
Florida International University
FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

10-4-2017

Data Mining Techniques to Understand Textual
Data
Wubai Zhou
Florida International University, wzhou005@fiu.edu

DOI: 10.25148/etd.FIDC003998
Follow this and additional works at: https://digitalcommons.fiu.edu/etd

Part of the Computer Sciences Commons

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in
FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.

Recommended Citation
Zhou, Wubai, "Data Mining Techniques to Understand Textual Data" (2017). FIU Electronic Theses and Dissertations. 3493.
https://digitalcommons.fiu.edu/etd/3493

https://digitalcommons.fiu.edu/?utm_source=digitalcommons.fiu.edu%2Fetd%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/ugs?utm_source=digitalcommons.fiu.edu%2Fetd%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.fiu.edu%2Fetd%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/3493?utm_source=digitalcommons.fiu.edu%2Fetd%2F3493&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DATA MINING TECHNIQUES TO UNDERSTAND TEXTUAL DATA

A dissertation submitted in partial fulfillment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Wubai Zhou

2017

To: John L. Volakis
College of Engineering and Computing

This dissertation, written by Wubai Zhou, and entitled Data Mining Techniques to
Understand Textual Data, having been approved in respect to style and intellectual
content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

Sundaraja Sitharama Iyengar

Ning Xie

Debra VanderMeer

Shu-Ching Chen, Co-Major Professor

Tao Li, Co-Major Professor

Date of Defense: October 04, 2017

The dissertation of Wubai Zhou is approved.

John L. Volakis

College of Engineering and Computing

Andrés G. Gil

Vice President for Research and Economic Development

and Dean of University Graduate School

Florida International University, 2017

ii

c© Copyright 2017 by Wubai Zhou

All rights reserved.

iii

DEDICATION

I dedicate this dissertation work to my beloved family, especially my parents.

Without their patience, understanding, support, or love, the completion of this work

would not have been possible.

iv

ACKNOWLEDGMENTS

It is the support from many people that brings me with the possibility to complete

the dissertation for concluding my Ph.D. study.

First and foremost, I would like to express my sincerest thanks and appreciation

to my advisor Dr. Tao Li, for his inimitable support, meticulous guidance, insightful

advice, and getting me immersed with an excellent research atmosphere. Professor

Tao Li, an eminent researcher in the community of data mining, is recognized as a

knowledgeable and dedicated mentor. It is his great passion and endless patience that

help me to locate my research interest and develop the related research skills in data

mining area.

Second, I want to extend my gratitude to my co-advisor, Dr. Shu-Ching Chen,

who has not only provided valuable guidance for me doing BCIN research project,

but also given me constructive suggestion in developing my Ph.D. career.

Third, my thanks goes to all my dissertation committee members: Dr. S.S. Iyen-

gar, Dr. Ning Xie, and Dr. Debra VanderMeer, for their helpful advices, insightful

comments on my dissertation research and future research career plans.

Fourth, I’d like to thank all my mentors including Dr. Larisa Shwartz, Dr. Genady

Ya. Grabarnik, Mr. Jinsong Tan for my three internships: twice at IBM and once

at Uber. The patient guidance and help from them let me accumulate valuable

experience and benefit me a lot in my Ph.D. study.

Moreover, I would like extend my thanks to our department staffs for assisting me

with the administrative tasks necessary during my doctoral study: Olga Carbonell,

Carlos Cabrera, Steven Luis, Luis Rivera, etc.

Additionally, it’s extremely fortunate for me to join Knowledge Discovery and

Research Group (KDRG) where I have built up my research experience and enhanced

my knowledge. I am very grateful to all my colleagues of KDRG including Dr. Liang

Tang, Dr. Yexi Jiang, Dr. Li Zheng, Dr. Lei Li, Dr. Jingxuan Li, Dr. Chao Shen,

v

Dr. Longhui Zhang, Dr. Chunqiu Zeng, Hongtai Li, Wei Xue, Qing Wang, Shekoofeh

Mokhtari, Wentao Wang, Ramesh Baral, Xiaolong Zhu and Boyuan Guan. Both

valuable discussions and helpful suggestions from them continuously enlighten me

with new insights into my research problems.

Finally, I would like to express my utmost gratitude to my parents and family,

whose endless love and understanding are with me in whatever I pursue. Without

the unlimited support from them, I would never go through any tough times in my

life.

vi

ABSTRACT OF THE DISSERTATION

DATA MINING TECHNIQUES TO UNDERSTAND TEXTUAL DATA

by

Wubai Zhou

Florida International University, 2017

Miami, Florida

Professor Tao Li, Co-Major Professor

Professor Shu-Ching Chen, Co-Major Professor

More than ever, information delivery online and storage heavily rely on text. Billions

of texts are produced every day in the form of documents, news, logs, search queries,

ad keywords, tags, tweets, messenger conversations, social network posts, etc. Text

understanding is a fundamental and essential task involving broad research topics,

and contributes to many applications in the areas text summarization, search engine,

recommendation systems, online advertising, conversational bot and so on. However,

understanding text for computers is never a trivial task, especially for noisy and

ambiguous text such as logs, search queries. This dissertation mainly focuses on

textual understanding tasks derived from the two domains, i.e., disaster management

and IT service management that mainly utilizing textual data as an information

carrier.

Improving situation awareness in disaster management and alleviating human

efforts involved in IT service management dictates more intelligent and efficient so-

lutions to understand the textual data acting as the main information carrier in the

two domains. From the perspective of data mining, four directions are identified:

(1) Intelligently generate a storyline summarizing the evolution of a hurricane from

relevant online corpus; (2) Automatically recommending resolutions according to the

textual symptom description in a ticket; (3) Gradually adapting the resolution rec-

vii

ommendation system for time correlated features derived from text; (4) Efficiently

learning distributed representation for short and lousy ticket symptom descriptions

and resolutions. Provided with different types of textual data, data mining tech-

niques proposed in those four research directions successfully address our tasks to

understand and extract valuable knowledge from those textual data.

My dissertation will address the research topics outlined above. Concretely, I will

focus on designing and developing data mining methodologies to better understand

textual information, including (1) a storyline generation method for efficient summa-

rization of natural hurricanes based on crawled online corpus; (2) a recommendation

framework for automated ticket resolution in IT service management; (3) an adaptive

recommendation system on time-varying temporal correlated features derived from

text; (4) a deep neural ranking model not only successfully recommending resolutions

but also efficiently outputting distributed representation for ticket descriptions and

resolutions.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION . 1
1.1 Background . 1
1.2 Motivation and Problem Statement . 5
1.3 Contribution . 11
1.3.1 Intelligent storyline generation . 12
1.3.2 Automatic ticket resolution . 13
1.3.3 Adaptive recommendation system on time varying features 13
1.3.4 Learn distributed representation via deep neural ranking model 14
1.4 Summary and Roadmap . 15

2. PRELIMINARIES AND RELATED WORK 17
2.1 Related Work of Storyline Generation . 17
2.1.1 Multi-document Summarization . 18
2.1.2 Topic Detection and Tracking . 18
2.1.3 Storyline Generation . 19
2.1.4 Disaster Situation-specific Tools . 20
2.2 Related Work of Ticket Resolution Recommendation 20
2.2.1 IT monitoring system . 21
2.2.2 Recommendation System . 22
2.3 Related Work of Domain Adaptation . 22
2.3.1 Transfer Learning . 23
2.3.2 Domain Adaptation . 24
2.4 Related Work of Deep Neural Ranking Model 25
2.4.1 Learning to Rank . 25
2.4.2 Summary . 27

3. GENERATING TEXTUAL STORYLINE FOR DISASTER 28
3.1 Introduction . 28
3.2 Research Objective . 30
3.3 Problem Definition . 31
3.4 System Framework . 32
3.5 Global Storyline Generation . 33
3.5.1 Text Snippet Graph Construction . 33
3.5.2 Identifying Events via Dominating Set 34
3.5.3 Storyline Generation by Connecting Dominating Objects via Linear Pro-

gramming (LP) . 35
3.6 Local Storyline Generation . 38
3.6.1 Augmented Multi-view Graph Construction 38
3.6.2 Generating Storylines via Directed Steiner Tree 39
3.7 System Evaluation . 40

ix

3.7.1 Datasets . 40
3.7.2 Summarization Performance of Global Storylines 41
3.7.3 A Case Study . 46
3.8 Summary . 47

4. AUTOMATE TEXTUAL RESOLUTION RECOMMENDATION 48
4.1 Introduction . 49
4.2 Background . 52
4.2.1 Automated Services Infrastructure Monitoring and Event Tickets . . . 52
4.2.2 Repeated Resolutions of Monitoring Tickets 53
4.3 Preliminary Work . 55
4.3.1 Workflow . 55
4.3.2 Basic KNN-based Recommendation . 55
4.3.3 Representation of Monitoring Tickets 58
4.3.4 Incorporating the Resolution Information 60
4.3.5 Metric Learning . 62
4.4 implementation . 64
4.5 Evaluation . 65
4.5.1 Algorithms . 65
4.5.2 Experimental Data . 65
4.5.3 Evaluation Metric . 66
4.5.4 Choosing the Number of Topics . 67
4.5.5 Overall Recommendation Performance 67
4.6 Summary . 71

5. DOMAIN ADAPTATION FOR TEXTUAL FEATURES 75
5.1 Introduction . 76
5.2 Background . 78
5.2.1 Automated Services Infrastructure Monitoring and Event Tickets . . . 78
5.2.2 Repeated Resolution of Monitoring Tickets 79
5.3 Feature Adaptation . 81
5.3.1 Structural Corresponding Learning . 81
5.3.2 Algorithm Overview . 82
5.3.3 Picking Pivot Features . 83
5.4 Implementation . 84
5.4.1 Pivot Predictors . 85
5.4.2 Hyper Parameter Tuning . 86
5.5 Evaluation . 86
5.5.1 Setup . 87
5.5.2 Evaluation of Feature Adaptation . 87
5.5.3 Feature Adaptation for Different Time Granularity 89
5.6 Summary . 93

x

6. LEARNING TEXTUAL REPRESENTATION IN RANKING MODEL . 94
6.1 Introduction . 94
6.1.1 Challenges and Proposed Solutions . 96
6.1.2 Road Map . 99
6.2 Overview . 99
6.3 Ticket Resolution Quality Quantification 100
6.3.1 Feature Description . 101
6.3.2 Findings . 103
6.4 Deep Neural Ranking Model . 104
6.4.1 Problem formulation . 105
6.4.2 Deep Neural Ranking Architecture . 106
6.4.3 Regularization . 110
6.4.4 Word Embedding . 110
6.5 Automating Ticket Resolution . 111
6.5.1 Datasets . 111
6.5.2 Ticket Resolution Automation . 112
6.6 Other Ticket Analysis Applications . 115
6.6.1 Ticket Clustering . 116
6.6.2 Ticket Classification . 117
6.7 Summary . 120

7. CONCLUSION AND FUTURE WORK 121

BIBLIOGRAPHY . 123

VITA . 138

xi

LIST OF TABLES

TABLE PAGE

1.1 A sample ticket. 4

3.1 Statistics of the datasets. 41

3.2 Events example extracted from document using entity recognition. . . . 41

4.1 Data summary. 53

4.2 Notations. 57

4.3 Event attribute types. 57

4.4 Tickets for explaining motivation of incorporating resolution information. 61

4.5 First 6 words are extracted to represent topics trained from LDA. 62

4.6 Three resolution types with the event description they resolved. 66

5.1 Data summary. 80

5.2 Top pivot features chosen by TF 1, TF 3. 84

5.3 Differences in constructing predictors for TF 1 and TF 3. 85

5.4 Case study. 89

5.5 Correspondences discovered by SCL for general feature mapping experi-
ments. Notation “s” corresponds to features coming from source do-
main, and “t” corresponds to features coming from target domain.
The “+” and the “-” symbols indicate positive and negative features
in correspondences, respectively. 90

5.6 Experimental setup for feature adaptation using daily ticket set. 90

6.1 A sample ticket. 96

6.2 Illustration of ticket samples from an account. Only ticket summary and
resolution are displayed for the sake of simplicity. 97

6.3 PoS tag pattern for concepts problem, action. NP refers to noun phrase
derived from the PoS tag sequence for each resolution. 102

6.4 Illustration of the top 15 ranked features and their rank evaluated by the
random forest regression model. To best evaluate the feature impor-
tance score, we show the rank of average importance score, its mean
and variance. The best performance in the metric of both MSE (mean
square error) average and variance is attached of the end. 104

6.5 Ticket dataset summary. 111

xii

6.6 Overall performance comparison. For generative model, we enable beam
search for multiple output result, so that MAP and nDCG scores can
be computed. 114

6.7 The evaluated similarity measures including 3 categories and 10 measures.
The distributed representation for tickets learned in our model capture
both string and semantic similarity, thus we categorize it as hybrid
similarity. 115

