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Participation and Data Valuation in IoT Data

Markets through Distributed Coalitions
Shashi Raj Pandey, IEEE Member, Pierre Pinson, IEEE Fellow, and Petar Popovski, IEEE Fellow

Abstract—This paper considers a market for Internet of Things
(IoT) data that is used to train machine learning models. The
data is supplied to the market platform through a network
and the price of the data is controlled based on the value it
brings to the machine learning model. We explore the correlation
property of data in a game-theoretical setting to eventually
derive a simplified distributed solution for a data trading
mechanism that emphasizes the mutual benefit of devices and
the market. The key proposal is an efficient algorithm for
markets that jointly addresses the challenges of availability and
heterogeneity in participation, as well as the transfer of trust
and the economic value of data exchange in IoT networks. The
proposed approach establishes the data market by reinforcing
collaboration opportunities between device with correlated data
to avoid information leakage. Therein, we develop a network-
wide optimization problem that maximizes the social value of
coalition among the IoT devices of similar data types; at the
same time, it minimizes the cost due to network externalities,
i.e., the impact of information leakage due to data correlation,
as well as the opportunity costs. Finally, we reveal the structure of
the formulated problem as a distributed coalition game and solve
it following the simplified split-and-merge algorithm. Simulation
results show the efficacy of our proposed mechanism design
toward a trusted IoT data market, with up to 32.72% gain in
the average payoff for each seller.

Index Terms—Internet of things (IoT), IoT Data market,
data trading, incentive mechanism, information leakage, coalition
game.

I. INTRODUCTION

A. Context and Motivation

The massive volume of Internet of Things (IoT) devices and

services lead to exponential growth of IoT data [1]. Various

networked cyber physical systems (CPSs) are accumulating

and processing data at a large scale, often contributing to the

training of some learning model or carrying out an inference.

For instance, massively distributed data when integrated with

Machine Learning (ML) tools stimulate both real time and

non-real time decision-making services that create a value

of data in the IoT networks [2]. This brings the question

of economic opportunities in IoT data markets, where data

and its value to the services can be traded or exchanged. It

is thus relevant to study the IoT data markets in terms of

mechanisms for attaining the desired economic properties in

offering learning services, such as prediction, detection, clas-

sification, forecasting, and similar. Furthermore, it is necessary

to investigate strategies involved in the execution of such
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Figure 1: Devices with correlated data and coalition formation

when interacting with the platform (learner).
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Figure 2: Value depression due to leakage of correlated infor-

mation in a two seller i ∈ {1, 2} one buyer scenario in a linear

pricing scheme.

distributed cooperation amongst devices having data of value

for IoT data markets.

The two fundamental aspects of an IoT data markets are:

(1) offered pricing1, and (2) device participation in the data

trading process. An IoT device should be stimulated by the

network to participate and share data. The stimulation is

achieved by pricing signals that compensate the IoT device

based on the data valuation and the cost of data privacy,

with additional computational and communication costs. The

statistical properties of traded data over IoT networks raise

fundamental challenges on the scope/impact of exploiting data

trading mechanisms to realize IoT data market, which has been

overlooked in the recent literature [3]–[6].

The seminal work [7] models the data market by relating

the correlation among devices’ data to the price depression.

To illustrate the main ideas of [7] in a data streaming set-

ting, consider an IoT data market, as in Fig. 1(a), featuring

devices with correlated data that interact and trade data with

the platform. Note that in this case the platform acts as a

learner, such that we will use the terms learner and platform

interchangeably. Assume that the device {1} shares its dataset

1Pricing indicates monetary reward or incentives of any form in general,
such as discount vouchers.

http://arxiv.org/abs/2206.07785v2
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D1 with the platform, after which the device {2} does the

same. If the two datasets are correlated and the market learns

the total variation distance between D1 and D2, then it can

prioritize pricing for the earliest traded data, and drop offered

price rate for the latter. Consider Fig. 2, which shows the

evolution of data valuation over time t ≥ 0, assuming a linear

pricing scheme. The market defines vi(t) as the valuation of

the data of seller i at time t. We observe that the valuation

of data v2(t) for seller {2} drops in subsequent interactions

with the market because device {1} leaks information about

the data of device {2}.

Motivated by this observation, the key contribution of this

work is a method by which the devices can challenge the

market to limit price depression: forming a coalition within

devices with correlated data, as shown in Fig. 1(b), and

bargaining as a group instead of individually. To elaborate,

take the IoT data market scenario in Fig. 3. A number of IoT

devices connected to a platform collaboratively train a learning

model and create a value; e.g., this could be a predictor in

the Federated Learning (FL) setting [4], [5], [8], [9]. In this

regard, the authors in [10] discuss a marketplace for data where

a robust Shapley technique is developed to capture replicable

properties of exchanged data and ways to capitalize the value

when sharing them. In general, such market offers incentives

to the devices in a way that (i) stimulates their participation

[11]–[13], and (ii) strikes a balance between the data privacy

concerns, the trustworthiness of the data market, and the

cost of data trading [7], [14]. As explained before about [7],

the market may also leverage the correlated information or

information leakage, and other statistical properties of data

between sellers [10], [15]–[17], to unilaterally steer the pricing

signals for self-benefit. This leads to depression of the value of

the data that would not contribute much to the model trading

process, leading to uncontrolled competition in data sharing,

particularly, due to data rivalry. As the market exploits more

data, it cause devices to drop their participation out of mistrust,

or negligible pricing. This network externality creates a loop

of mistrust, by which the platform can manipulate the data

market causing and affect device participation in the data

trading process.

Our solution to counter the loop of mistrust consists of

two steps: (1) form a coalition among a group of devices to

tighten the information leakage within the group; (2) challenge

the platform to execute the data trading mechanism in a

trusted setting. Overall, this brings value in collaboration with

improved pricing offers. Coalition formation limits data rivalry

amongst sellers, lowers the impact of information leakage due

to uncontrolled competitive data trading on pricing, and fosters

availability of devices to establish data markets. However,

forming coalition to realize a data market is not straightfor-

ward, since the devices need to: (i) learn correlated statistical

properties of data of the other devices, and without revealing

it through the market, (ii) characterize and formalize relevant

utility models that identify conditions for coalition formation

and price determination amongst devices within coalition,

and (iii) handle time-complexity and efficiency of coalition

formation at scale.

