1,266 research outputs found

    Analysis of Software Design Patterns in Human Cognitive Performance Experiments

    Get PDF
    As Air Force operations continue to move toward the use of more autonomous systems and more human-machine teaming in general, there is a corresponding need to swiftly evaluate systems with these capabilities. We support this development through software design improvements of the execution of human cognitive performance experiments. This thesis sought to answer the following two research questions addressing the core functionality that these experiments rely on for execution and analysis: 1) What data infrastructure software requirements are necessary to execute the experimental design of human cognitive performance experiments? 2) How effectively does a central data mediator design pattern meet the time-alignment requirements of human cognitive performance studies? To answer these questions, this research contributes an exploration of establishing design patterns to reduce the cost of conducting human cognitive performance studies. The activities included in this exploration were a method for requirements gathering, a meta-study of recent experiments, and a design pattern evaluation all focused on the experimental design domain

    Perceptual Issues Improve Haptic Systems Performance

    Get PDF

    Emotions and cognitive workload in economic decision processes - A NeuroIS Approach

    Get PDF
    The influence of cognitive and emotions on decision processes have been recently highlighted. Emotions interplay with the process of cognition, and determine decision processes. In this work, the role of external and internal influences on economic decision processes are studied. A NeuroIS method is applied for measuring emotions and cognitive workload. The lack of a suitable experimental platform for performing NeuroIS studies was recognized and the platform Brownie was developed and evaluated

    Noninvasive Physiological Measures And Workload Transitions:an Investigation Of Thresholds Using Multiple Synchronized Sensors

    Get PDF
    The purpose of this study is to determine under what conditions multiple minimally intrusive physiological sensors can be used together and validly applied for use in areas which rely on adaptive systems including adaptive automation and augmented cognition. Specifically, this dissertation investigated the physiological transitions of operator state caused by changes in the level of taskload. Three questions were evaluated including (1) Do differences exist between physiological indicators when examined between levels of difficulty? (2) Are differences of physiological indicators (which may exist) between difficulty levels affected by spatial ability? (3) Which physiological indicators (if any) account for variation in performance on a spatial task with varying difficulty levels? The Modular Cognitive State Gauge model was presented and used to determine which basic physiological sensors (EEG, ECG, EDR and eye-tracking) could validly assess changes in the utilization of two-dimensional spatial resources required to perform a spatial ability dependent task. Thirty-six volunteers (20 female, 16 male) wore minimally invasive physiological sensing devices while executing a challenging computer based puzzle task. Specifically, participants were tested with two measures of spatial ability, received training, a practice session, an experimental trial and completed a subjective workload survey. The results of this experiment confirmed that participants with low spatial ability reported higher subjective workload and performed poorer when compared to those with high spatial ability. Additionally, there were significant changes for a majority of the physiological indicators between two difficulty levels and most importantly three measures (EEG, ECG and eye-tracking) were shown to account for variability in performance on the spatial task

    Five Lenses on Team Tutor Challenges: A Multidisciplinary Approach

    Get PDF
    This chapter describes five disciplinary domains of research or lenses that contribute to the design of a team tutor. We focus on four significant challenges in developing Intelligent Team Tutoring Systems (ITTSs), and explore how the five lenses can offer guidance for these challenges. The four challenges arise in the design of team member interactions, performance metrics and skill development, feedback, and tutor authoring. The five lenses or research domains that we apply to these four challenges are Tutor Engineering, Learning Sciences, Science of Teams, Data Analyst, and Human–Computer Interaction. This matrix of applications from each perspective offers a framework to guide designers in creating ITTSs

    Body sensor network for in-home personal healthcare

    Get PDF
    A body sensor network solution for personal healthcare under an indoor environment is developed. The system is capable of logging the physiological signals of human beings, tracking the orientations of human body, and monitoring the environmental attributes, which covers all necessary information for the personal healthcare in an indoor environment. The major three chapters of this dissertation contain three subsystems in this work, each corresponding to one subsystem: BioLogger, PAMS and CosNet. Each chapter covers the background and motivation of the subsystem, the related theory, the hardware/software design, and the evaluation of the prototype’s performance

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    AutoTherm: A Dataset and Ablation Study for Thermal Comfort Prediction in Vehicles

    Full text link
    State recognition in well-known and customizable environments such as vehicles enables novel insights into users and potentially their intentions. Besides safety-relevant insights into, for example, fatigue, user experience-related assessments become increasingly relevant. As thermal comfort is vital for overall comfort, we introduce a dataset for its prediction in vehicles incorporating 31 input signals and self-labeled user ratings based on a 7-point Likert scale (-3 to +3) by 21 subjects. An importance ranking of such signals indicates higher impact on prediction for signals like ambient temperature, ambient humidity, radiation temperature, and skin temperature. Leveraging modern machine learning architectures enables us to not only automatically recognize human thermal comfort state but also predict future states. We provide details on how we train a recurrent network-based classifier and, thus, perform an initial performance benchmark of our proposed thermal comfort dataset. Ultimately, we compare our collected dataset to publicly available datasets
    • …
    corecore