6.8 Comparisons of F1 scores using different similarity measures. 117

xiii

LIST OF FIGURES

FIGURE PAGE

1.1 General architectures of text analysis. 1

1.2 Service management system. 3

3.1 The high-level system overview. 33

3.2 Average recall, precision, F-1 of ROUGE-2. 42

3.3 Average recall, precision, F-1 of ROUGE-SU4. 42

3.4 Experimental result for hurricane sandy. 43

3.5 Wikipeadia ground truth for hurricane sandy. 43

3.6 Experimental result for hurricane katrina. 44

3.7 Wikipeadia ground truth hurricane katrina. 44

3.8 Experimental result for hurricane irene. 45

3.9 Wikipeadia ground truth hurricane irene. 45

3.10 An illustrative example of the local storyline for the area of the Carolinas
during Hurricane Sandy. 46

4.1 Service management system. 53

4.2 Numbers of tickets and distinct resolutions. 54

4.3 Number of monitoring tickets resolved by each resolutions denoted by
“resolution ID” in account1. 54

4.4 Algorithms’ workflow. 56

4.5 Plate notation representing the LDA model. α is the parameter of the
Dirichlet prior on the per-document topic distribution; β is the pa-
rameter of the Dirichlet prior on the per-topic word distribution; θi is
the topic distribution for document i; φk is the word distribution for
topic k; zij is the topic for the j-th word in document i, and wij is the
specific word. 59

4.6 Accuracy varies for different numTopics for dataset “account1”. 68

4.7 Test results for account1 by by varying k for K = 8. 69

4.8 Test results for account2 by varying k for K = 8. 69

4.9 Test results for account3 by varying k for K = 8. 70

xiv

4.10 Test results for account1 by varying k for K = 16. 70

4.11 Test results for account2 by varying k for K = 16. 71

4.12 Test results for account3 by varying k for K = 16. 71

4.13 Similarity measure before metric learning for training set. 72

4.14 Similarity measure after metric learning for training set. 72

4.15 Similarity measure before metric learning for testing set. 73

4.16 Similarity measure after metric learning for testing set. 73

4.17 Mean average precision (MAP) varying parameter K of underlying KNN
algorithm. 74

5.1 Service management system. 79

5.2 Numbers of tickets and distinct resolutions. 80

5.3 Recommendation performance degrading as testing instances coming from
different sliding window. 80

5.4 Hyper parameter selection. According to experimental results, h = 30
and m = 70 are chosen for the rest of our work. 86

5.5 Overall performance for three accounts. 88

5.6 Daily ticket number for each account. X-axis indicates the date IDs in
which the same ID doesn’t necessarily corresponde to the same date
for different accounts. Around two weeks data is available in account3
and four weeks’ data in account1 and account2 in which we require a
sufficient number of tickets generated daily for our experiments. . . . 91

5.7 Daily adaptation for account1. 92

5.8 Weekly adaptation experimental results on account1’s four weeks data.
Two trials are carried out since each trial requires three weeks data. 92

5.9 Weekly adaptation experimental results on account2’s four weeks data.
Two trials are carried out since each trial requires three weeks data. 92

6.1 Information Technology Infrastructure Library (ITIL) service manage-
ment system. 96

6.2 Overview of the proposed system. 100

6.3 Ranking model. The character level embedding is not shown for the sake
of saving space. 109

xv

6.4 The lowest Hamming loss: GLabel gets 0.901 and GLabel+ 0.872; CSSA
gets 0.923 and CSSA+ 0.901. 118

6.5 The lowest HMC-Loss: GLabel gets 0.022 and GLabel+ 0.020; CSSA
gets 0.023 and CSSA+ 0.023. 118

6.6 The lowest H-Loss: GLabel gets 0.022 and GLabel+ 0.021; CSSA gets
0.023 and CSSA+ 0.21. 119

xvi

CHAPTER 1

INTRODUCTION

1.1 Background

More than ever, information delivery online and storage heavily rely on text. Billions

of texts are produced every day in the form of documents, news, logs, search queries,

ad keywords, tags, tweets, messenger conversations, social network posts, etc. Text

understanding is a fundamental and essential task involving broad research topics,

and contributes to many applications in the areas text summarization, search engine,

recommendation systems, online advertising, conversational bot and so on as shown

in Figure 1.1. However understanding text for computers is never a trivial task,

especially for noisy and ambiguous text such as logs, search queries.

Figure 1.1: General architectures of text analysis.

Figure 1.1 shows the general architecture of text analysis that consists of four

layers. 1) The data layer provides the potential sources for textual data collection; 2)

the NLP pipeline layer presents a classical, but not limited to, pre-processing pipeline

for text analytics; 3) the text analytics layer is the core part of text analysis listing the

existing categories of data mining techniques to text analysis, such as summarization,

1

sentence modeling and so on; 4) the application layer finally specifies the real-world

applications benefiting from text analytics. The breadth and depth of text analytics

indicates the impossibility for me to coverage all related topics, and this thesis mainly

focus on textual analytical tasks derived from the two domains I work on during my

Ph.D. program, i.e., disaster management and IT service management that mainly

utilizing textual data as an information carrier.

Disaster management aims to prevent natural disaster from occurring and failing,

and should develop a good action plan to mitigate the results and effects of any

natural disasters. Natural disasters such as hurricanes, earthquakes and tsunamis

cause inestimable physical destruction, loss of life and property around the world

every year. For example, Hurricane Sandy affected the east coast of U.S. in 2012

and posed immense threats to businesses, human lives, and properties. In order to

minimize the consequent loss of the disasters, a essential task in disaster management

is to efficiently analyze and understand the disaster-related situation updates which

usually can be gathered and extracted from a myriad of web documents, e.g., news

and reports that are related to the disasters.

Todays competitive business climate, and the complexity of service environments,

dictate efficient and cost-effective service delivery and support. This is largely achieved

through service-providing facilities to collaborate with system management tools,

combined with automation of routine maintenance procedures that includes problem

detection, determination, and resolution for IT service providers, and is prescribed

by the Information Technology Infrastructure Library (ITIL) specification [urld]. A

typical workflow of the IT routine maintenance is illustrated Figure 1.2, where five

major stages are defined.

At the first stage, problem detection in IT environment is realized by system

monitoring. Some popular system monitoring softwares encompass IBM Tivoli Mon-

2

Figure 1.2: Service management system.

itoring [IBM16], HP Open View [urla], LogicMonitor [log16], Zenoss [zen16], Man-

ageEngine [Man16], etc. System monitoring, one important component in service

management, is capable of tracking the states of a system by collecting system statis-

tics information such as the CPU utilization, the memory usage, the number of data

bytes written and read on the disk, the sequence of request and responses processed

on an application server, etc. The system monitoring computes metrics based on the

regularly collected system performance data and compares those metrics with some

predefined acceptable thresholds, referred to as monitoring situations as well. Any

violation after comparison raises an alert. If the alert persists beyond a certain period

specified in the situation, the monitor emits an event.

At the second stage, the generated events from the entire IT environment are

consolidated in an enterprise console and stored in an event database. The console

3

also employs rule, case or knowledge based engine to analyze the events, and the

results are reported to system administrators by the event business intelligence system

through which system administrators is able to adjust or add new configuration to the

system monitoring. The console analyzes the events and decides whether to report

problems with a service ticket in the Incident, Problem, Change (IPC) system.

At the third stage, the reported tickets are stored in the ticket database of IPC

system. The information accumulated in the newly created ticket, which only de-

scribes the symptoms of the corresponding problem, is used for problem diagnosis,

determination and resolution by system administrators. A newly created ticket with

only ticket description is illustrated in Figure 1.2.

At the forth stage, the resolution recommendation engine proposes several reso-

lutions from historical tickets to system administrators. The system administrators

apply those resolutions to the problematic servers. If problems still persist, the ticket

then is assigned and passed to system administrators for manual diagnosis and reso-

lution.

SEVERITY FIRST-OCCURRENCE LAST-OCCURRENCE
0 2014-03-29 05:50:39 2014-03-31 05:36:01

SUMMARY ANR2579E Schedule INC0630 in domain VLAN1400 for
node LAC2APP2204XWP failed (return code 12)

RESOLUTION Backups are working fine for the server.
CAUSE ACTIONABLE LAST-UPDATE
Maintenance Actionable 2014-04-29 23:19:25

Table 1.1: A sample ticket.

At the fifth stage, as a new ticket arrives, the system administrators inspect the

ticket description, and infer the possible categories of the underlying IT problem based

on their domain knowledge. The problem category inference further directs the ticket

being assigned to proper processing teams for problem resolution, where different

processing teams typically specialize in diverse IT problem categories. In general, the

4

system administrators’ role is limited to help triage tickets to the processing teams

for problem resolving, while the processing teams are responsible to perform complex

root cause analysis with respect to the related system performance statistics, event

and ticket data. Finally, the service returns to be normal after problem resolving.

The intensive human labor involving in this stage dictates the efficiency of the forth

stage, which requires intelligent understanding on ticket data whose most important

and informative attributes are in textual form, i.e., ticket summary and resolution.

A complete sample ticket is illustrated in Table 1.1.

In summary, intelligent understanding of these text resources is critical for a high

quality service delivery. In disaster management, a domain expert may be interested

in how a hurricane evolves over different geo-spatial regions and how the topic changes

over time. How can the computer understand those text and extract the gist from

the large amount of corpus? In IT service management, once a large amount of

historical resolving tickets are accumulated and collected in which potential relevant

resolutions might exist for an incoming unresolved ticket, many IT service providers

rely on automatically retrieving relevant resolutions from historical tickets to alleviate

human efforts involved in IT service management. However, how can the computer

understand those text and retrieve the relevant resolutions might be a challenging

task.

1.2 Motivation and Problem Statement

Many data mining techniques can be utilized to achieve the goal of various intelligent

textual understanding tasks. However, it is not a trivial task for computers, sometimes

not even for humans to understand them. Some textual understanding challenges in

the disaster management and the IT service management domains are identified and

listed as below.

5

• Natural disasters such as hurricanes, earthquakes and tsunamis cause ines-

timable physical destruction, loss of life and property around the world every

year. For example, Hurricane Sandy affected the east coast of U.S. in 2012 and

posed immense threats to businesses, human lives, and properties. In order to

minimize the consequent loss of a catastrophe like hurricanes, it is critical to

instantly realize situation updates on the disaster from a large number of easily

accessible disaster-related documents. The domain experts expect to obtain

condensed information about the detailed disaster event description, e.g., the

evolutionary tendency of the disaster with respect to different locations. How-

ever, it is often a non-trivial task to generate a big picture of the disaster events

due to the flood of web documents.

• Todays competitive business climate, and the complexity of service environ-

ments, dictate efficient and cost-effective service delivery and support. This is

largely achieved through service-providing facilities to collaborate with system

management tools, combined with automation of routine maintenance proce-

dures including problem detection, determination and resolution for the ser-

vice infrastructure [MSGL09, TLP+12, ABD+07, WE11, YPZ10]. Most service

providers keep track of a large amount of historical tickets with resolutions.

The resolution is usually stored as a plain text which describes how this tick-

eted incident has been resolved. We analyzed historical tickets collected from

several accounts (an aggregate of services using a common infrastructure) man-

aged by IBM Global Services. One observation is that many tickets share the

same resolutions. We noticed that there are many repeating resolutions for

tickets within an account. It is natural to expect that if ticket summary are

similar, then their respective tickets probably have the same resolution. There-

fore, we can recommend a resolution for an incoming ticket based on the ticket

6

summary information and historical tickets. However, it is a challenging task

to match semantically similar ticket with short and noisy textual information

automatically generated from IT servers.

• Massive heterogeneous applications as well as various monitoring software are

running on clients’ servers to accomplish required tasks and to monitor system

health via different metrics. It leads to dynamic change in tickets’ represen-

tation that they have different symptom descriptions but similar resolutions.

The time-varying representation cause performance degradation in ticket reso-

lution recommendation. Therefore, mining those temporal correlated features

is critical for adapting the resolution recommendation system in the complex

IT environment and thus improving the service quality.

• The scale and complexity of these system probably causes a large number of

unexpected behaviors during failures, system perturbations and even normal

operations which leads huge amounts of tickets. However, previous approaches

for ticket resolution recommendation are hard to scale and limited to learn

semantical meanings from historical tickets data, such as the distributed rep-

resentation for tickets. A sample of real-world tickets (see Table 1.1 for the

contents of tickets that are not easily interpretable) illustrate the unique ticket

characteristics that are less intuitive and lead to challenges in many basic ticket

analysis tasks. Therefore, it is an essential task in IT service management to ac-

curately represent the ticket summary and resolution. The classical techniques

such as the n-gram, TF-IDF, and LDA are not effective in representing tickets

as the ticket summary and resolution are generally not well formatted.

Driven by the challenges above, efficient data mining techniques for intelligent

understanding on textual data are pressingly demanded. In recent years, data min-

ing techniques have acquired great success to address issues in textual understand-

7

ing tasks, such as text summarization [Man01, RHM02, ER04, SGH12], distributed

representation learning for text [DDF+90, BTWDR13], question answering [CKC05,

Sas05, RCD11] and so on. These techniques are employed for efficiently extract-

ing gist from a myriad of documents and building semantical relationship among

words, phrases, sentences and even documents. Our work focuses on designing and

implementing solutions based on textual data to alleviate human efforts and facili-

tate problem determination, diagnosis and resolution in disaster management and IT

service management.

From the perspective of data mining, four research directions are identified and

considered to better understand text and thus benefit solving our real world problems.