Figure 3: A schematic framework: loop of mistrust in the IoT

data market.

B. Challenges and Contributions

Based on the previous discussion, we have identified the

challenges expressed through the following questions:

• Q1: How do IoT devices protect correlated information

of their data without allowing the learner to manipulate

pricing in the IoT data market?

• Q2: How can the platform infer when the data from

devices have equal marginal values or valuations?

• Q3: What is the impact of device availability in the data

trading process?

Addressing Q1 means preventing the market to identify

possible correlation between different data type of devices

and further, monopolize pricing and data trading strategies of

devices. To eliminate this, we devise distributed coalitions of

devices with similar data types, which enforces the platform

to derive the marginal contribution of the coalition, or simply,

the coalition value, instead of the individual interactions. Ad-

dressing Q2 positions us to develop reasonable utility models

for the IoT market, that equally benefits the platform, without

hurting participation of devices in coalition due to information

leakage and unreliable connectivity in the IoT networks2.

Then, we show this eventually leads to the formation of

different coalition structures that balances individual payoffs

and stability of coalition. Addressing Q3 positions us to

evaluate the value of participation and set us to develop a

holistic framework that jointly incorporates Q1 and Q2 in the

IoT data market design.

As a main contribution, we develop a novel cooperation

protocol, termed multi-agent joint policy (MAJP), in an IoT

data market that enables devices to maximize their value of

participation in coalition. We explore the characteristics of the

formulated MAJP problem, which is intractable due to binary

constraints and coupling of variables. Therein, we devise a

game-theoretic mechanism that offers a distributed solution of

MAJP problem where the proposed approach reinforces data

sellers into collaboration for data trading with the objective

2In this work, we realize unreliable connectivity in terms of participation.
Particularly, the connectivity is considered as an uncontrollable factor in
the IoT network, wherein we reflect the unreliable connectivity with the
availability of market players, i.e., the devices for the data trading.
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to minimize the information leakage in a distrusted IoT

data market. The proposed mechanism of distributed coalition

game captures the properties of information leakage, value of

collaboration and the opportunity costs during the coalition

formation. In doing so, we first highlight the tension between

data sellers and the data market over offered pricing and

issues due to information leakage. Then, we offer a distributed

solution to overcome the presented challenges. To that end, we

derive stability conditions of the coalition game following the

developed distributed coalition formation mechanism based on

the merge-and-split algorithm [18] to realize trusted IoT data

market. Finally, through a sequence of numerical evaluations,

we show the efficacy of our proposed mechanism. The rest

of the paper is organized as follows. Section II provides

preliminaries, introduces truthful IoT data market model and

defines device data type. Section III develops the underlying

utility models, and presents the problem formulation as an op-

timization problem to obtain a multi-agent joint policy (MAJP)

in a distributed coalition setting. Section IV develops the

market design and proposed a coalition game solution to the

MAJP problem with complexity analysis. Section V provides

the performance evaluation of the proposed approach and

shows comparative analysis with the competitive baselines.

Finally, Section VI concludes this work.

II. PRELIMINARIES

A. Network Setup for IoT Data Market

A typical IoT data market considers the interaction between

the buyer and the sellers IoT devices to trade data or services

(e.g., training learning models) with pricing signals [19]–[21].

Consider a network with a finite set of IoT devices M as

|M| = M training a global learner (e.g., a predictor3). The

learner acts as an intermediary (for simplicity, we consider it as

the buyer, or equivalently, the platform) purchasing data from

the distributed devices (sellers); thus, forming a marketplace

where strategic data sellers get incentives for their contribution

in improving model at the global learner. Indeed, to later

explore the strategic interaction between the devices and the

learner, the following remark is useful.

Remark 1. In a game-theoretic setting, the said set of M
participating devices are often referred as “agents”. These

finite set of agents hold explanatory data samples for specific

learning tasks, and aim to exchange it with the learner, fully

or in a privacy-preserving manner, e.g., in FL [9], for training

learning models of interest to the learner. Then, any rational

agent is willing to participate in data trading as such the

offered pricing compensates their cost of participation.

Each device m ∈ M stores the data samples at time

t ∈ T = {1, 2, . . . , T −1}, defined as the local data set Dm(t)
of size Dm(t). Note that, in a typical distributed learning

mechanism under the synchronous settings, the observation

time t is a single round of global interaction between the plat-

form and the devices [9], [11]. Then, the collective data sample

3The proposed model is generic in a sense that it works well for training
learning models, such as in FL, or an estimator minimizing the mean square
error (MSE).

size at time t across the network is D(t) =
∑M

m=1 Dm(t).
In a supervised learning setting, Dm(t) is a collection set

of data samples at device m defined as {xi, yi}
Dm

i=1 with

xi ∈ R
d corresponding label yi ∈ R. The data samples are

informative about the learning model; hence, brings a value

at the learner in terms of their contribution in improving the

learning performance. We refer to it as data type. Following

this intuition, we associate the type of data samples available

at the devices as a realization of random variable Φi (explained

in Definition 2). This setting can be extended to a more

generalized form where each device share a stream of data

samples with features accounting for the time instance, such

as in the time series prediction.

Consider n ∈ N (t) data samples available in the network

for trading such that Dm(t) ≤ |N (t)|. Then, the goal of

a supervised learner is to learn a single model defined in

Definition 1.

Definition 1. We define a supervised learner interested in

minimizing the empirical risk with respect to parameter w ∈
R

d on all distributed data samples Dm(t) as the finite-sum

objective of the form

min
w∈Rd

J(w, t) where J(w, t) :=
∑M

m=1

Dm(t)

D(t)
· Jm(w, t).

