the following Lemma to prove Lemma 2.

Lemma 4 If both A and B are i×j and j×k i.d. unitary matrices respectively, then their product

C = AB is also i.d. i× k unitary matrix.

Proof For any i× i unitary matrix U, we have

p(UC) = p(UAB) = p(AB) = p(C),

where the second equality follows from the definition of i.d. unitary matrix, i.e., p(A) = p(UA)

for any deterministic matrix U.

By this Lemma, Lemma 2 can be readily proved using induction.
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APPENDIX B

PROOF OF THEOREM 3

For all gi ∈ E we have gi < µ, i.e., for all i ≤ m∗, | gi−ḡ
µ
|< 1. Applying the Taylor series

expansion to (3.6), we have:

− ln(1 +
gi − ḡ
µ

) = −
∞∑
i=1

(gi − ḡ)i

i · µi
. (B.1)

In this series, the absolute value of i-th order term is greater than the summation from the (i+1)-th

order term up (We omit the detailed proof here and which will be available upon request). By this

property, both the second order and first order upperbound in Theorem 3 can be obtained trivially.

On the other hand, as all even power terms are negative, a tight lower-bound on the capacity

difference can be obtained by truncating the series at an odd term (an upper bound for the Taylor

series; but a lower bound on the capacity difference).
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APPENDIX C

COMPUTATION OF THE GRADIENT

As the partial derivative is a linear operator, we can exchange the order of expectation and

partial derivative to compute the gradient of the partial distortion D(Vk) with respect to Θ, i.e.,

∇ΘD(Vk) = ∇Θ

{
EH∈Rk

[
Cw − Cp

(
H,Um(Θ)

)]}
= −EH∈Rk

{
∇ΘCp(H,Um(Θ))

}
If Θ = δk with 1 ≤ k ≤M , to compute∇ΘCp(H,Um(Θ)), we rewrite the Given’s parametriza-

tion (3.15) as Um = UΛU+1, where

U+1 =
M−1∏
p=1

p+1∏
q=M

Up,q(φp,q, σp,q)

 Im

0(M−m)×m

 .
As Cp

(
H,Um(Θ)

)
depends on δk only through UΛ, using the results (Theorem 2 and Lemma

3) in [65], we have

∇ΘCp(H,Um(Θ)) = 2ReTr
{

H∗HUmEU∗+1 ×∇ΘU∗Λ

}
,

where E = (m
M

Im + U∗mH∗HUm)−1 is the MMSE matrix defined in [65] and

∇ΘU∗Λ|Θ=δk = −i exp(−iδk)eke∗k,

with ek being a unit norm column vector of length M with the k-th element being 1.
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To compute the gradient∇ΘCp(H,Um(Θ)) when Θ = φp,q or Θ = σp,q, we rewrite Um as

Um = UΛ

M−1∏
p=1

p+1∏
q=M

Up,q(φp,q, σp,q)

 Im

0(M−m)×m


= UΛUM−1,M(φM−1,M , σM−1,M) · · ·︸ ︷︷ ︸

U−1

Up,q(φp,q, σp,q)︸ ︷︷ ︸
U0

· · ·U1,M(φ1,M , σ1,M)

 Im

0(M−m)×m


︸ ︷︷ ︸

U+1

Then, the input output relationship with this precoding marix Um can be written as

r = HU−1U0U+1s + n

Again use the results in [65], we obtain

∇ΘCp(H,Um(Θ)) = 2ReTr
{

U∗−1H
∗HUmEU∗+1 ×∇ΘU∗0

}
.

If Θ = φp,q,

∇φp,qU
∗
0 =



−sin(φp,q) if j = k and j = p, q

cos(φp,q) exp(−iσp,q) if j = p and k = q

−cos(φp,q) exp(iσp,q) if j = q and k = p

0 otherwise.

If Θ = σp,q,

∇σp,qU
∗
0 =


−isin(φp,q) exp(−iσp,q) if j = p and k = q

−isin(φp,q) exp(iσp,q) if j = q and k = p

0 otherwise.

Another possible way of calculating the gradient is through the method introduced in [14]. By

considering perturbation of Um by U(Θ) with Θ ≈ 0, the gradient can also be efficiently derived.
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