1. Intelligently generate a storyline summarizing the evolution of a

hurricane from relevant online corpus. In order to minimize the con-

sequent loss from a catastrophe like hurricanes, it is critical to instantly real-

ize situation updates on the disaster from a large number of easily accessible

disaster-related documents. The domain experts expect to obtain condensed

information about the detailed disaster event description. This task is often

recognized as a text summarization problem. To tackle this problem, var-

ious type of document understanding system have been developed over the

last decade.These systems include (1) summarization-based systems [LLL12a,

RJST04, SBC03, SL10, WLLH08] that choose from multiple documents a sub-

set of sentences conveying the principle idea; (2) topic detection and tracking

systems [All12] aiming to group documents into different clusters as events and

monitor future events related to the corresponding topic; and (3) timeline gener-

ation systems [SGH12, WLO12] that create summaries to present the evolution

of an event by leveraging temporal information attached to or extracted from

the documents. These systems are able to alleviate the so-called problem to

8

some extent; however, they suffer from several limitations that may affect the

quality of the summarized results. First, most of them focus on summarizing

an event via topic evolution over the time, but ignore the spatial information

which is important especially for large-scale disaster events. Second, these sys-

tems usually generate a single layer summarization or storyline to reflect topic

changes over the entire event. However, due to the spatial factor, the informa-

tion evolution over a disaster event is intrinsically hierarchical. In most cases,

domain experts are often interested in not only the general picture of a disaster,

but also how it affects a particular region. Our work fits into the third category,

i.e., timeline generation systems. Specifically, in our framework, a disaster event

is initially summarized from a large set of documents (e.g., news and reports)

with a big picture showing how the disaster affects different regions. It can

then be zoomed into a specific location for more detailed location-specific event

summarization.

2. Automatically recommending resolutions according to the symptom

description in a ticket. The symptom description of an IT problem is

typically accumulated as a short text message, which is a machine generated

text with a very problem-specific vocabulary. In traditional IT maintenance

procedure, the system administrators utilize their domain knowledge to diag-

nosis the problem and propose approaches to restore the service according to

the symptom description in a ticket. However, this diagnosis and resolving

process is extremely labor extensive. Fortunately most service providers keep

years’ worth of historical tickets with their resolutions. The resolution is usu-

ally collected as a free-form text and describes steps taken to remediate the

issue described in the ticket. Repeating events generate similar tickets, which

in turn have a vast number of repeated problem resolutions likely to be found

9

in earlier tickets. Therefore, developing a recommendation system to recom-

mend relevant resolutions in historical tickets becomes a appropriate approach

towards an automated delivery of a service in ticket resolving, and thus reduce

cost and maintain quality. A substantial amount of research has been devoted

to recommendation systems. These recommendation systems determine items

or products to be recommended based on prior behavior of the user or similar

users and on the item itself. An increasing amount of user interactions have pro-

vided these applications with a vast amount of historical information that can

be converted into practical knowledge. A similar approach and methodology

can be developed that finds a resolution for an ticket by making use of similar-

ities between the symptom description and previous symptom descriptions of

monitoring tickets. However, measuring the similarities between the symptom

descriptions is a very challenging task considering the symptom descriptions are

very short, noisy and written in a very domain-specific vocabulary.

3. Gradually adapting the resolution recommendation system for time

correlated features derived from text. Massive heterogeneous applica-

tions as well as various monitoring software are running on clients’ servers to

accomplish required tasks and to monitor system health via different metrics.

It leads to generation of tickets that have different symptom descriptions but

similar resolutions. Furthermore, change of server’s environments can also in-

duce similar situations in which ticket descriptions differ but could have similar

resolutions. This phenomenon causes performance degradation in ticket reso-

lution recommendation. The root cause of performance degradation is the fact

that features derived from textual description are evolving gradually due to the

heterogeneous environment aforementioned. Training and applying a model in

data with varying feature space is considered as a domain adaptation task.

10

4. Efficiently learning distributed representation for text using scal-

able deep neural ranking model. Previous approaches for ticket resolution

recommendation are hard to scale and limited to learn semantical meanings

from historical tickets data, such as the distributed representation for tickets.

However, it is an essential task in IT service management to accurately repre-

sent the ticket summary and resolution. The classical techniques such as the

n-gram, TF-IDF, and LDA are not effective in representing tickets as the ticket

summary and resolution are generally not well formatted. In this work, we

formulate the ticket resolution recommendation as a learning to rank task in

which, given a ticket summary, the model ranks historical resolutions according

to their estimated matching scores. Specifically, we propose a deep neural net-

work ranking model capable of outputting effective distributed representation

for ticket summary and resolution as an intermediate result. These representa-

tions can be used in other ticket analysis tasks, such as ticket classification and

clustering. Furthermore, earlier studies generally assumed that the tickets with

similar descriptions should have similar resolutions, and often treated all such

ticket resolutions equally. However, the study [ZTZ+16] demonstrated that not

all of the resolutions are equally worthy recommending.

1.3 Contribution

My dissertation will address the research topics outlined above. Concretely, I will

focus on designing and developing data mining solutions to better understand text in

different domains, including (1) a storyline generation method for natural hurricanes

based on crawled online corpus which summarizing the evolution of the hurricane with

temporal and spatial information; (2) a recommendation framework for automated

ticket resolution in IT service management; (3) an adaptive recommendation system

11

on time-varying temporal correlated features derived from text; (4) a deep neural

ranking model not only successfully recommending resolutions but also efficiently

outputting distributed representation for ticket descriptions and resolutions.

1.3.1 Intelligent storyline generation

Hurricane Sandy affected the east coast of U.S. in 2012 and posed immense threats

to businesses, human lives and properties. In order to minimize the consequent loss

of a catastrophe like this, a critical task in disaster management is to understand

situation updates about the disaster from a large number of disaster-related docu-

ments, and obtain a big picture of the disasters trends and how it affects different

areas. Intelligent storyline generation about the evolution of natural disaster acts as

a highly efficient approach to improve situation awareness in disaster management.

The contribution of our work is summarized as below.

1. We present a novel two-layer summarization framework to summarize multiple

disaster-related documents. The first layer provides an overall summary of

the disaster events, while the second layer gives condensed information on how

specific locations/regions were affected by the disaster.

2. We consider both temporal and spatial factors when generating summaries for

the disaster events, and these two factors enable us to reason on the evolution

of events over time and locations. The generated summaries can be naturally

represented as a storyline.

3. We conduct quantitative experiments and case studies on crawled web docu-

ments related to three major hurricane disasters, and the results demonstrate

the efficacy of our proposed framework in generating readable and understand-

able summaries.

12

1.3.2 Automatic ticket resolution

Maximal automation of routine IT maintenance procedures is an ultimate goal of

IT service management. System monitoring, an effective and reliable means for IT

problem detection, generates monitoring ticket. In light of the ticket description,

system administrators determine the root cause of the IT problem and resolve the

problem with solutions recorded in ticket as unstructured text. Automatic IT problem

resolution acts as a critical part during the routine IT maintenance procedures. The

contribution of our work is summarized as below.

1. We analyze historical monitoring tickets from three production accounts and

observe that their resolutions are recommendable for current monitoring tickets

on the basis of event information.

2. We propose a feature extraction approach capable of representing both the

event and resolution information using topic-level features obtained via the

LDA model.

3. We propose to further improve the similarity measurement using metric learning

when resolution categories are available.

4. We conducted extensive experiments for our proposed algorithms on real ticket

datasets, and experimental results demonstrate the effectiveness and efficiency

of the proposed approaches.

1.3.3 Adaptive recommendation system on time varying fea-

tures

In current service environments, massive heterogeneous applications, as well as vari-

ous monitoring software, running on customers servers to accomplish complex tasks

13

and to monitor system health via different metrics, lead to generation of correlated

tickets that have different symptom descriptions but similar resolutions. Furthermore,

evolving over time, service environments cause a further discrepancy. The description

of tickets generated before and after change differ but might have similar resolutions

since root causes remain unchanged. This heterogeneous IT environment require an

adaptive recommendation system since the features derived from symptom descrip-

tion are changing. Our research is based on the domain adaption methodology and

the contribution of this work is summarized as below.

1. Based on our observation and initial experiments, we find out that features

derived from ticket symptom descriptions are changing and shifting over time

but interesting mappings exist in those features.

2. We adopts structural corresponding learning (SCL) to discover the features’

mapping and apply it to our ticket resolution recommendation system.

3. Extensive empirical studies on real application ticket data are conducted to

demonstrate the effectiveness and the efficiency of the proposed method.

1.3.4 Learn distributed representation via deep neural rank-

ing model

It is an essential task in IT service management to accurately represent the ticket

summary and resolution which can be used in many ticket analysis tasks such as

ticket classification and clustering. The classical techniques such as the n-gram, TF-

IDF, and LDA are not effective in representing tickets as the ticket summary and

resolution are generally not well formatted. Learning distributed representation for

textual data have been explored in many studies [DDF+90, BTWDR13, CW08]. My

14

research is based on the combination of deep neural ranking model and sentence

model, and the related contributions are listed as below.

1. Carefully identify relevant features and then build a regression model to quan-

tify ticket resolution quality to develop an effective resolution recommendation

model, such low-quality resolutions should be ranked lower than high-quality

resolutions.

2. Formulate the ticket resolution problem as an integrated deep neural network-

based ranking framework and efficient handling those challenges.

3. Generalize the ticket representation and successfully apply to other ticket anal-

ysis tasks, such as, ticket classification and clustering.

4. Extensively evaluate on the proposed model against a large real-world dataset.

The experimental results show its supremacy to other traditional representa-

tions for textual data.

1.4 Summary and Roadmap

More than ever, information delivery online and storage heavily rely on text. Bil-

lions of texts are produced every day in the form of documents, news, logs, search

queries, ad keywords, tags, tweets, messenger conversations, social network posts,

etc. Text understanding is a fundamental and essential task involving broad research

topics, and contributes to many applications in the areas text summarization, search

engine, recommendation systems, online advertising, conversational bot and so on.

However understanding text for computers is never a trivial task, especially for noisy

and ambiguous text such as logs, search queries. In my proposal, I present several

data mining techniques on understanding textual data to facilitate the knowledge

absorption in disaster management and ticket resolving in IT service management.

15

Herein, the organization of my proposal is outlined to facilitate the reading and

understanding the research problems presented in this proposal. First, we briefly

presents the preliminaries and related work of the aforementioned research directions

in Chapter 2. To be continue, we study the problems related to these research di-

rections in Chapter 3, Chapter 4, Chapter 5, Chapter 6, respectively. Particularly,

in Chapter 3, the storyline generation task is studied, where both the temporal and

spatial information are considered. In Chapter 4, we focus on the automated ticket

resolution task based on historical ticket data, and particular issues are studied on

how to measure the relevance in symptom descriptions in the form of text. In Chap-

ter 5, we study the problem about how to adapt the ticket resolution recommendation

system on the time-varying temporal correlated features due to the heterogeneous IT

service environment. The correlation between features guides the recommendation

system to be adaptive. In Chapter 6, we study the ticket resolution recommendation

in the perspective of learning to rank using deep neural network. Moreover, efficient

representation for tickets can be learned by incorporating sentence model into the

ranking model. Finally, in Chapter 7, we conclude the work of this dissertation and

discuss the future work along our research.

16

CHAPTER 2

PRELIMINARIES AND RELATED WORK

This dissertation studies the concrete problems along the aforementioned research

directions in applying data mining techniques to understand textual data, specifically

online news documents in disaster management and tickets in IT service management,

and the corresponding solutions are exhaustively discussed as well. In this chapter, we

highlight existing literature studies that are related to our work in this dissertation.

In particular, Section 2.1 reviews the existing work related to storyline generation as

well as relevant techniques such as text summarization, topic detection and tracking,

and existing disaster management tools. Section 2.2 introduces the priori studies

related to IT system monitoring and recommendation system. Section 2.3 presents

existing literature of transfer learning and its subclass research area domain adapta-

tion what our proposed approach is categorized as. In Section 2.4, we first highlight

studies on learning to rank model and surveys relevant work on learning distributed

representation and question answer task.

2.1 Related Work of Storyline Generation

The storyline generation problem aims to obtain a sequence of summaries that de-

scribe how an event evolves over time from a myriad of web documents. Therefore, the

storyline generation problem is typically categorized as a text summarization task.

In this section, we highlight some previous research results that are most relevant

to this work in the following three directions: multi-document summarization, topic

detection and tracking, and storyline generation. We will also discuss several useful

disaster situation-specific tools.

17

2.1.1 Multi-document Summarization

Multi-document summarization is a mechanism which addresses the information over-

load problem by compressing a given collection of documents into a concise sum-

mary. In general, it can be categorized into extractive and abstractive summariza-

tion [Man01]. Extractive summarization [RHM02] selects important sentences from

the original documents to form a summary, while abstractive summarization [RHM02]

paraphrases the corpus using new sentences. The latter usually employs natural lan-

guage generation techniques such as information fusion, sentence compression and

reformulation. Our work is more related to extractive summarization. Various

multi-document summarization methods have been proposed over the last decade, in-

cluding centroid-based [RJB00], graph-based [ER04, SL10], knowledge-based [LL14,

LWSL10], and etc. Other methods, such as non-negative matrix factorization, la-

tent semantic analysis, and sentence-based topic models, have also been applied to

generate the summaries by selecting semantically important sentences in the docu-

ments [WLZD08, SLD11]. Most existing extractive summarization methods generate

short summaries by selecting sentence from the input; however, they often ignore

the implicit temporal, spatial and structural information possibly presented in the

documents.

2.1.2 Topic Detection and Tracking

Topic detection and tracking (TDT) is a research program initiated by DARPA (De-

fense Advanced Research Projects Agency) for finding and following the new events

in streams that broadcast news stories. It consists of three major technical tasks:

tracking known events, detecting unknown events, and segmenting a news source into

stories. Many promising approaches have been proposed and identified during the

TDT evaluation, in particular within the information retrieval and natural language

18

processing communities [All12, LAD+02, MAMS04]. However, previous research ef-

forts only focused on detecting the flat structure of events, and fail to consider the

hidden hierarchies of topics.