(1)

Then, the data market particularly looks at the contribution

of each device m in solving (1), which is expressed as the

empirical risk with respect to the improvement in w ∈ R
d on

their local data set Dm(t) as

Jm(w, t) :=
1

Dm(t)

∑Dm(t)

i=1
fi(w). (2)

For simplicity and without loss of generality, we make a com-

mon assumption: fi(w) is either a (1/γ)-smooth function or

a L-Lipschitz continuous function (cf. [22]); hence, ensuring

convergence of the solution. We note the network topology is

not restrictive towards changes, i.e., the devices can perform

data trading with each other via an arbitrator (a central learner)

because they are connected through a network. Therefore, for

the performance analysis of the proposed approach later on,

we provide a scenario-based statistical analysis.

B. Data Type and Market Model

We make a common assumption that the market is inter-

ested in data exchange, and therefore, stimulates the devices

with pricing signals based on the value of the traded data

in improving the learning performance. In our setting, this

translates to finding the type of data each device has. Then,

for the offered pricing pm > 0, every rational device m
determines its strategy for participation am ∈ {0, 1} in the data

trading process so as to maximize their individual benefits;

such strategies are captured in terms of the defined utility

function. For this, we first define the type of data samples

Dm of device m by a random variable Φm. To this end, we

have the following definition.

Definition 2. We define the data type Φm, ∀m ∈ M as

a composite measurement obtained following the preference
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profile ξm of the devices to share their available data, fully

or partially, and the average marginal contribution value of

supporting mini-batch of data points z ∈ Dm defined as

θm(z,Dm) that brings to the learner.

Following Definition 2, we formally define the composite

mapping ξm(θm(z,Dm)), where θm(z,Dm) can be evaluated

following a modified distributed Shapley [23] value for a

known potential function of the global loss4 J(·) (as defined

in (1)) such that

θm(z,Dm) = E
i∼[m̄]

D̃∼D
i−1
m

[

J̃(D̃ ∪ {z})− J̃(D̃)

]

, (3)

where, respectively, m̄ is the mini-batch size, D̃ is the i.i.d.

samples drawn from the data distribution Dm supported on

Z with mini-batch of data point z ∈ Z , and the potential

function J̃ : Z → [0, 1] defined by the output 0 ≤ ǫ ≤ 1 such

that |∇J̃(w(t))| ≤ ǫ|∇J̃(w(t−1))|.
More precisely, following (3), the mapping

ξm(θm(z,Dm)) ∈ [0, 1] quantifies data type as the expected

value of data and the device’s preference profile, i.e., the

willingness to trade data with the learner, to offer that value

in the data market. For simplicity, we use shorthand ξm for

ξm(θm(z,Dm)), with ξm = 0 when the device m reserves no

privacy concern on the shared data. In practice, we observe

heterogeneity in ξm, which is an important metric that

captures the function of individual preference on sharing data

(i.e., data privacy), and thereof, each device may not reveal

their true data type, or perform optimal local computation,

as expected by the market, for the offered pricing scheme

to participate in the data trading process. Hence, the learner

face consequences of the partial knowledge in the state of

information exchanged5 in a setting where payments for

traded data are provided after collecting them. We settle the

aforementioned analysis with the formalization of an efficient

trading mechanism in the proposed market model as below.

Definition 3. The proposed data trading mechanism is a

tuple (Π,Ω,p, a), where Π is the coalition set following data

types, Ω is the outcome space capturing the final learning

performance, with Ω : Φ×a → [0, 1], p = (pm(Φm))m∈SΠ
is

the pricing vectors defined for coalition SΠ, with am∈SΠ
= 1,

and a = (am(Φm))m∈SΠ
is the vector of participation to

tighten the information leakage due to data correlation.

Definition 3 hints the underlying game-theoretic interaction

between the learner and the devices for the mechanism design,

summarized as the following. The learner (i) evaluates the

receive data (including device’s importance value towards

privacy), and aims at (ii) quantifying the type of device’s data

so as to lower the offered pricing. Particularly, the traded data

is evaluated for its contributing in improving the performance

of the learning model, i.e., with Ω : Φ× a → [0, 1]. Whereas,

the devices m ∈ M with correlated data samples form a

coalition m ∈ SΠ to challenge the learner in hiding their own

4Potential function reflects the performance metric in terms of learner’s
model accuracy.

5This is often termed as information asymmetry.

data type Φm, or adopt sharing data in bundles to mitigate the

information leakage and price depression. Following Defini-

tion 3, the mechanism aims to foster improved participation

for training learning models while addressing impacts of data

correlation on the offered pricing.

With these preliminaries, next, we formally start to tackle

the research problems Q1, Q2, and Q3, raised in Section

I-B, with the considered simple setting. In the following, we

present an overview of the problem formulation about data

trading in the IoT data market and formalize the data valuation

procedure as per the data properties, resulting in specific utility

models.

III. PROBLEM FORMULATION

A. A basic setup

We revisit Definition 2 and make an assumption that the

vector of random variables Φ = [Φ1,Φ2, . . . ,Φm] follows

a joint normal distribution N (µΦ,Σ), where Σ ∈ R
m×m

is the covariance matrix. This setup provides convenience

in further analysis; we simply assume this to reflect the

presence of devices with correlated data type. However, the

developed framework is not limited to this assumption, as

in the case otherwise, the problem eventually boils down to

the deconstruction of the data type and our approach follows.

Consider am(t) as a binary decision variable for device m to

join the data market such that

am(t) =

{

1, if device m joins the market at time t,

0, otherwise.
(4)

Then, in every round of interaction with the learner for

the offered pricing pm(t), ∀m, the interested device (if in

the agreement to participate) trade their data as the mixture

of their data type and the learning parameters such that

Sm = f(ξm) + Nm, where Nm ∼ N (0, 1) is the Gaussian

noise. In this regard, as shown in [7], the learner can have

an estimate of ξm with the traded data Dm with a solution

to minimization of the estimation error of the data type. In

doing so, the learner can employ both convex/non-convex loss

function in (3) that defines the data type of a device. This

means, the learner can efficiently reconstruct the mapping

function φ̂ =< g(ξm)|m∈M > to derive ξm, ∀m precisely

by solving the squared-error minimization problem as

argmin
g(ξm)

E

[

(φm − g(ξm|Dm, am(t), pm(t)))2
]

, ∀m ∈ M.

