402,697 research outputs found

    Diffusion Adaptation Strategies for Distributed Estimation over Gaussian Markov Random Fields

    Full text link
    The aim of this paper is to propose diffusion strategies for distributed estimation over adaptive networks, assuming the presence of spatially correlated measurements distributed according to a Gaussian Markov random field (GMRF) model. The proposed methods incorporate prior information about the statistical dependency among observations, while at the same time processing data in real-time and in a fully decentralized manner. A detailed mean-square analysis is carried out in order to prove stability and evaluate the steady-state performance of the proposed strategies. Finally, we also illustrate how the proposed techniques can be easily extended in order to incorporate thresholding operators for sparsity recovery applications. Numerical results show the potential advantages of using such techniques for distributed learning in adaptive networks deployed over GMRF.Comment: Submitted to IEEE Transactions on Signal Processing. arXiv admin note: text overlap with arXiv:1206.309

    Energy Aware Deep Reinforcement Learning Scheduling for Sensors Correlated in Time and Space

    Get PDF
    Millions of battery-powered sensors deployed for monitoring purposes in a multitude of scenarios, e.g., agriculture, smart cities, industry, etc., require energy-efficient solutions to prolong their lifetime. When these sensors observe a phenomenon distributed in space and evolving in time, it is expected that collected observations will be correlated in time and space. In this paper, we propose a Deep Reinforcement Learning (DRL) based scheduling mechanism capable of taking advantage of correlated information. We design our solution using the Deep Deterministic Policy Gradient (DDPG) algorithm. The proposed mechanism is capable of determining the frequency with which sensors should transmit their updates, to ensure accurate collection of observations, while simultaneously considering the energy available. To evaluate our scheduling mechanism, we use multiple datasets containing environmental observations obtained in multiple real deployments. The real observations enable us to model the environment with which the mechanism interacts as realistically as possible. We show that our solution can significantly extend the sensors' lifetime. We compare our mechanism to an idealized, all-knowing scheduler to demonstrate that its performance is near-optimal. Additionally, we highlight the unique feature of our design, energy-awareness, by displaying the impact of sensors' energy levels on the frequency of updates

    Data Mining Techniques to Understand Textual Data

    Get PDF
    More than ever, information delivery online and storage heavily rely on text. Billions of texts are produced every day in the form of documents, news, logs, search queries, ad keywords, tags, tweets, messenger conversations, social network posts, etc. Text understanding is a fundamental and essential task involving broad research topics, and contributes to many applications in the areas text summarization, search engine, recommendation systems, online advertising, conversational bot and so on. However, understanding text for computers is never a trivial task, especially for noisy and ambiguous text such as logs, search queries. This dissertation mainly focuses on textual understanding tasks derived from the two domains, i.e., disaster management and IT service management that mainly utilizing textual data as an information carrier. Improving situation awareness in disaster management and alleviating human efforts involved in IT service management dictates more intelligent and efficient solutions to understand the textual data acting as the main information carrier in the two domains. From the perspective of data mining, four directions are identified: (1) Intelligently generate a storyline summarizing the evolution of a hurricane from relevant online corpus; (2) Automatically recommending resolutions according to the textual symptom description in a ticket; (3) Gradually adapting the resolution recommendation system for time correlated features derived from text; (4) Efficiently learning distributed representation for short and lousy ticket symptom descriptions and resolutions. Provided with different types of textual data, data mining techniques proposed in those four research directions successfully address our tasks to understand and extract valuable knowledge from those textual data. My dissertation will address the research topics outlined above. Concretely, I will focus on designing and developing data mining methodologies to better understand textual information, including (1) a storyline generation method for efficient summarization of natural hurricanes based on crawled online corpus; (2) a recommendation framework for automated ticket resolution in IT service management; (3) an adaptive recommendation system on time-varying temporal correlated features derived from text; (4) a deep neural ranking model not only successfully recommending resolutions but also efficiently outputting distributed representation for ticket descriptions and resolutions

    Participation and Data Valuation in IoT Data Markets through Distributed Coalitions

    Get PDF
    This paper considers a market for trading Internet of Things (IoT) data that is used to train machine learning models. The data, either raw or processed, is supplied to the market platform through a network and the price of such data is controlled based on the value it brings to the machine learning model. We explore the correlation property of data in a game-theoretical setting to eventually derive a simplified distributed solution for a data trading mechanism that emphasizes the mutual benefit of devices and the market. The key proposal is an efficient algorithm for markets that jointly addresses the challenges of availability and heterogeneity in participation, as well as the transfer of trust and the economic value of data exchange in IoT networks. The proposed approach establishes the data market by reinforcing collaboration opportunities between device with correlated data to avoid information leakage. Therein, we develop a network-wide optimization problem that maximizes the social value of coalition among the IoT devices of similar data types; at the same time, it minimizes the cost due to network externalities, i.e., the impact of information leakage due to data correlation, as well as the opportunity costs. Finally, we reveal the structure of the formulated problem as a distributed coalition game and solve it following the simplified split-and-merge algorithm. Simulation results show the efficacy of our proposed mechanism design toward a trusted IoT data market, with up to 32.72% gain in the average payoff for each seller.Comment: 14 pages. Submitted for possible publicatio

    Neural Distributed Compressor Discovers Binning

    Full text link
    We consider lossy compression of an information source when the decoder has lossless access to a correlated one. This setup, also known as the Wyner-Ziv problem, is a special case of distributed source coding. To this day, practical approaches for the Wyner-Ziv problem have neither been fully developed nor heavily investigated. We propose a data-driven method based on machine learning that leverages the universal function approximation capability of artificial neural networks. We find that our neural network-based compression scheme, based on variational vector quantization, recovers some principles of the optimum theoretical solution of the Wyner-Ziv setup, such as binning in the source space as well as optimal combination of the quantization index and side information, for exemplary sources. These behaviors emerge although no structure exploiting knowledge of the source distributions was imposed. Binning is a widely used tool in information theoretic proofs and methods, and to our knowledge, this is the first time it has been explicitly observed to emerge from data-driven learning.Comment: draft of a journal version of our previous ISIT 2023 paper (available at: arXiv:2305.04380). arXiv admin note: substantial text overlap with arXiv:2305.0438
    • …
    corecore