2.1.3 Storyline Generation

Storyline generation aims to obtain a sequence of summaries that describe how an

event evolves over time, and has attracted great attention recently. For example,

Google News Timeline clusters incoming articles into groups based on topics and

lists the generated groups in chronological order. Alonso et al. [ABYG09] proposed a

framework for generating temporal snippets to improve user search experience. These

methods consider the temporal information as references and represent the results in

chronological order. Recently, Wang et al. [WLO12] proposed a framework that inte-

grates text, image, and temporal information to generate storyline-based summaries

to reflect the evolution of the given topic. Lin et al. [LLL+12b] presents a framework

for generating storylines from microblogs for user input queries. Shahaf et al. [SGH12]

proposed a methodology called metro map for creating structural summaries of doc-

uments by optimizing several objectives (e.g., relevance, coherence, coverage and

connectivity) simultaneously. Jiang et al. [JPL11] proposed an temporal event sum-

marization solution to summarize the temporal dynamics of the event sequences using

the inter-arrival information. Unlike these existing systems, our framework takes into

account the spatial information and generates storyline-based summaries to reflect

the evolution of a given topic over different geo-spatial regions.

19

2.1.4 Disaster Situation-specific Tools

Disaster Situation-specific Tools: Commercial systems such as Web EOC and E-

Team are usually used by Emergency Management departments located in urban

areas [Inc12, NC412]. Recently Ushahidi provides a platform to crowd source news

stories and crisis information using multiple channels and prepares visualization and

interactive maps [ush12] and GeoVISTA monitors tweets to form situation alerts

on a map-based user interface according to the geo-locations associated with the

tweets [Geo10]. These situation-specific tools provide query interfaces, GIS and visu-

alization capabilities to support user interaction and query [ZST+13]. However, they

do not generate textual storylines to improve the situation awareness.

2.2 Related Work of Ticket Resolution Recommendation

In IT service management, the ticket resolution is usually collected as a free-form text

and describes steps taken to remediate the issue described in the ticket. We analyzed

historical incident tickets collected from one of the large service providers and noticed

that there are many repeating resolutions for tickets within an account. It is natural

to expect that if ticket summary are similar, then their respective tickets probably

have the same resolution. Therefore, we can recommend a resolution for an incoming

ticket based on the ticket summary information and historical tickets.

This section reviews prior research studies related to the automated IT service

management and the recommendation system. System monitoring, as part of the

automated Service management, has become a significant research area of the IT

industry in the past few years.

20

2.2.1 IT monitoring system

Numerous studies [KRRS08, ADNR07, MJ93, XZB05, ESV03, RLS+98] focus on

monitoring that is critical for a distributed network. There are also many commercial

products, such as IBM Tivoli [urlb], HP OpenView [urla] and Splunk [urle] that

focuses on system monitoring. The monitoring targets include the components or

subsystems of IT infrastructures, such as the hardware of the system (CPU, hard disk)

or the software (a database engine, a web server). Once certain system alarms are

captured, the system monitoring software will generate the monitoring tickets into the

ticketing system. Automated ticket resolution is much harder than automated system

monitoring because it requires vast domain knowledge about the target infrastructure.

Some prior studies apply approaches in text mining to explore the related ticket

resolutions from the ticketing database [SCT+08, WLZG11]. Other works propose

methods for refining the work order of resolving tickets [SCT+08, MMY+10, ZLSG14a]

and discovering the dependency of tickets [TLS12].

A number of studies focused on the analysis of historical events with the goal of

improving an understanding of system behaviors. A significant amount of work was

done on analysis of system log files and monitoring events. See example, [HMP02,

PTG+03, GSSM04]. Another area of interest is the identification of actionable pat-

terns of events and misses, or false negatives, by the monitoring system. False nega-

tives are indications of a problem in the monitoring software configuration, wherein

a faulty state of the system does not cause monitoring alerts.

Labor cost is one of the largest costs of IT service providers. Large service

providers staff their service centers with hundreds of IT experts who are respon-

sible for resolving various incident tickets every day. Therefore, service providers

heavily rely on human efficiency for tasks such as root cause analysis and incident

ticket resolution. Automatic techniques of recommending relevant historical tickets

21

with resolutions can significantly improve the efficiency of technical support in this

task. Based on the relevant tickets, a person can correlate related system problems

that happened earlier and perform a deeper system diagnosis. Solutions described in

relevant historical tickets also provide best practices for solving similar issues.

2.2.2 Recommendation System

With the development of e-commerce, a substantial amount of research has been

devoted to the recommendation system. Lots of recommendation algorithms are pro-

posed for promoting products to online users [BK07, DL05, Kor10, Kar01, LMX11].

Recommendation algorithms can be categorized as item-based [Kar01, NK11, SKKR00]

and user-based algorithms [BK07, DL05, Kor10, Kar01, TH01]. The difference with

our work is that, in e-commerce, products are maintained by reliable sellers. The

recommendation algorithms usually do not need to consider the problem of fake or

low quality products. But in service management, false tickets are unavoidable. The

traditional recommendation algorithms do not take into account the types of tickets

and as a result would recommend misleading resolutions.

2.3 Related Work of Domain Adaptation

Massive heterogeneous applications as well as various monitoring software are run-

ning on clients servers to accomplish required tasks and to monitor system health

in different metrics. It leads to generation of correlated tickets that have different

symptom descriptions but similar resolutions. Furthermore, change of servers envi-

ronments can also bring similar situation in which tickets description differ but might

have similar resolutions. These correlated tickets cause performance degradation in

ticket resolution recommendation.

22

The degradation can be alleviated by applying domain adaptation techniques

to ensure that the recommendation system can efficiently work in a dynamic en-

vironment. In this section, we highlight the existing literature studies on domain

adaptation and its superclass transfer learning.

2.3.1 Transfer Learning

Traditional data mining and machine learning algorithms make predictions on the

future data using statistical models that are trained on previously collected labeled

or unlabeled training data [YHYY06, KR07]. Semisupervised classification [Zhu05,

NMTM00, BM98] addresses the problem that the labeled data may be too few to

build a good classifier, by making use of a large amount of unlabeled data and a

small amount of labeled data. Variations of supervised and semisupervised learning

for imperfect data sets have been studied; for example, work [ZW06] have studied

how to deal with the noisy class label problems. Nevertheless, most of them assume

that the distributions of the labeled and unlabeled data are the same. Transfer

learning [PY10], in contrast, allows the domains, tasks, and distributions used in

training and testing to be different. In the real world, we observe many examples

of transfer learning. For example, we may find that learning to recognize apples

might help to recognize pears. Similarly, learning to play the electronic organ may

help facilitate learning the piano. The study of Transfer learning is motivated by the

fact that people can intelligently apply knowledge learned previously to solve new

problems faster or with better solutions.

In transfer learning, we have the following three transfer learning settings: 1)

inductive transfer learning, 2) transductive transfer learning, 3) unsupervised transfer

learning. In the inductive transfer learning setting, the target task is different from

the source task, no matter when the source and target domains are the same or

23

not. In this case, some labeled data in the target domain are required to induce an

objective predictive model fT (·) for use in the target domain. Research areas Multi-

task learning [DYXY07, BH03] and self-taught learning [RBL+07, DYXY08] fit into

this category. In the transductive transfer learning setting, the source and target tasks

are the same, while the source and target domains are different. In this situation, no

labeled data in the target domain are available while a lot of labeled data in the source

domain are available. It includes research areas such as domian adaptation, sample

selection bias, co-variate shift [DIM06, Zad04, Shi00]. Finally, in the unsupervised

transfer learning setting, similar to inductive transfer learning setting, the target task

is different from but related to the source task. However, the unsupervised transfer

learning focus on solving unsupervised learning tasks in the target domain, such as

clustering, dimensionality reduction, and density estimation [WSZ08, DYXY08].

2.3.2 Domain Adaptation

Domain adaptation is well studied area. Roark and Bacchiani [RB03] use a Dirichlet

prior on the multinomial parameters of a generative parsing model to combine a large

amount of training data from a source corpus and a small amount of training data from

a target corpus. Several authors have also given techniques for adapting classification

to new domains. Chelba et al. [CA06] first train a classifier on the source data

and then apply the maximum a posteriori estimation of the weights of a maximum

entropy on a target domain classifier in which the Gaussian prior has a mean equal

to the weights of the source domain classifier. Daumé III and Marcu [DIM06] use

an empirical Bayes model to estimate a latent variable model grouping instances

into domain-specific or common across both domains. Our work focuses on applying

structural corresponding learning (SCL) to find a common representation for features

from different tickets to favor ticket resolution recommendation.

24

Finally we note that SCL is first introduced in the work of Ando et al. [AZ05], and

later Blitzer combines SCL with labeled target domain data, they compared the two

using the label of SCL or non-SCL source classifiers as features. Several applications

of SCL have been studied in papers [BMP06, BDP+07]. Unlike these applications,

we apply SCL to our ticket resolution recommendation task and pick up the pivot

features from both source and target labeled tickets. We show that we can make

better use of SCL to discover a useful feature mapping in our real-work ticket data

and improve performance of our ticket resolution recommendation task.

2.4 Related Work of Deep Neural Ranking Model

In our previous work, we formulate the automated ticket resolution task as a recom-

mendation problem. However, with potential scalability and efficacy of deep neural

ranking model, it is natural to model it as a learning to rank task utilizing deep

neural network. Furthermore, it is an essential task in IT service management to

accurately represent the ticket summary and resolution which can be used in many

ticket analysis tasks such as ticket classification and clustering. The classical tech-

niques such as the n-gram, TF-IDF, and LDA are not effective in representing tick-

ets as the ticket summary and resolution are generally not well formatted. Learn-

ing distributed representation for textual data have been explored in many stud-

ies [DDF+90, BTWDR13, CW08]. This section mainly studies the learning to rank

model and learning distributed representation for sentences.

2.4.1 Learning to Rank

Our learning to rank method is based on a deep learning model for advanced text

representations using distributional word embeddings. Distributional representations

25

have a long tradition in IR, e.g., Latent Semantic Analysis [DDF+90], which more

recently has also been characterized by studies on distributional models based on

word similarities. Their main properties is to alleviate the problem of data sparse-

ness. In particular, such representations can be derived with several methods, e.g.,

by counting the frequencies of co-occurring words around a given token in large cor-

pora. Such distributed representations can be obtained by applying neural language

models that learn word embeddings [BTWDR13] and more recently using recursive

autoencoders [VLL+10], and convolutional neural networks [CW08].

Our work more directly targets the task of answer sentence selection, i.e., the

task of selecting a sentence that contains the information required to answer a given

question from a set of candidates (for example, provided by a search engine). In par-

ticular, the state of the art in answer sentence selection is given by work [WSM07],

that use quasi-synchronous grammar to model relations between a question and

a candidate answer with the syntactic transformations. The model of Yao et al.,

2013 [YVDCBC13] applies linear chain CRFs with features derived from TED to au-

tomatically learn associations between questions and candidate answers. Severyn and

Moschitti [SM13] applied SVM with tree kernels to shallow syntactic representation,

which provide automatic feature engineering. Yih et al. [YCMP13] use distributional

models based on lexical semantics to match semantic relations of aligned words in

QA pairs.

The work closest to ours is [YHBP14], where they apply deep learning to learn to

match question and answer sentences. However, their sentence model to map ques-

tions and answers to vectors operates only on unigrams or bigrams. Our sentence

model is based on a convolutional neural network with the state-of-the-art archi-

tecture, we use a relatively large width of the convolution filter, thus allowing the

network to capture longer range dependencies. Moreover, the architecture of deep

26

learning model along with the question-answer similarity score also encodes question

and answer vector representations in the model. Hence, our model constructs and

learns a richer representation of the question-answer pairs, which results in superior

results on the answer sentence selection dataset.

Language models were applied to definitional QA in [CKC05, Sas05, SSM02]. Re-

garding solve QA task in the perspective of language translation, Ritter et al. [RCD11]

have investigated the feasibility of conducting short text conversation by using statis-

tical machine translation (SMT) techniques, as well as millions of naturally occurring

conversation data in Twitter. In the approach, a response is generated from a model,

not retrieved from a repository, and thus it cannot be guaranteed to be a legitimate

natural language text.

2.4.2 Summary

This chapter highlights the existing works in the literature, which are highly related

to the four research directions of my dissertation, i.e., storyline generation, resolution

recommendation, domain adaptation and learning distributed representation from a

learning to rank model. For each research direction, both the related approaches and

evaluation metrics are exhaustively surveyed.

27

CHAPTER 3

GENERATING TEXTUAL STORYLINE FOR DISASTER

Hurricane Sandy affected the east coast of U.S. in 2012 and posed immense threats

to businesses, human lives and properties. In order to minimize the consequent loss

of a catastrophe like this, a critical task in disaster management is to understand sit-

uation updates about the disaster from a large number of disaster-related documents,

and obtain a big picture of the disaster’s trends and how it affects different areas.