(5)

In this regard, we outline the following three cases:

• Case I: When ξm = 0, i.e., f−1(φm) = 0, ∀m, the

learner adopts the following economic properties.

(i) Monotonicity: If we have Di ⊆ Dj for any pair

of devices i, j ∈ M, then following the standard

assumption of monotonicity in the valuation on data

defined as v(·), we have v(Di) ≤ v(Dj).
(ii) Additive: If we have D = Di ∩ Dj for any pair of

devices i, j ∈ M, then we have v(D) ≤ v(Di) +
v(Dj).
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Figure 4: Case study on variability in scaled valuation func-

tion at the learner in terms of model precision: a two sellers

one buyer scenario.

Considering these two properties, if the learner already

received data Di such that Di,Dj ⊆ D, then it formalizes

the valuation function for the data Dj as

vDi(Dj) = γ ·v(Di∩Dj)+v(Dj\Di|Di∩Dj), ∀i, j ∈ M
(6)

where γ ≥ 1 is a design parameter quantifying the

effect of available data samples at the learner. The right

hand part characterizes the marginal contribution of the

remaining data samples. In fact, the valuation can be

explicitly defined in terms of its contribution in improving

the learning performance. As an example, we discuss the

following case study.

Case Study: Take v(Di∩Dj) as a log-concave valuation

function, defined according to the experimental results

in [24], of the learning precision (or accuracy) ζ such

as J(ζ), where ζ = 1 − A0e
−2|Di∩Dj|(1−n0) for a

known A0 defined as per the learning problem (1) and

n0 is the noise factor sampled from N (0.5, 1). To put

in a context, the noise factor n0 simply captures the

notion of unreliable connectivity. In this regard, Fig. 4

identifies the variability in the scaled valuation function,

measured from the buyer’s perspective, in terms of model

precision for a scenario with two sellers having correlated

information and a buyer acting as the learner. We observe

the addition of a random noise factor lowers the valuation

function, i.e., a negative impact of unreliable connectivity

on data trading, which is quite intuitive and straightfor-

ward. However, we also see a positive contribution of

obtained information on the volume of correlated data

samples that in return maximizes the valuation function

of learner.

• Case II: When ξm > 0, ∀m, the learner only has access

to a subset of device’s data (in the best case scenario), or

just partial data (for example, the learning parameters).

In this later scenario, the learner can use several distance

measures, such a L2-norm, cosine similarity and so on,

to figure out correlated learning parameters.

• Case III: When ξm ≥ 0, ∀m, i.e., a particular case of I

and II.

Next, in the following, we define the relevant utility function

for the learner and devices to characterize these properties in

the IoT data market.

B. Utility formulations

The learner exploits the solution obtained from solving (5)

to maximize its advantage of knowing the data types of devices

for a best-suited pricing scheme. In particular, the learner aims

at maximizing the following problem:
∑

m∈M
V (g(ξm)|Dm, am(t), pm(t)) − ampm, (7)

where V (·) is a non-decreasing, concave valuation function

evaluated at the learner knowing data types to lower down

the pricing. We later discuss the details of it. On the contrary,

with the given pricing, the devices intend to lower the risk of

exposing their data types to the learner. An approach to address

this concern while to have a method that captures the concerns

raised in Q1, Q2 and Q3 is the following maximization

problem for each device:
[

∑

i∈M\m
Vi(·)+ampm

]

−δmVm(Dm, am(t), pm(t)), (8)

where Vi∈M\m(·) is the value of added data in the data market,

δm ≥ 0 is the sensitivity of the data market in optimization

(5) over the revealed data type for device m. However, solving

(8) exerts additional communication overhead to calculate the

valuation of all participating devices in the market, and there-

fore, is inefficient in deriving low-cost, distributed solution to

meet the research objectives. Therefore, we need to redesign

the interaction scenario between devices and the learner in the

data market. To this end, we develop a composite objective

that stimulates participation of the devices and brings value

from the exchange of data between the devices and the learner

in the data market. Our focus is to realize a trusted data

market setting that brings participation of the devices with

correlated data properties in a group, without uncontrolled

competition and probable leakage of information about each

other’s data properties; hence, the market cannot unilaterally

depress pricing.

C. Multi-Agent Joint Policy (MAJP): A distributed coalition

strategy

We start by developing the underlying distributed coalition

game structure of the posed problem statement as an optimiza-

tion problem. We recast the interaction between devices and

the learner considering the possibility of leakage of correlation

information as a multi-agent cooperative game where the

payoff during coalition is allocated amongst the devices for

tightening correlated information. This fundamentally means

the devices with corelated information negotiate to derive an

equilibrium solution, where both of them benefit from the data

market. Recall the data trading mechanism in Definition 3, this

also means the coalition strategy works best of everyone’s

interest bringing higher value of data, pricing, privacy and

learning. Herein, we also drop the notion of time t and evaluate

the system for each round of interaction between the devices

and the data market, which is a valid assumption to make.

Let M denotes a grand coalition and S ⊆ M is a set of

devices in coalition to protect their corelated data. In particular,
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Figure 5: An illustrative experimental setup for data trading and value exchange.

a set of devices S agree to act as an single entity to negotiate

with the value of their collective data DS with the platform

during data trading. The value of coalition is therefore related

to the pricing rate p(DS) such that p : P (M) ×M → R≥0,

where P (M) is the power set of M. In what follows, we reuse

the data type φm of device m, defined as a function of the

importance value ξm it allocates for the privacy of data Dm, as

a consensus constraint on the coalition property. Consider A =
a1 × a2 × . . .× am is the action space defining device’s joint

agreement in the data trading process. Then, with reference to

(8), the added contribution of coalition S in the system can

be defined by a utility function as follows.

Definition 4. For a given coalition S ⊆ M, fS((φj(S,A)) :
N → R ∈ [0, 1] is a positive, concave utility function that adds

return on investment for having a coalition and tightening the

information about data types φj , ∀j ∈ S.

Following Definition 4, we can define the coalition value

instead of individual utilities as

v(S,A) =
∑

j∈S
aj

[

(

pj(nj) + fS(φj(S,A))

)

−

(

pj · c(∆φj) + c(S)

)

]

, (9)

where pj(nj), ∀j ∈ S is a proportional pricing for nj data

available at the devices in coalition, c(∆φj) is the opportu-

nity cost when leaking data type information to the learner

following early trading, i.e., the learner is allowed to optimally

minimize E

[

(φm−g(ξm|Dm, am(t), pm(t)))2
]

, ∀m ∈ S, and

c(S) is the cost of coalition defined in terms of total power re-

quired to exchange information on correlation. More formally,

we define pj(nj) = ps

[

nj⋃
j∈S

nj

]

for a defined budget ps on

the coalition S, c(∆φj) =
∑

i6=j gijaiaj, ∀i, j ∈ S, where gij
is the normalized influence of device i to j due to correlation

properties in the data.

Theorem 1. For a single seller case, the optimal coalition

value v∗(S,A) is proportional to the offered pricing p∗(n)
for trading data of samples n. In a multiple seller case, given

a known cost of coalition c(S), the optimal coalition value

is proportional to the gain from tightening the information

leakage due to data correlation and the availability of data

samples itself.

Proof. The first case is simple to prove. The absence of data

rivalry leads to data trading with pricing signal sufficient

enough for active participation of the data seller devices,

leading c(∆φj) and c(S) to zero, i.e., aj = 1 and ai =
0, ∀i ∈ S \ j. Given c(S) and a linear pricing scheme,

maximizing the coalition value corresponds to minimizing

the components that captures the impact of data correlation

defined as gi,j , ∀i, j ∈ S between sellers pair {i, j}, i.e.,

pj · c(∆φj); hence, the participation of devices to add value

within coalition and maximize fS((φ(S,A)) with more data

samples.

We note that (9) presents a holistic outlook to the problem

that connects data value, pricing, privacy and learning in

the IoT data market. In what follows, if we consider a

typical learning problem (1) solved by the data market via

data trading, it is of particular interest to realize the data

value and its impact on the learning performance for a given

pricing scheme, as a usual case in the data market. That also

poses a feasible approach where the platform feedback the

impact of parameter dissimilarity as in the opportunity cost

c(∆φj) across devices due to their data properties. This can

be achieved with the following definition.

Definition 5. The devices participating in the data market

exhibit parameter dissimilarity ρm ≥ 0, ∀m ∈ M in terms

of gradients on the global and local loss as ||∇Jm(w) −
∇J(w)|| ≤ ρm, ∀w.

Then, we can derive the average data dissimilarity in the

coalition S following the Definition 5 as

ρS =
∑

j∈S
aj

[

ρj ·
nj

⋃

j nj

]

. (10)

Illustrative analysis of coalition strategy on opportunity

costs: As an appetizer, we set the availability of two devices in

the trading system. Consider two sellers with data {Di|i=1,2}
and the buyer setups the data market for {Di ∪Dj ⊆ D|Di ∩
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Sellers Case I Case II

D1 : {1, 2, 3, 4, 5} {1,2,3,4,5} {3,4,5}
D2 : {1, 2} - {1,2}

Table I: Illustrative example on data trading where Case I

indicates seller {1} approaching the platform first, and Case

II, otherwise.

Cases Coalition No coalition

c(∆φ1) c(∆φ2) c(∆φ1) c(∆φ2)
Case I: 1 - 0 1

Case II: - 1 1 0

Table II: Analysis of coalition strategy on linear opportunity

costs c(∆φj), j ∈ {1, 2} for a unit cost per sample with

Dj|j={1,2,3,4,5} and Dj|j=2 = {1, 2}.

Dj 6= ∅} data samples, as shown in Fig. 5. Then, if D1 and D2,

respectively, posses a subset of data samples in the market, i.e.,

D1 = {1, 2, 3, 4, 5} and D2 = {1, 2}, then for a unit monetary

value on the data dissimilarity ρj , ∀j ∈ {1, 2}, we have two

specific cases for data trading and the involved opportunity

costs. Case I: Seller D1 trading its data first and Case II:

Seller D2 trading its data first. In this regard, Table I shows

the trading procedure and Table II evaluates the opportunity

cost under two particular scenarios: (i) when a coalition is

formed and (ii) when individual trading is performed. To

elaborate, let’s say Seller D1 considers for Case I and opt

out of coalition to lower its opportunity cost. Then, D2 can

switch for early trading scenario, i.e., Case II to lower its own

opportunity cost; consequently, forcing D1 to form a coalition

with seller D2. Likewise is the narratives on the stability of

coalition formation under the Case II. This illustrative analysis

establishes motive of devices to self-organize into coalition in

the data market, which we later show is stable, to alleviate the

impact of data similarity between them on the offered pricing

and the aftermaths of data rivalry.

With respect to the above analysis, the data market intends

to solve the following optimization problem in its general

form.