In this chapter, we present a novel two-layer storyline generation framework which

generates an overall or a global storyline of the disaster events in the first layer, and

provides condensed information about specific regions affected by the disaster (i.e., a

location-specific storyline) in the second layer. To generate the overall storyline of a

disaster, we consider both temporal and spatial factors, which are encoded using in-

teger linear programming. While for location-specific storylines, we employ a Steiner

tree based method. Compared with the previous work of storyline generation, which

generates flat storylines without considering spatial information, our framework is

more suitable for large-scale disaster events. We further demonstrate the efficacy

of our proposed framework through the evaluation on the datasets of three major

hurricane disasters.

3.1 Introduction

Natural disasters such as hurricanes, earthquakes and tsunamis cause inestimable

physical destruction, loss of life and property around the world every year. For ex-

ample, Hurricane Sandy affected the east coast of U.S. in 2012 and posed immense

threats to businesses, human lives, and properties. In order to minimize the con-

sequent loss of the disasters, a critical task in disaster management is to efficiently

analyze and understand the disaster-related situation updates. This requires effective

28

information gathering methods to operate on a myriad of web documents, e.g., news

and reports that are related to the disasters. The domain experts expect to obtain

condensed information about the detailed disaster event description, e.g., the evolu-

tionary tendency of the disaster with respect to different locations [LL14]. However,

it is often a non-trivial task to generate a big picture of the disaster events due to the

flood of web documents.

To tackle this problem, various types of document understanding systems have

been developed over the last decade. These systems include (1) summarization-based

systems [LLL12a, RJST04, SBC03, SL10, WLLH08] that choose from multiple doc-

uments a subset of sentences conveying the principle idea; (2) topic detection and

tracking systems [All12] aiming to group documents into different clusters as events

and monitor future events related to the corresponding topic; and (3) timeline gen-

eration systems [SGH12, WLO12] that create summaries to present the evolution

of an event by leveraging temporal information attached to or extracted from the

documents. These systems are able to alleviate the so-called information overload

problem to some extent; however, they suffer from several limitations that may affect

the quality of the summarized results. First, most of them focus on summarizing

an event via topic evolution over the time, but ignore the spatial information which

is important especially for large-scale disaster events. For instance, for a hurricane

which affects several states of U.S., a domain expert may be interested in how these

regions are affected, and how the hurricane evolves over different geo-spatial regions.

Second, these systems usually generate a single layer summarization or storyline to

reflect topic changes over the entire event. However, due to the spatial factor, the

information evolution over a disaster event is intrinsically hierarchical. In most cases,

domain experts are often interested in not only the general picture of a disaster, but

also how it affects a particular region.

29

3.2 Research Objective

In this chapter, we propose a storyline generation framework that addresses the afore-

mentioned limitations by generating a two-layer storyline that consists of global story-

lines for cross-location disaster events on the first layer and location-specific storylines

for individual events on the second layer. Specifically, in our framework, a disaster

event is initially summarized from a large set of documents (e.g., news and reports)

with a big picture showing how the disaster affects different regions. It can then be

zoomed into a specific location for more detailed location-specific event summariza-

tion. In the cross-location layer, integer linear programming is employed to summarize

the event via a list of representative locations, each of which is associated with a short

description. On the location-specific layer, a Steiner-tree based approach is applied

to generate a storyline for each specific location.

In summary, the contributions of this work are three-fold:

• We present a novel two-layer summarization framework to summarize multiple

disaster-related documents. The first layer provides an overall summary of

the disaster events, while the second layer gives condensed information on how

specific locations/regions were affected by the disaster.

• We consider both temporal and spatial factors when generating summaries for

the disaster events, and these two factors enable us to reason on the evolution

of events over time and locations. The generated summaries can be naturally

represented as a storyline.

• We conduct quantitative experiments and case studies on crawled web docu-

ments related to three major hurricane disasters, and the results demonstrate

the efficacy of our proposed framework in generating readable and understand-

able summaries.

30

The rest of the chapter is organized as follows. We first define our problem in

Section 3.3. In Section 3.4, an overview of our proposed framework is introduced.

Detailed descriptions of how to generate a global storyline and a local storyline are

presented in Section 3.5 and Section 3.6, respectively. We evaluate our system in

Section 3.7 and finally conclude this chapter and discuss potential extensions of the

proposed framework in Section 3.8.

3.3 Problem Definition

To summarize what is happening in the vicinity of a given disaster, we present a

storyline of the disaster in the form of a two-layer graph of events.

Definition 3.3.1 An event is represented by a tuple (t, l, s) where t is the time that

the event occurs, l is the location and s is the textual description about the event. For

example, (08/27/2011, New York City, “The five main New York City-area airports

will be closed to arriving flights”) represents an event in Hurricane Sandy.

The problem of generating a storyline can be defined as follows:

Input: A collection of documents related to a disaster.

Output: A two-layer storyline consists of the most representative events summa-

rizing the evolution of disaster-relevant topics. The first layer (or the upper layer)

is a chain of events (o1, . . . , on), as the global temporal and spatial evolution of a

disaster, therefore also referred as the global storyline. An event of the upper layer

oi can be further expanded in the second layer (or the lower layer) to a connected

tree of events as the temporal and topic evolution locally for a specific location of oi.

A global storyline, which is a chain of events, describes how the disaster moves

over time by the location attribute of the events and how the disaster affects different

areas by the description attributes. The chain structure is used under the assumption

31

that a disaster at any time should have only one geo-spatial center, which should move

continuously over time. Such an assumption is valid for most of the natural disasters

like hurricanes, storms, and blizzards, but not for the man-made disasters like cyber

attacks. In our future work, we will explore more complicated evolution structures

of different disaster types. For local storyline generation, we follow previous work of

storyline generation [WLO12] to use a tree structure as the storyline to capture more

topics in the topic evolution, allowing multiple topics to coexist at the same time.

3.4 System Framework

Figure 3.1 shows our system framework. Given a collection of documents related to

a disaster, we first extract text snippets as sentences with time and location phrases,

which are identified by Stanford NER [FGM05]. Time phrases are normalized by SU-

Time [CM12] to timestamps and location phrases are mapped to geocodes by Google

API Together with its timestamp and geocode, a snippet approximately describes an

event.

In our framework, the extracted text snippets are first organized as a similarity

graph, followed by two layers of processing, corresponding to the two layers of the

output. In the first layer, a minimum dominating set algorithm is employed on

the snippet graph to find several representative events, on top of which an integer

linear programming method is then proposed to find a chain of events reflecting the

overall spatial evolution of the disaster as the global storyline. We visualize the global

storyline on a map using Google map APIs.

If a user is interested in certain area and click it on the map, the map will be

zoomed-in the clicked area and display the local storyline of the area. To do this, a

sub-graph of the overall similarity graph is first induced and augmented to a multi-

view graph. The same minimum dominating set algorithm is first applied to the sub-

32

Figure 3.1: The high-level system overview.

graph for finding representative events, and then followed by a Steiner tree algorithm

to make the selected events temporally smooth and coherent.

3.5 Global Storyline Generation

3.5.1 Text Snippet Graph Construction

Although each text snippet can be considered as an event, many of those are re-

dundant. To remove the redundancy and obtain a set of representative events, we

33

construct a graph G = (V,E) with the given text snippets as the vertex set V , and

add an edge between each pair of snippets which are likely to refer to the same event.

Specifically, for two nodes vi, vj ∈ V , we first convert these two text snippets into two

feature vectors as n-gram bags-of-words, then compute the cosine similarity between

these two feature vectors. eij = (vi, vj) ∈ E if and only if both the similarity of vi and

vj is greater than a similarity threshold parameter α, and their distance calculated

by their geocode is less than a distance threshold parameter radius. Note that the

latter constraint takes the spatial smoothness of events into consideration.

3.5.2 Identifying Events via Dominating Set

We identify the set of representative events in the original snippets with minimum

redundancy by solving the minimum dominating set problem. A vertex u of a graph

dominates another vertex v of the graph, if u and v are joined by an edge in the

graph. A subset of S of the vertex set of an undirected graph is a dominating set

if for each vertex u, either u is in S or a vertex in S dominates u. The Minimum

Dominating Set (MDS) problem is to find a dominating set with minimum size. MDS

has been previously used to model multi-document summarization problem [SL10].

In our case, we use the MDS of text snippets to capture the representative events

from the text snippets of disaster event descriptions.

The MDS problem is known to be NP-hard but an efficient greedy algorithm by

Johnson [Joh74] is known to achieve an approximation ratio of H(d + 1), where d

is the maximum degree of the graph and H(n) =
∑n

i=1
1
i

is the harmonic function.

Johnson’s greedy algorithm was initially designed for the Set Cover problem, but

it is well-known that there is an L-reduction between MDS and Set Cover. The

greedy algorithm is described in Algorithm 1 and was also used in [SL10].

34

Algorithm 1 Greedy MDS Approximation Algorithm.

INPUT: Graph G = (V,E), MDS upper bound W
OUTPUT: dominating set S

1: S ← ∅
2: T ← ∅
3: while |S| < W and S 6= V (G) do
4: for v ∈ V (G)− S do
5: s(v)← |N(v) \ T |
6: end for
7: v∗ ← arg maxv s(v)
8: S ← S ∪ {v∗}
9: T ← T ∪N(v∗)
10: end while

3.5.3 Storyline Generation by Connecting Dominating Ob-

jects via Linear Programming (LP)

Using Algorithm 1, we generate the dominating set of G(V,E), m text snippets

d1, . . . , dm, as the representative events. Without loss of generality, the set of events

are assumed to be in chronological order. To generate a global storyline capturing the

major location change of the disaster, we select a sequence of nodes o1, o2, . . . , ol from

the representative events in chronological order. Intuitively, the generated storyline

should also be in spatial coherence, reflecting the continuous location change of the

disaster over time. Since a disaster is likely to affect adjacent areas in a similar

fashion, the storyline should be coherent in content as well.

Based on the above discussions, we model the storyline generation problem us-

ing integer linear programming. To select a chain of nodes from d1, . . . , dm, we use

variables node-activei ∈ {0, 1}, i = 1 . . .m to indicate whether di is included in the

selected chain, and next-nodeij ∈ {0, 1}, i, j = 1 . . .m to indicate that di and dj are

two successive nodes (i.e., a transition) in the chain. The objective function aims to

maximize the storyline’s content coherence which is defined as the minimal similarity

35

between two successive nodes along the storyline as shown below:

Coherence(o1, o2, . . . , on) = min
i=1,2,...,n−1

similarity(oi, oi+1).

We further impose the following set of constraints to model storyline’s spatial coher-

ence.

Chain Constraints: It should be guaranteed the consistency of variables node-activei

and next-nodeij, and that the selected nodes should compose a chain in chronological

order.

// A node has at most one in-edge and at most one

// out-edge

∀j :
∑
i

next-nodei,j ≤ node-activej, (3.1)

∀i :
∑
j

next-nodei,j ≤ node-activei. (3.2)

// The number of active transitions is equal to the

// number of active nodes minus one∑
i

node-activei −
∑
i,j

next-nodei,j = 1. (3.3)

// The chain is ordered chronologically:

∀i>j : next-nodei,j = 0. (3.4)

// A transition of two node can not be active if

// there exists an active node between them.

∀i<k<j : next-nodei,j ≤ 1− node-activek. (3.5)

Length Constraints: The selected chain should be in a reasonable length ranged

between pre-defined minimum length threshold Lmin and maximum length threshold

36

Lmax.

Lmin ≤
∑
i

node-activei ≤ Lmax. (3.6)

Location Smoothness Constraints: We require both pairwise and triple-wise

smoothness of location change on the selected chain. Let Di,j, i, j = 1, . . . ,m be

the distance based pairwise location relationship between di and dj, and Di,j = 1 if

distance between di and dj is less than a pre-defined distance parameter, Di,j = 0

otherwise. For triple-wise smoothness, letAi,j,k be the angle based triple-wise location

relationship, and Ai,j,k = 1 indicates the angle constructed by three successive nodes

di, dj and event k is not an acute one, otherwise Ai,j,k = 0. By not including in the

chain three successive nodes of which the angle is acute, we excludes the back-and-

forth events from the storyline and smooth the location change.

// Distance of two successive nodes should be

// within some range

∀i :
∑
j

(1−Di,j) · next-nodei,j ≤ 0. (3.7)

// Three successive nodes can not construct

// an acute angle

∀i,j,k : next-nodei,j + next-nodej,k ≤ 1 +Ai,j,k. (3.8)

Minimal Similarity Constraints: Let Sij, i, j = 1 . . . ,m be the cosine similarity

between di and dj. we can use the following constraints to find the similarity of the

minimum similar transition min-edge among active transitions.

∀i,j : min-edge ≤ 1− (1− Si,j) · next-nodei,j (3.9)

The Objective Function: Besides to maximize minimal similarity between two

successive nodes along the storyline, we also try to make storyline as long as possible,

37

so the objective function has the following form

Maximize: min-edge+ λ · l, (3.10)

where λ is a coefficient parameter.

Although integer linear programming is an NP-hard problem, there are efficient

approximation algorithms and implementations such as IBM CPLEX [CPL09] , which

is used for optimization in this chapter.

3.6 Local Storyline Generation

A global storyline presents a general high-level picture of how a disaster affects dif-

ferent areas when it hits these areas. To show how the disaster affects a specific area

locally for a longer time period during preparation and recovery, we allow users to

zoom-in to a node nodex of the global storyline. Once a user clicks the node nodex, a

new graph GL(V L, EL) will be constructed, which is an induced sub-graph of G(V,E),

where V L includes all text snippet nodes which are close to nodex according to their

associated geocodes. For the graph GL(V L, EL), we employ the storyline generation

method proposed in [WLO12] to generate a storyline for the selected area.