P: maximize
{ai, pi}i∈S

v(S,A) (11a)

subject to
∑

i∈S
pi = pS , (11b)

Vi∈S(Di, ai, pi|φi) ≥ 0, ∀i ∈ S, (11c)

Vi∈S(Di, ai, pi|φi) ≥

Vi∈S′(Di, ai, pi|φi),S
′ ∈ S \ i, (11d)

ai ∈ {0, 1}, ∀i ∈ S, (11e)

ρS ≤ ρ, (11f)

c(S) is bounded, (11g)

c(∆φi) ≤ φth
i , ∀i ∈ S, (11h)

where (11b) is the budget constraint available to distributed

amongst the members in coalition; constraints (11c) and

(11d) jointly captures the positive valuation in participation;

(11e) defines the participation strategy of the devices, (11f)

quantifies the measure of average data dissimilarity such the

coalition is stable; (11g) is the accepted tolerance on the cost

Figure 6: An illustrative snapshot of the distributed coalition

game.

of coalition, and (11h) is the bound on individual opportunity

cost of the members in coalition. We notice, the optimization

problem P is hard to solve and mostly intractable due to (i)

binary constraints, (ii) the stability of the mechanism due to

the coupling in data types and valuation for the unknown

heterogeneity in data distribution, for a large number of

devices, and (iii) private cost information. To address the

technical challenges defined for solving P, in the following,

we recast the market design so as to offer a novel cooperation

protocol that mitigates the tension between data sellers and

the data market using the pricing signal for the exchange

of value and data. In particular, we characterize a subset of

coalition is formed accordingly to the data types, and then,

derive association and pricing scheme based on the properties

of devices associated in the particular coalition. Note that,

the obtained solution is sub-optimal, but a low-complexity

alternative to address the aforementioned challenges.

IV. MARKET DESIGN: MAJP AS A COALITION GAME

In the best interest of the devices (“agents”), we observe,

as illustrated in the experimental (subsection III-C), devices

having similar data types form coalition to maximize their

utility and reach stability in the data market offering transfer-

able utility (TU). Hence, we formalize the elegant framework

of distributed coalition games, the Hedonic game [18], [25] to

solve the problem of distributed coalition with the objective

of maximizing P. In fact, it is intuitive that the devices have

individual preferences to form coalition groups with similar

data types, which is a common concept for coalition-based

games [18]. This captures two necessary conditions to design

the Hedonic game: (i) the payoff of the devices is defined

only based on the other members in the coalition, and (ii)

the coalition structure is the direct consequence of preference

profiles of each device in the coalition.

Remark 2. The interaction between a single learner and a

finite set of devices (sellers) in coalition upon the pricing

signal and the value of data exchange together form a coalition

game to protect their corelated data. Formally, the game is

characterized to capture the coalition strategies of devices

and the update in pricing signals of the learner towards

maximization of coalition during participation in data market.
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Definition 6. A coalition partition is defined as the set

Π = {S1,S2, . . . ,SK} dividing the total set of devices M in

the system such that Sk ⊆ M and ∪K
k=1Sk = M, where Sk

are the coalitions sets based on device type k ∈ {1, 2, . . . ,K}.

Then, we have the following preference definition for the

device participating the coalition [25].

Definition 7. The preference profile of any device m is defined

by the relation or an order �m that is a complete, reflexive,

and transitive binary relation over the set {Sk ⊆ M : m ∈
Sk}.

Following Definition 7, we have for any pair of coalition

sets S1 and S2, S1 �m S2 means device m ∈ M prefers

coalition S1 (or least equally prefers both), than S2.

Then, formally, with the given set of devices M as players

and their preference profiles �m, ∀m ∈ M, a Hedonic

coalition game can be defined as follows.

Definition 8. A Hedonic game is defined by the pair of set of

players (i.e., the devices) and their preference profiles (M,≻).

Once the coalition Sk , for illustration, as shown in Fig. 6,

with TU (9) is agreed upon by the devices, the coalition

utility can be divided amongst the devices as the payments,

quantified in the form of contract. In our formulation, we

define the value of coalition as the coupling between the

obtained overall revenue due to participation in the data market

and the consequence of limited information leakage due to

correlation properties amongst the devices data. Particularly,

the payment under contracts for device m ∈ M is defined as

pm(Sk) = pSk

[

nm⋃
m∈Sk

nm

]

for a obtained revenue pSk
due to

coalition, where
∑

Sk∈Π pSk
= pS on the coalition Sk, using

the earlier defined concepts.

Next, following Definition 7, we evaluate the preference

profile of the devices as follows. Let’s define SΠ(m) is the

coalition set where the device m should belong following its

type, i.e., m ∈ Sk such that SΠ(m) = Sk ∈ Π. Then, as

explained in Section II, the preference of devices is defined

as S1 �m S2 ⇔ um(S1) �m um(S2), ∀m ∈ M, where

um : 2K → R is the preference function of any device m
such that

um(S) =

{

pm(S), if m ∈ SΠ(m),

0, otherwise.
(12)

In doing so, the devices verify the conditions of bound

on their individual opportunity costs and the measure of

parameter dissimilarity, as defined in Definition 5. Then, it is

quite straightforward to have the preference function as (12).

The devices in coalition gets benefit from the TU obtained

following contracts mechanism, as discussed before, where

two specific economic properties (or conditions) are satisfied:

(i) Individual Rationality (IR), a condition that captures the

motive behind devices undergoing distributed coalition with

positive return on investment, (ii) Incentive Compatibility (IC),

a condition that ensures devices get to maximize their utilities,

as in the form of obtained payments, if they act as per their

type.

Algorithm 1 MAJP Solution with Coalition Formation

1: Initialization: Partition Πinitial with devices in set M
having a total of D data samples at t ∈ T .

2: Output: Stable partition Πfinal, participation vector a =
{a1, a2, . . . , am}, ∀m ∈ M, pricing signal p =
{pS1

, pS1
, . . . , pSk

}, Sk ∈ Πfinal.

3: Phase I:

Private discovery of device types;

Execute Algorithm 2;

4: Phase II:

Distributed coalition formation;

5: repeat

6: for all device m ∈ Πinitial do

7: Randomly select two coalitions;

8: Evaluate the preference function for the given coali-

tion with (12) and preference profile (Definition 4);

9: Invoke switch operations between coalition groups,

comparing possible payoffs;

10: Add device to the observed coalition sets in Πinitial;

11: Repeat evaluation of preferences on different coali-

tion groups (line 6) until no further switch operations

exists;

12: end for

13: until Πfinal is reached;

14: Phase III: Computation of coalition value using (9);

15: Evaluate the final pricing signal p;

In Algorithm 1, we develop a solution approach to the opti-

mization problem P, where the objective is to derive coalition

partitions following device types that uniquely maximizes the

overall coalition value. In particular, we adopt the modified

merge-and-split algorithm [18], [26], [27] which works in

an iterative manner on two coalitions at a time, and design

a solution that reaches stable partitions. To that end, the

following theorem is useful.

Theorem 2. While satisfying IR and IC constraints, we

show, the developed MAJP framework offering the distributed

coalition solution with payment under contracts to realize

an IoT data market for model training yields the following

desirable properties.

(i) Budget balance – Following Definition 7, for any device

m ∈ Sk, the sharing of total per group budget allocation

pS between the coalition members is proportional to the

value of their participation such that
∑

Sk∈Π pSk
= pS is

satisfied.

(ii) Linearity (within the coalition) – The linearity prop-

erty, basically implying the revenue allocation for the

exchange of data D1 and D2 from devices {1} and

{2}, respectively, is the same as any one device trading

D1 ∪D2, comes as a direct consequence of proportional

payoff within the group.

(iii) Truthfulness – The mechanism is truthful such that there

exists a non-negative payoff proportional to the data

contribution, as defined in the coalition contracts, only
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Figure 7: Execution flowchart of MAJP solution.

if the device form coalition as per its data type, and the

linearity. It readily follows the definition of preference

profile of any device in (12) and the designed correspond-

ing individual utility function, which penalizes untruthful

reporting.

(iv) Symmetry – The output of the mechanism is invariant to

any permutation of participation during coalition forma-

tion. The proof follows for a finite set of devices, given

a mechanism satisfying properties (ii) and (iii).

(We rely on the above proof-sketch and omit further details

on analytical proof of Theorem 2, as it straightforward with

the given explanation.)

Algorithm 1 operates in three phases, as shown in Fig. 7;

Phase I: device type discovery, Phase II: distributed coalition

formation, and Phase III: computation of final coalition value

and payments. In Phase I, the devices exploit a secured MPC

channel to compare their type with available proxy device type

sets. To allow its successful execution, we assume devices

can “ping” each other through broadcast network or using

beacons during discovery phase to evaluate individual devices

types, similar to [28]. In this regard, the cost of coalition can

be explicitly defined as units per round of communication.

In Phase II, we employ the execution of split-and-merge

algorithm [18], where the devices are allowed to make a

switch between two coalition groups at a time, following their

preference profile on the device types and utility functions, that

maximizes their payoff. Following Definition 5, the bound on

individual opportunity costs, and the amount of information

leakage, the devices perform coalition switch operations as

per their preference profile. This iterative procedure eventually

leads to a stable coalition structure, as proven in [18], [27].

Finally, in Phase III, once the stable partition Πfinal is reached,

the coalition value is calculated to further define the final

pricing signal for the data trading.

Algorithm 2 Private Discovery of Device Types

1: Begin with initial partition Πinitial of K with proxy data

type sets in K
2: Permute devices within Sk, k ∈ {1, 2, . . . ,K} over avail-

able private channel to evaluate device data type.

3: Return evaluated device types to individual devices m ∈
M.

A. Complexity analysis

The complexity analysis of the proposed approach is done

following the “propose and swap” method of stable matching

algorithm with externalities [29]. Particularly, the impact of

preference profiles with the number of devices and their

interactions during the distributed coalition formation with

merge-and-split algorithm is an instance of the propose and

swap method, where devices opt to join coalition based on

their type so as to maximize formulated individual utility-

leading to stability. We begin with two randomly selected

coalitions; hence,
(

M
2

)

defines the number of possible switch

between coalition groups and M ×Πinitial number of possible

options to split and merge as a member of coalition group.

Following to which, this leads to a sub-linear complexity

O(MΠfinal log(M × Πinitial)) with the number of devices and

coalitions formed, similar to the analysis done in [29]. In

the following, we provide simulation results to evaluate the

performance analysis of Algorithm 1.

V. NUMERICAL RESULTS

In this section, we evaluate, compare, and validate the

performance of the proposed market model with intuitive

baselines. To begin with, we conduct statistical analysis to first

measure the information leakage due to data correlation in its

simplified version. For this, we consider a few number of seller

devices available in the market generating explanatory data

samples for trading, with the quality of data defined for the

model’s performance at the learner, as in [24]. Second, we the

measure the impact of information leakage on data valuation

and, with experimental, show the impact of data rivalry on

value depression. Finally, we conduct numerical evaluations of

the proposed solution; particularly, we follow a linear pricing

scheme to compare the performance of our proposed approach

in the IoT data market.

A. Analysis on data correlation

In this subsection, we conduct the statistical analysis on

information leakage for a three seller M = {1, 2, 3} and one

buyer scenario in the developed IoT data market. For sim-

plicity, we consider each device’s data provide equal marginal

contribution to the learner, and the data samples are revealed

in a sequence. As we talked about FL setting, the contribution

of data samples is, in fact, reflected in the gradient (or

parametric) response provided by the individual sellers. Based

on this analysis, we show the impact of data correlation on

information leakage. Note that, absence of this simplification

won’t alter the result, whatsoever, as the framework well-

captures individual contribution of data samples in improving
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Figure 8: Statistical analysis on information leakage ri,j , ∀i, j ∈ M to reflect data rivalry with M = {1, 2, 3} in a three sellers

one buyer scenario with a precision of 5× 10−4. We consider each round indicates revelation of a single data sample with the

leaner.

the learner’s model following (3). We associate each device

with a random variable and generate synthetic dataset using

Gaussian process priors; the objective is limited to finding

the joint probability distribution, and the data type is quan-

tified following a uniform k-level quantization on the model

performance, i.e., in the order of contribution in the model

improvement, as defined in (3). The definition of average

data similarity in (10) is used to perform such quantization,

equivalently, satisfying the constraint in P. For instance, using

in a three sellers setup represented with random variables

(RVs) X , Y , and Z , respectively, we model Z = 0.5X + Y ,

with X∼ N (µX , σX) and Y∼ N (µY , σY ), where the pairs

(µX , σX) and (µY , σY ) defines mean and standard deviation

of the corresponding RV. Then, as shown in Fig. 8, the buyer

learns data correlation ri,j , ∀i, j ∈ M and reach convergence

while obtaining device data type information with a precision

of 5 × 10−4. In practice, the sellers can use a batch of

data samples; hence, the time step taken is much less than

the approach where each sample is revealed. With this, we

next evaluate the impact of information leakage on the data

valuation.