3.6.1 Augmented Multi-view Graph Construction

Definition 3.6.1 A multi-view graph is a triple G = (V,E,A), where V is a set of

vertices, E is a set of undirected edges, and A is a set of directed edges.

Different from the global storyline generation where the temporal and spatial

information of text snippets are modeled by integer linear programming, here we in-

corporate temporal information in an augmented multi-view graph GL = (V L, EL, A)

from GL = (V L, EL), where A is a set of directed edges for temporal relationship

38

between events. To define edges in A, we introduce two additional parameters

τ1, τ2, 0 < τ1 < τ2. For every pair of nodes oi, oj in V , we draw an arc from oi

to oj if τ1 < tj − ti < τ2, where ti, tj are the timestamps of oi and oj, respectively.

3.6.2 Generating Storylines via Directed Steiner Tree

Similar to generating global storylines, after extracting a dominating set of GL =

(V L, EL) which represent the main content topics, we need to generate a storyline

capturing the temporal and structural information of the local event descriptions. To

tackle this problem, we use the concept of Steiner Tree. A Steiner tree of a graph G

with respect to a vertex subset X is the edge-induced subtree of G that contains all

the vertices in X with minimum cost, where the cost is often measured by the size of

the tree.

Problem 1 Given a directed graph G = (V,A), a set X of vertices (called terminals),

and a root v0 ∈ X from which every vertex of X is reachable in G, find the subtree of

G rooted at v0 containing X with the smallest total vertex weight.

This problem is known to be NP-hard since the undirected version is already NP-

hard. While the undirected version has been well studied, much less work has been

done on directed version [CCC+99]. An intuitive solution for this problem is to find

the shortest path from the root to each of the terminal and then merge the paths. Of

course, this does not guarantee the optimal solution.

We make use of an algorithm due to Charika et al. [CCC+99]. The algorithm

takes a level parameter i ≥ 1. In addition, it takes as input the target terminal set Y ,

the root r, and the required number of nodes to cover, k. When i = 1, it leads to the

intuitive solution: i.e., selecting the top k shortest path from the root to k nodes and

return the union of those paths. Let the length of every arc (u, v) ∈ A is 1. We will

39

make initial call of Ai(k, v0, X) with X is the dominating set calculated by Algorithm

1 based on graph G, v0 is the event among X with the earliest timestamp, and k is

|X|, the size of X. We interpret the output tree as a local storyline evolving from the

root event to all the other dominating events. For a constant i, the algorithm is known

to run in polynomial time and produces an O(k
1
i)-approximate solution [CCC+99].

Algorithm 2 Ai(G, k, r,X)

INPUT: G = (V,A) : directed multi-view graph
X : target vertex set X
r ∈ X : the root X
k ≥ 1 : the target size X
OUTPUT: T : a Steiner tree rooted at r covering at least k vertices in
X

1: T = ∅
2: while k > 0 do
3: Tbest ← ∅
4: cost(Tbest)←∞
5: for each vertex v, (v0, v) ∈ A, and k′, 1 ≤ k′ ≤ k do
6: T ′ ← Ai−1(k

′, v,X) ∪ {(v0, v)}
7: if cost(Tbest) > cost(T ′) then
8: Tbest ← T ′

9: end if
10: T ← T ∪ Tbest
11: k ← k − |X ∩ V (Tbest)|
12: X ← X \ V (Tbest)
13: end for
14: end while
15: return T

3.7 System Evaluation

3.7.1 Datasets

We collect datasets from Bing News Search using keywords about three major hurri-

canes in the last ten years (i.e., Hurricane Katrina, Hurricane Irene, and Hurricane

40

keyword #documents #text snippets
Hurricane Katrina 800 1572
Hurricane Sandy 795 2253
Hurricane Irene 691 2186

Table 3.1: Statistics of the datasets.

content time location

This photo made available by the New
Jersey governor’s office shows flooding
and damage in Seaside Heights, N.J.
on Oct. 30, 2012 after super-storm
Sandy made landfall in the state.

2012-10-30
New Jersey —
Seaside Heights
N.J.

October 22, 2012 - Sandy develops
into a tropical storm in the Caribbean
Sea.

2012-10-22 Caribbean Sea

October 24, 2012 - Hurricane Sandy
makes landfall near Kingston, Ja-
maica, with winds of 80 mph.

2012-10-24
Kingston Ja-
maica

By Patrick Clark September 26, 2013
Business owners pile muddy furniture
outside their building off Canon Av-
enue in Manitou Springs, Colo.

2013-09-26
Manitou Springs
Colo.

Table 3.2: Events example extracted from document using entity recognition.

Sandy) to evaluate our storyline generation system. For the search results returned

from Bing News Search, we extract the text content from the corresponding web

pages. Basic statistics about the datasets are shown in Table 3.1, and some examples

of extracted text snippets are shown in Table 3.2.

3.7.2 Summarization Performance of Global Storylines

To evaluate the quality of global storylines generated by our proposed framework, a

human labeler manually composed global storylines for the three hurricane disasters,

which are compared with system-generated storylines using ROUGE [LH03] toolkit

(version 1.5.5). ROUGE is widely applied by DUC for summarization performance

41

Figure 3.2: Average recall, precision, F-1 of ROUGE-2.

Figure 3.3: Average recall, precision, F-1 of ROUGE-SU4.

evaluation. It measures the quality of a summary by counting the unit overlaps

between the candidate summary and a set of reference summaries. Several automatic

evaluation methods are implemented in ROUGE, such as ROUGE-N, ROUGE-L,

ROUGE-W and ROUGE-SU. ROUGE-N is an n-gram recall computed as follows:

ROUGE-N =

∑
S∈ref

∑
gramn∈S

Countmatch(gramn)∑
S∈ref

∑
gramn∈S

Count(gramn)
, (3.11)

42

Figure 3.4: Experimental result for hurricane sandy.

Figure 3.5: Wikipeadia ground truth for hurricane sandy.

where n is the length of the n-gram, and ref stands for the reference summaries.

Countmatch(gramn) is the maximum number of n-grams co-occurring in a candidate

summary and the reference summaries, and Count(gramn) is the number of n-grams

43

Figure 3.6: Experimental result for hurricane katrina.

Figure 3.7: Wikipeadia ground truth hurricane katrina.

in the reference summaries. ROUGE-SU4 is based on skip-bigram plus unigram,

where skip length is 4.

We compare the global storylines generated by our proposed method considering

geo-spatial information with the results from the following methods:

44

Figure 3.8: Experimental result for hurricane irene.

Figure 3.9: Wikipeadia ground truth hurricane irene.

45

We are currently

rolling our catas-

trophe personnel,

mobile claim centers

and catastrophe

response vehicles to

Raleigh, N.C., for

staging.

Located in On-

slow Bay near the

North Carolina coast

recently reported

sustained winds of

44 mph ... 71 km/h,

and a wind gust of 59

mph.

As of 11:00 a.m.

Friday Sandy was

centered about 25

miles north-northeast

of Great Abaco Is-

land, or about 460

miles south-southeast

of Charleston, S.C.

Governors from

North Carolina,

where steady rains

were whipped by

gusting winds Sat-

urday night, to

Connecticut declared

states of emergency.

As of Oct. 28, 2012,

the National Hurri-

cane Center predicts

rainfall totals of 3 to 6

inches over far north-

eastern North Car-

olina with isolated

maximum to tals of 8

inches possible.

About 335 mi ... 540

km se of Charleston

South Carolina,

maximum sustained

winds ... 75 mph ...

120 km/h

On Sunday after-

noon, Sandy brought

winds gusting to

103km/h to coastal

North Carolina.

10/24/2012 10/25/2012 10/26/2012 10/27/2012 10/28/2012

Figure 3.10: An illustrative example of the local storyline for the area of the Carolinas
during Hurricane Sandy.

1. Steiner tree based storyline generation [WLO12], which does not consider geo-

spatial information;

2. dominating set based summarization method [SL10], which is a standard multi-

document summarization method.

Figure 3.2 and Figure 3.3 show the performance comparison of the three methods

using ROUGE-2 and ROUGE-SU4, respectively.

We can observe that the Streiner tree based storyline generation method out-

performs the pure multi-document summarization method that does not incorporate

the temporal information. Our proposed storyline generation method, which consid-

ers both the temporal and spatial information, performs the best among all three

methods.

3.7.3 A Case Study

A case study is conducted to demonstrate the effectiveness of the storylines gener-

ated using our proposed method. We draw the global storyline generated by our

proposed method using Google Map API (shown in Figure 3.4, 3.6, 3.8) and compare

46

it with the storm paths downloaded from Wikipedia (shown on the right sub-figures

in Figure 3.5, 3.7, 3.9).

We can observe that the paths in our generated storylines are similar with the

ground truth. The differences are: 1) in addition to show the real paths, our gener-

ated storylines can reflect more information about how the hurricanes affect different

areas; and 2) the generated storylines not only shows how hurricanes move but also

present text descriptions about the status updates and damages they cause along

the movement. With the geo-temporal storyline, users can easily capture the overall

situation evolution of a disaster.

Figure 3.10 shows an illustrative example of a local storyline when we are in-

terested in a specific area like Carolina during Hurricane Sandy. We can see how

Hurricane Sandy affects the area during the period of time and covering different

topics like wind and rain.

3.8 Summary

In this chapter, we present a novel storyline framework for summarizing multiple

disaster-related documents to generate a two-layer hierarchical storyline to improve

situation awareness during or after disasters. We organize the storyline as a two

layer hierarchical structure to naturally describe a large-scale disaster. Especially

both temporal and spatial factors are considered in the global storyline generation

capturing spatial evolution of the disaster over time.

In our future work, we will first explore more complicated evolution structures of

different disaster types for storyline generation. We will also extend our framework

to incorporate more disaster types like earthquakes and other man-made disasters.

47

CHAPTER 4

AUTOMATE TEXTUAL RESOLUTION RECOMMENDATION

In recent years, IT Service Providers have been rapidly transforming to an auto-

mated service delivery model. This is due to advances in technology and driven by

the unrelenting market pressure to reduce cost and maintain quality. Tremendous

progress has been made to date towards attainment of truly automated service de-

livery; that is, the ability to deliver the same service automatically using the same

process with the same quality. However, automating Incident and Problem Manage-

ment continuous to be a difficult problem, particularly due to the growing complexity

of IT environments.

Software monitoring systems are designed to actively collect and signal event

occurrances and, when necessary, automatically generate incident tickets. Repeating

events generate similar tickets, which in turn have a vast number of repeated problem

resolutions likely to be found in earlier tickets. In this work, we find an appropriate

resolution by making use of similarities between the events and previous resolutions

of similar events. Traditional KNN (K Nearest Neighbor) algorithm has been used

to recommend resolutions for incoming tickets. However, the effectiveness of recom-

mendation heavily relies on the underlying similarity measure in KNN. In this work,

we significantly improve the similarity measure used in KNN by utilizing both the

event and resolution information in historical tickets via a topic-level feature extrac-

tion using the LDA (Latent Dirichlet Allocation) model. In addition, when resolution

categories are available, we propose to learn a more effective similarity measure using

48

metric learning. Extensive empirical evaluations on three ticket data sets demonstrate

the effectiveness and efficiency of our proposed methods.

4.1 Introduction

Today’s competitive business climate, as well as the complexity of service environ-

ments, dictate the need for efficient and cost-effective service delivery and support.

This is largely achieved through service-providing facilities that collaborate with sys-

tem management tools, combined with automation of routine maintenance procedures

such as problem detection, determination and resolution for the service infrastruc-

ture [MSGL09, TLP+12, ABD+07, WE11, YPZ10]. Automatic problem detection is

typically realized by system monitoring software, such as IBM Tivoli Monitoring [urlc]

and HP OpenView [urla]. Monitoring continuously captures the events and generates

incident tickets when alerts are raised. Deployment of monitoring solutions is a first

step towards fully automated delivery of a service. Automated problem resolution,

however, is a hard problem.

With the development of e-commerce, a substantial amount of research has been

devoted to recommendation systems. These recommendation systems determine

items or products to be recommended based on prior behavior of the user or sim-

ilar users and on the item itself. An increasing amount of user interactions have

provided these applications with a vast amount of historical information that can be

converted into practical knowledge. In this chapter we apply a similar approach and

develop a methodology that finds a resolution for an event by making use of similar-

ities between the events and previous resolutions of monitoring tickets. Most service

providers keep years’ worth of historical tickets with their resolutions. The resolution

is usually collected as a free-form text and describes steps taken to remediate the

issue described in the ticket. We analyzed historical monitoring tickets collected from

49

three different accounts managed by one of the large service providers (an account is

as an aggregate of services that use common infrastructure). We noticed that there

are many repeating resolutions for monitoring tickets within an account. It is natural

to expect that if events are similar, then their respective tickets probably have the

same resolution. Therefore, we can recommend a resolution for an incoming ticket

based on the event information and historical tickets.

A KNN-based approach has been proposed in [TLSG13] to provide resolution

recommendations for incoming tickets in service management. Although the approach

has been successfully used in practice, it has the following two major limitations:

• Representation of monitoring tickets: In the KNN-based approach, attribute-

based features are used to represent monitoring tickets. However, attribute-level

feature representation is not interpretable and often contains lots of noise. In

practice, each monitoring ticket describes the existing problems (e.g., low ca-

pacity, high CPU utilization) in service and the associated ticket resolutions

should be highly relevant to the problems. Therefore, it is better to use fea-

tures semantically capturing these problems, instead of attribute-level features,

to represent monitoring tickets.