B. Value depression with information leakage

We use the valuation function following linear pricing

models defined as V = 1/(1 + g)

[

∑M
i=1

(

Di∑
j
Dj

)1−bp]1/b

for each device, with information leakage factor 0 ≤ g ≤ 1
and a positive weight factor b > 0 capturing the characterstics

of valuation function. We set b = 0.1 and the range of

offered pricing in [1, 10] monetary units. We observe the

influence of the correlated data of seller {2} on the data

valuation of seller {1} without the execution of proposed

coalition solution approach. Fig. 9 shows the data valuation

is proportional to the number of data samples, which is

intuitive, and also with the offered pricing signal; however,

it drops significantly as the learner identifies data properties

between the sellers. Interestingly, as shown in Fig. 9, the

price depression is prominent for seller {2}, when seller {1}
is given the competitive advantage of arrival in the market.

This is obvious given the characterization of data properties

between {2} and {1} in Fig. 8 in quantifying their data type.
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Figure 9: Evaluation of value depression with the offered linear

pricing.

1 2 3 4 5
Preferred partition (Φk)

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
ut
ilit

y

Φ1
Φ2

Figure 10: Impact of coalition strategy as per individual data

type on normalized utility of devices.

Next, we evaluate individual utilities of the devices following

our proposed MAJP solution approach, and provide further

analysis of the developed coalition strategy.

C. Analysis of coalition strategy

Fig. 10 shows the impact of switch operation between

coalition groups on the normalized utility for each device and

the identified data types. As discussed before, while the data
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Figure 11: Computational complexity in terms of the execution

time (in ms).

similarity constraints and the cost of coalition are satisfied,

any deviation of the sellers to the group different from their

true data type consequently lowers its utility. This hints the

seller will opt to join appropriate coalition and undergo data

trading in a group so as to maximize their utilities. We also

observe, as the data are not perfectly correlated, the impact of

information leakage won’t penalize normalized utility value

to zero, but only lowers it. Interestingly, we have an intuitive

observation in Fig. 10 – joining a nearby coalition group is

more beneficial for the sellers as the impact of information

leakage is higher, otherwise. In Fig. 11, we validate the sub-

linear complexity of the MAJP solution. For this, we set

Π ∈ {1, 2, 3, 4, 5} and include number of devices per group

as 1, 10, 20, 30, and 40, respectively. We shuffle the devices

and their data type, and compare execution of the MAJP

solution with the Optimal [30]. The combinatorial nature of the

coalition formation with the increased number of partitions and

the number of associated devices results the Optimal solution

to be computationally expensive as compared to the proposed

MAJP solution.

Next, we consider the following intuitive baseline along to

show the gain of adopting coalition strategy than individual

interaction with the learner under a scenario with the infor-

mation leakage.

• Non-cooperative: The learner exploits data properties

between the sellers and impose price depression.

• MAJP solution (Cooperative): The pricing allocation fol-

lows the proposed solution approach in Algorithm 1.

For this evaluation, we reuse the linear pricing scheme with

a log-concave utility on the coalition strategy adopted by

devices with similar data type to lower information leakage,

as illustrated in Fig. 8. For simplicity, we set Π ∈ {1, 2}
and include the number of devices per group as 10, 20,

30, and 40. The results are then obtained following Monte-

Carlo simulations to check and validate the consistency of the

obtained results. In Fig. 12, we observe the proposed MAJP

solution provides a gain of up to 32.72% while imposing

collaborative interaction between the devices with similar data

type. Interestingly, we also observe an almost flat payoff when

devices opt a non-cooperative strategy. This is reasonable

given the value of information leakage with a fixed similarity

in the number of data samples across devices. In this manner,
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Figure 12: Performance comparison in terms of average payoff

per device in coalition.

the sellers benefit from coalition to tackle price depression and

the information leakage to setup a trusted IoT data market.

VI. CONCLUSION AND DISCUSSION

In this work, we have proposed an approach that establishes

a trusted IoT data market by reinforcing collaboration oppor-

tunities between devices with correlated data to avoid informa-

tion leakage. We set out to tackle the challenges posed due to

the loop of mistrust in the data market; we jointly study three

research questions (as indicated in Q1, Q2, and Q3), where we

have shown devices with similar data types can cooperate to

deal with the price depression, data rivalry, and uncontrolled

participation issues in the data market. We have formalized a

network-wide optimization problem that maximizes the social

value of coalition between the IoT devices of similar data types

while minimizing the overall costs, defined in terms of network

externalities, i.e., the impact of information leakage due to data

correlation, and the opportunity costs. The formulated problem

is intractable due to binary constraint and hard to solve

directly given the presence of private information; thereby, we

have developed a novel cooperative protocol, namely MAJP,

that offered a sub-linear complexity in obtaining the solution

using preference-based coalition strategy. To that end, we have

shown, via statistical analysis and numerical evaluations, our

proposed approach provides benefits (around 32.72% gain) as

compared to the non-cooperative baseline, revealing truthful

participation of devices without uncontrolled competition due

to the information leakage and data rivalry.

We remark that the proposed approach could open additional

benefits. For example, knowing others data properties a priori

also indicate devices can learn when it is reasonable to

collaborate for training learning models, as discussed in [31].

An interesting direction for future work is to consider a more

practical network setup with intermittent links and resource

constraints a the IoT devices. Another aspect is to better

quantify the amount of privacy leakage by using notions of

differential privacy [32] or using multi-party computation [31],

and develop closer-to-the-real-world utility models. We also

foresee challenges in implementing this in a practical scenario

given the scale of additional signaling required to identify the

data properties. It would be interesting to study the scalability

issues in a pure distributed network architecture.
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