• Similarity Measurement: The similarity measure used in [TLSG13] only

considers the event information, and ignores the related resolutions. In addi-

tion, each attribute is treated equally when computing the similarity measure.

However, the resolutions often reveal their prevalence in historical tickets and

contain important information about the events, which can be used to improve

the recommendation performance. Moreover, different attributes should have

different weights in computing the similarity measure as they often play different

roles in representing the tickets.

50

In this work, we propose an approach to address the aforementioned limitations

in recommending ticket resolutions for service management. In particular, we make

the following contributions:

• We analyze historical monitoring tickets from three production accounts and

observe that their resolutions are recommendable for current monitoring tickets

on the basis of event information.

• We propose a feature extraction approach capable of representing both the

event and resolution information using topic-level features obtained via the

LDA model.

• We propose to further improve the similarity measurement using metric learning

when resolution categories are available.

• We conducted extensive experiments for our proposed algorithms on real ticket

datasets, and experimental results demonstrate the effectiveness and efficiency

of the proposed approaches.

The rest of the chapter is organized as follows: Section 4.2 briefly introduces the

workflow of the infrastructure management of an automated service and shares our

observations on three sets of monitoring tickets. In Section 4.3, we present resolu-

tion recommendation algorithms for monitoring tickets. Section 4.4 discusses some

detailed implementation issues. In Section 4.5, we present experimental studies on

real monitoring tickets. Finally, Section 4.6 concludes our chapter and discusses our

future work.

51

4.2 Background

In this section, we first provide an overview of automated service infrastructure mon-

itoring with ticket generation and resolution. Then we present our analysis on real

ticket data sets.

4.2.1 Automated Services Infrastructure Monitoring and Event

Tickets

The typical workflow of problem detection, determination, and resolution in services

infrastructure management is prescribed by the ITIL specification [urld]. Problem de-

tection is usually provided by monitoring software, which computes metrics for hard-

ware and software performance at regular intervals. The metrics are then matched

against acceptable thresholds. A violation induces an alert. If the violation per-

sists beyond a specified period, the monitor emits an event. Events from the entire

service infrastructure are accumulated in an enterprise console that uses rule-, case-

or knowledge-based engines to analyze the monitoring events and decide whether to

open an incident ticket in the ticketing system. The incident tickets created from

the monitoring events are called monitoring tickets. Additional tickets are created

upon customer request. The information accumulated in the ticket is used by tech-

nical support for problem determination and resolution. In this chapter, we consider

tickets generated by a service management system (see Figure 4.1).

Each event is stored as a database record that consists of several related attributes

with values describing the system status at the time this event was generated. For

example, a CPU-related event usually contains the CPU utilization and paging uti-

lization information. A capacity-related event usually contains the disk name and the

size of disk used/free space. Typically, different types of events have different sets

52

Figure 4.1: Service management system.

of related attributes. The problem resolution of every ticket is stored as a textual

description of the steps taken by the system administrator to resolve this problem.

4.2.2 Repeated Resolutions of Monitoring Tickets

We analyzed ticket data from three different accounts managed by IBM Global Ser-

vices. Many ticket resolutions repeatedly appear in the ticket database. For example,

for a low disk capacity ticket, usual resolutions are deletion of temporal files, backup

data, or addition of a new disk. Unusual resolutions are very rare.

Data set Num. of Tickets Time Frame
account1 31,447 1 month
account2 37,482 4 months
account2 29,057 5 months

Table 4.1: Data summary.

The collected ticket sets from the three accounts are denoted by “account1”,

“account2” and “account3”, respectively. Table 4.1 summarizes the three data sets.

53

account1 account2 account3
0

5000

10000

15000

20000

25000

30000

35000

40000

#ticket #resolution

Figure 4.2: Numbers of tickets and distinct resolutions.

0 20 40 60 80 100 120 140
resolution ID

0

50

100

150

200

250

300

350

n
u
m

b
e
r

o
f

e
v
e
n
ts

#event tickets solved by each resolutions

Figure 4.3: Number of monitoring tickets resolved by each resolutions denoted by
“resolution ID” in account1.

Figure 4.2 shows the numbers of tickets and distinct resolutions and Figure 4.3 shows

the top repeated resolutions in “account1” denoted by “resolution ID”. We observe

that a single resolution can resolve multiple monitoring tickets. In other words,

multiple tickets share the same resolutions.

54

4.3 Preliminary Work

In this section, we first introduce the basic KNN-based recommendation algorithm,

and then present our improved algorithms.

4.3.1 Workflow

Figure 4.4 shows the workflow of resolution recommendation. Four different algo-

rithms are included in the workflow:

• KNN: the algorithm using attribute-level features

• LDABaselineKNN: the algorithm using topic-level features obtained via LDA

• CombinedLDAKNN: the algorithm incorporating both the event and resolution

information with top-level features

• MLCombinedLDAKNN: the algorithm using the similarity measure obtained

using metric learning (when resolution categories are available)

The first algorithm was used in [TLSG13] and the last three algorithms are proposed

in this chapter. Figure 4.4 clearly illustrates the differences among these four recom-

mendation methods. The details of the three proposed algorithms will be described

in detail in Section 4.3.3, Section 4.3.4, and Section 4.3.5, respectively.

4.3.2 Basic KNN-based Recommendation

Given an incoming monitoring ticket, the objective of the resolution recommendation

is to find k resolutions as close as possible to the true one for some user-specified

parameter k. The recommendation problem is often related to that of predicting the

top k possible resolutions. A straightforward approach is to apply the KNN algo-

rithm, which searches the K nearest neighbors of the given ticket (K is a predefined

55

Figure 4.4: Algorithms’ workflow.

parameter), and recommends the top k ≤ K representative resolutions among them

[SKKR00, T+06]. The nearest neighbors are indicated by similarities of the associ-

ated events of the tickets. In this chapter, the representativeness is measured by the

number of occurrences in the K neighbors.

Table 4.2 lists the notations used in this chapter. Let D = {t1, ..., tn} be the set

of historical monitoring tickets and ti be the i-th ticket in D, i = 1, ..., n. Given

a monitoring ticket t, the nearest neighbor of t is the ticket ti which maximizes

sim(e(t), e(ti)), ti ∈ D, where sim(·, ·) is a similarity function for events. Each event

consists of event attributes with values. Let A(e) denote the set of attributes of event

e. The similarity for events is computed as the summation of the similarities for all

56

Notation Description
D Set of historical tickets
| · | Size of a set
ti i-th monitoring ticket
r(ti) Resolution description of ti
e(ti) The associated event of ticket ti
A(e) Set of attributes of event e
sim(e1, e2) Similarity of events e1 and e2
sima(e1, e2) Similarity of a values of event e1 and e2
K Number of nearest neighbors in the KNN algorithm
k Number of recommended resolutions for a ticket, k ≤ K

Table 4.2: Notations.

attributes. There are three types of event attributes: categorical, numeric and textual

(shown by Table 4.3).

Type Example
Categorical OSTYPE, NODE, ALERTKEY,...
Numeric SERVERITY, LASTUPDATE, ...
Textual SUMMARY,...

Table 4.3: Event attribute types.

Given an attribute a and two events e1 and e2, a ∈ A(e1) and a ∈ A(e2), the

values of a in e1 and e2 are denoted by a(e1) and a(e2). The similarity of e1 and e2

with respect to a is

sima(e1, e2) =


I[a(e1) = a(e2)], if a is categorical,

|a(e1)−a(e2)|
max|a(ei)−a(ej)| , if a is numeric,

Jaccard(a(e1), a(e2)), if a is textual,

where I(·) is the indicator function returning 1 if the input condition holds, and 0

otherwise. Let max|a(ei) − a(ej)| be the size of the value range of a. Jaccard(·, ·)

is the Jaccard index for bag of words model [Cho10], frequently used to compute the

similarity of two texts. Its value is the proportion of common words in the two texts.

Note that for any type of attribute, inequality 0 ≤ sima(e1, e2) ≤ 1 holds. Then, the

57

similarity for two events e1 and e2 is computed as

sim(e1, e2) =

∑
a∈A(e1)∩A(e2) sima(e1, e2)

|A(e1) ∪ A(e2)|
. (4.1)

Clearly, 0 ≤ sim(e1, e2) ≤ 1. To identify the type of attribute a, we only need to scan

all appearing values of a. If all values are composed of digits and a dot, a is numeric.

If some value of a contains a sentence or phrase, then a is textual. Otherwise, a is

categorical.

4.3.3 Representation of Monitoring Tickets

As shown in Section 4.3.2, attribute level features are used in the traditional KNN

algorithm for recommendation. However, attribute-level feature representation is not

interpretable and often contains a lot of noise.

Our observation indicates that each monitoring ticket describes the existing prob-

lems (e.g., low capacity, high CPU, utilization) in service, and the associated ticket

resolution should be highly relevant to the problems. For example, Table 4.4 presents

some sample monitoring tickets for “low free space” and their corresponding reso-

lutions. The problems in these tickets are described by the “SUMMARY” attribute

and they all share the similar semantic meaning “low free space”. Therefore, it is bet-

ter to use features semantically capturing these problems, instead of attribute-level

features, to represent monitoring tickets.

In this chapter, we propose to apply Latent Dirichlet Allocation [BNJ03](LDA)

to perform feature extraction, which can first extract hidden topics and then encode

monitoring tickets using topic level features.

LDA is a generative probabilistic model of a document corpus. Its basic idea is

that documents are represented as random mixtures over latent topics, where each

58

topic is characterized by a distribution over words [BNJ03]. Figure 4.5 shows the

graphical model representation of LDA.

The wij’s are the only observable variables. Following [BNJ03], LDA assumes the

following generative process for each document w in a corpus D of length M :

1. Choose θ ∼ Dir(α), where Dir(α) is the Dirchlet distribution for parameter α

2. For each of the N words wn:

(a) Choose a topic zn ∼Multinomial(θ).

(b) Choose a word wn from p(wn|zn, β), a multinomial probability conditioned

on the topic zn.

According to the graphical model, the total probability P (D|α, β) of a corpus D is

given by:

M∏
d=1

∫
p(θd|α)

(Nd∏
n=1

∑
zdn

p(zdn|θd)p(wdn)|zdn , β
)
dθd (4.2)

Figure 4.5: Plate notation representing the LDA model. α is the parameter of the
Dirichlet prior on the per-document topic distribution; β is the parameter of the
Dirichlet prior on the per-topic word distribution; θi is the topic distribution for
document i; φk is the word distribution for topic k; zij is the topic for the j-th word
in document i, and wij is the specific word.

59

Learning the various distribution (the set of topics, their associated word prob-

abilities, the topic of each word, and the topic probabilities of each document) is a

problem of Bayesian Inference [BNJ03]. Topic probability distribution of a document

is commonly used as its feature vector.

Following are steps for using LDA for feature extraction in our work:

• Represent each monitoring ticket as a document by concatenating each attribute

after stop words removal and tokenization

• Using historical tickets to train a LDA model

• Inference feature vectors using the trained LDA model for both incoming events

and historical monitoring tickets.

After those steps, monitoring tickets can be encoded as feature vectors and the cosine

similarity can then be applied to measure their similarities. Experiments demonstrate

that the algorithm performance based on topic level features is better than that on

attribute level features.

4.3.4 Incorporating the Resolution Information

In previous KNN-based recommendation approaches, resolutions are ranked accord-

ing to the similarity measurement using the event information only. However, the

resolutions often reveal their prevalence in historical tickets and contain important

information about the events, which can be used to improve the recommendation

performance. There are two practical motivations for incorporating the resolution

information:

1. In a K nearest neighbor search, historical tickets with resolutions that are highly

relevant to an incoming event should be ranked higher than those tickets having

similar event descriptions, but with less related resolutions.

60

2. In a K nearest neighbor search, those tickets with resolutions that are more

prevalent should be ranked higher than those with less prevalent resolution,

even if their event descriptions are similar.

Table 4.4 presents four tickets having similar event descriptions (shown in the

“SUMMARY” attribute) from account1. All four tickets are describing a “low free

space” problem. In practice, however, the resolution from Ticket 1 should have a

higher rank than the one from Ticket 4 since the resolution from Ticket 1 is more

informative. Similarly, resolutions from Ticket 1 and Ticket 2 should have higher

ranks than the one from Ticket 3 because of their higher prevalence.

ticketID SUMMARY RESOLUTION
1 The logical disk has a low

amount of free space. Percent
available: 2 Threshold: 5

After deleting old uninstall
files, the logical disk has now
over 10% of free disk space.

2 The percentage of used space
in the logic disk is 90 percent.
Threshold: 90 percent

After deleting old uninstall
files, the logical disk has now
over 15% of free disk space.

3 File system is low. The per-
centage of available space in
the file system is 10 percent.
Threshold: 90 percent

After delprof run, the server
now has more than 4gb of free
space

4 The logical disk has a low
amount of free space. Percent
available: 3 Threshold: 5

No trouble was found, situa-
tion no longer persists.

Table 4.4: Tickets for explaining motivation of incorporating resolution information.

In Section 4.3.2, sim(e, e(ti)) is computed to find the K nearest neighbors of an

incoming event e, in which e(ti) is the event information associated with the i-th

ticket. To incorporate the resolution information, sim(e, ti) (i.e., similarity between

an incoming event and the i-th ticket), rather than sim(e, e(ti)), is used in the al-

gorithm. sim(e, ti) can be easily computed since e and ti can be vectorized with

the same dimensions after using topic-level features. Experiments demonstrate the

effectiveness of this proposed approach.

61

4.3.5 Metric Learning

In previous sections, we improve the recommendation algorithm by using topic-level

features and incorporating resolution information into a K nearest neighbor search.

However, we still treat each feature equally in computing the similarity measure.

According to our observation, topics extracted from the LDA model should have

different contributions to the similarity measurement since some topics contain the

major descriptive words about events while the others may consist of less meaningful

words. For example, Table 4.5 lists two topics for illustration. Apparently Topic 30

contains more descriptive words than Topic 14 and thus we should assign a larger

weight to Topic 30 in the similarity measurement. We adopt metric learning [Kul12]

to achieve this goal.

topicID SUMMARY
14 server wsfpp1 lppza0 lppzi0 nalac application
30 server hung condition responding application apps

Table 4.5: First 6 words are extracted to represent topics trained from LDA.

The metric learning problem aims at learning a distance function tuned to a

particular task, and has been shown to be useful when used in conjunction with

nearest-neighbor methods and other techniques that rely on distances or similari-

ties [FSSM07]. Mahalanobis Distance is commonly used for vectorized inputs, which

can avoid the scenario in which one feature dominates in the computation of the Eu-

clidean distance. In the metric learning literature, the term “Mahalanobis distance”

is often used to denote any distance function of the following form:

dA(x, y) = (x− y)TA(x− y), (4.3)

where A is some positive semi-definite (PSD) matrix, and x, y are the feature vectors.

To facilitate the learning process, in metric learning, a slightly modified form of

62

distance function is commonly used, as described below [Kul12]:

dA(x, y) = xTAy. (4.4)

In our work, we have n historical tickets t1, t2, . . . , tn and n corresponding res-

olutions r(t1), r(t2), . . . , r(tn). We consider the resolution categories as supervision

for metric learning since intuitively similar resolutions solve similar issues. We pre-

calculate matrix R ∈ Rn∗n in which Ri,j = sim(r(ti), r(tj)). Our goal is to learn a

similarity function SA(~ti, ~tj) by solving following an optimization problem:

f(A) = min

n∑
i=1

n∑
j=1

||Ri,j − SA(~ti, ~tj)||2

= min||R− SAST ||2, (4.5)

in which we use SA(~ti, ~tj) = ~ti
T ∗ A ∗ ~tj (~ti and ~tj are feature vector for ticket ti

and tj) instead of SA(~e(ti), ~e(tj)) as we want to keep benefits of incorporating the

resolution information into K nearest search. Since matrix A is constrained to be a

PSD matrix, the projected gradient descent algorithm can be directly applied to solve

the optimization problem in Equation 4.5. In each iteration of gradient descent, the

new updated matrix A will be projected into a PSD matrix as the initial value for the

next iteration. The singular value thresholding [CCS10] has been applied to project

A into a PSD matrix by setting all A’s negative eigenvalues to be zero.

The following is the gradient for Equation 4.5:

∂f(A)

∂A
=

∂((R− SAST)T (R− SRST))

∂A

= 2STSASTS − 2STRS (4.6)

The resolution categories are usually provided by system administrators. With the

available category information, the similarity between two resolutions is computed as

follows:

sim(r(ti), r(tj)) =

 1, if r(ti), r(tj) are in same category,

0, otherwise.

63

4.4 implementation

In this section, we discuss several issues in implementing the resolution recommenda-

tion system.

Redundancy Removal in Recommendation

KNN-based recommendation algorithms recommend the top k representative resolu-

tions in the K nearest tickets. However, since all of these are similar to the incoming

ticket, the resolutions of the K tickets may also be similar to each other, so that there

may be some redundancy in the recommended results. To avoid this, another valida-

tion step is applied. First, the K nearest tickets’ resolutions are sorted according to

their representativeness in descending order. Then, we go through all K resolutions

and check whether or not each of them is redundant to any previously selected reso-

lution. If it is, we skip this resolution and jump to the next one; otherwise, we add

it to the selection. Since the resolutions are textual descriptions, the redundancy of

two resolutions is measured by the Jaccard index, Jaccard(·, ·), introduced in Section

4.3.2. In practice, if the descriptions of two resolutions r(t1) and r(t2) have more

than one half common words (i.e. Jaccard(r(t1), r(t2)) > 0.5), the two resolutions

are quite likely to be the same.

Finding Nearest Neighbors

Finding the K nearest neighbors in a large collection of historical tickets is time-

consuming. There are many standard indexing search methods, such as k-d Tree

[Ben75], R-Tree [Gut84], VP-Tree [Yia93], cover tree [BKL06]. But the search space

of our monitoring tickets is not metric and the dimensionality is high. Therefore,

locality sensitive hashing [GIM+99] is more practical. Another heuristic solution is

the attribute clustering based method. Different system events have different system

64

attributes, and the clustering algorithm can easily separate all tickets into categories

based on their attribute names. If two events share very few common attributes, their

similarity cannot be high. Therefore, in most cases, the nearest neighbors search only

needs to access these tickets in the same category.

4.5 Evaluation

4.5.1 Algorithms

We implemented four algorithms: Weighted KNN [Dud76] using attribute level fea-

ture, the Weighted KNN method using topic level feature, the method incorpo-

rating historical resolutions information and the method using improved similarity

metric after applying metric learning, which are denoted by “WKNN”, “LDABase-

lineKNN”, “CombinedLDAKNN” and “MLCombinedLDAKNN” respectively. Those

algorithms, “WKNN”, “LDABaselineKNN”, “CombinedLDAKNN” and “MLCom-

binedLDAKNN”, are all based on the weighted KNN algorithm framework. We still

show experimental results between “WKNN” and “LDABaselineKNN” since they

prove that topic level features do not cause information loss compared to attribute

level features. The “LDABaselineKNN” algorithm is the baseline for “CombinedL-

DAKNN”, which itself is the baseline for “MLCombinedLDAKNN”. We use the

Weighted KNN algorithm as the underlying algorithm because it is the most widely

used Top-N item-based recommendation algorithm.

4.5.2 Experimental Data

Experimental monitoring tickets are collected from three accounts managed by IBM

Global Services, denoted later “account1”, “account2” and “account3”. The mon-

65

itoring events are captured by IBM Tivoli Monitoring [urlb]. The ticket sets are

summarized in Table 4.1. To evaluate metric learning, 1000 labeled tickets with

resolution categories are obtained from “account1”. Table 4.6 shows three sample

categories of resolutions [BGL+14].

resolution class resolved event key words
Server Unavailable Server unavailable due to unexpected shut-

down, reboot, defect hardware, system hang-
ing

Disk/FS Capacity shortage Disk or file system capacity problems and disk
failure

Performance inefficiency Performance and capacity problems of CPU or
memory

Table 4.6: Three resolution types with the event description they resolved.

4.5.3 Evaluation Metric

The following evaluation measures are used in our experiments.

Average Similarity

In general, several resolutions can be recommended for a single testing instance.

To consider the relativeness of all recommended resolutions, the average similarity

(avgSim) is used as one evaluation metric which is given by the following equation:

avgSim =
1

N

N∑
i=1

ni∑
j=1

sim(rio, rj)/ni,

in which N is the number of testing instances, and ni is the number of recommended

resolutions for testing instance i and rio is its original resolution, and rj is its jth

recommended resolution. Jaccard Similarity is used to calculate sim(rio, rj).

66

Mean Average Precision

Mean Average Precision (MAP) [Zhu04] is widely used for recommendation evalua-

tion. It considers not only the relativeness of all recommended results, but also the

ranks of the recommended results.

MAP@n =
N∑
i=1

ap@ni/N,

N is the number of a testing instance, ap@n is given by the following equation:

ap@n =
n∑
k=1

p(k)δr(k),

where k is the rank in the sequence of retrieved resolutions, n is the number of

retrieved resolutions, p(k) is the precision at cut-off k in the list, and δr(k) is the

change in recall from items k − 1 to k.

4.5.4 Choosing the Number of Topics

Figure 4.6 shows the experimental results of choosing the proper number of top-

ics for training the LDA model using data set “account1”. The results show that

numTopics = 300 is a proper setup for the number of topics. Thus, we choose

numTopics = 300 for all the following experiments.

4.5.5 Overall Recommendation Performance

The average similarity is used for comparing the performance among “WKNN”, “LD-

ABaselineKNN” and “CombinedLDAKNN”. When resolution categories are avail-

able, MAP@n is used for comparing the performance between “CombinedLDAKNN”

and “MLCombinedLDAKNN” since it explicitly considers the relativeness of the rec-

ommended results.

67

50 100 150 200 250 300 350
numTopics

0.32

0.34

0.36

0.38

0.40

a
v
g
S
im

WKNN
LDABaselineKNN
CombinedLDAKNN

Figure 4.6: Accuracy varies for different numTopics for dataset “account1”.

To compare the results of each algorithm, we vary the number of recommended res-

olutions, k. Figures 4.74.12 show the average similarity scores by setting k = 1, 3, 5, 7

separately, with K = 8 and K = 16, for data from three accounts. As shown by Fig-

ure4.74.12, topic level features are better than attribute level features for account1 and

account2 and slightly worse for account3 by comparing algorithm “WKNN” and “LD-

ABaselineKNN”. “CombinedLDAKNN” always outperforms “LDABaselineKNN”,

which proves the effectiveness of incorporating the resolution information into K near-

est neighbor search.

Metric Learning Performance

Figures 4.134.16 and Figure 4.17 are used to illustrate the usefulness of metric learn-

ing. In these figures, X-axis and Y-axis are the event id’s ordered by the resolution

categories, and the color indicates the similarity score. As shown in Figures 4.13, 4.13

and Figures 4.15, 4.16 similarity scores between monitoring tickets with resolutions

from the same category will be enhanced while similarity scores between monitoring

68

1 3 5 7

k

0.0

0.1

0.2

0.3

0.4

0.5

a
v
g
S
im

K=8 for account1

WKNN

LDABaselineKNN

CombinedLDAKNN

Figure 4.7: Test results for account1 by by varying k for K = 8.

1 3 5 7

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

a
v
g
S
im

K=8 for account2

WKNN

LDABaselineKNN

CombinedLDAKNN

Figure 4.8: Test results for account2 by varying k for K = 8.

tickets with resolutions from different categories will be reduced. Therefore, for ex-

ample, for a testing instance whose original resolution belongs to category i, more

resolutions from category i will be retrieved first after applying metric learning.

Figure 4.17 uses MAP to evaluate the performance of “CombinedLDAKNN” and

“MLCombinedLDAKNN”. As shown in Figure 4.17, overall MAP scores of “ML-

69

1 3 5 7

k

0.0

0.1

0.2

0.3

0.4

0.5

a
v
g
S
im

K=8 for account3

WKNN

LDABaselineKNN

CombinedLDAKNN

Figure 4.9: Test results for account3 by varying k for K = 8.

1 3 5 7

k

0.0

0.1

0.2

0.3

0.4

0.5

a
v
g
S
im

K=16 for account1

WKNN

LDABaselineKNN

CombinedLDAKNN

Figure 4.10: Test results for account1 by varying k for K = 16.

CombinedLDAKNN” are higher and more stable than “CombinedLDAKNN” when

K increases. It indicates that “MLCombinedLDAKNN” can retrieve more related

resolutions first and thus is more robust to noisy resolutions compared to “Com-

binedLDAKNN”, which proves the effectiveness of metric learning.

70

1 3 5 7

k

0.00

0.05

0.10

0.15

0.20

0.25

a
v
g
S
im

K=16 for account2

WKNN

LDABaselineKNN

CombinedLDAKNN

Figure 4.11: Test results for account2 by varying k for K = 16.

1 3 5 7

k

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

a
v
g
S
im

K=16 for account3

WKNN

LDABaselineKNN

CombinedLDAKNN

Figure 4.12: Test results for account3 by varying k for K = 16.

4.6 Summary

This chapter studies the problem of resolution recommendation for monitoring tickets

in an automated service management. We analyze three sets of monitoring tickets

collected from a production service infrastructure and identify a vast number of re-

71

0

0.5

Figure 4.13: Similarity measure before metric learning for training set.

0

0.5

Figure 4.14: Similarity measure after metric learning for training set.

peated resolutions for monitoring tickets. Based on our prior work of KNN-based

recommendation, we improve the similarity measure by utilizing both the event and

resolution information from historical tickets via a topic-level feature extraction using

72

0

0.5

Figure 4.15: Similarity measure before metric learning for testing set.

0

0.5

Figure 4.16: Similarity measure after metric learning for testing set.

the LDA (Latent Dirichlet Allocation) model. In addition, a more effective similarity

measure is learned using metric learning when resolution categories are available.

There are several avenues for future research. First, we plan to investigate and de-

velop intelligent classification techniques to automatically label resolutions [ZLSG14a,

73

10 20 30 40 50 60 70
K

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
A
P
@
K

mean average precision for different K

CombinedLDAKNN
MLCombinedLDAKNN

Figure 4.17: Mean average precision (MAP) varying parameter K of underlying KNN
algorithm.

CQT+13]. Second, our current recommendation system uses KNN-based algorithms

due to their simplicity and efficiency. We will investigate and develop other advanced

algorithms to improve the recommendation performance. Finally, we also plan to use

an active query strategy to fully automate resolution recommendations.

74

CHAPTER 5

DOMAIN ADAPTATION FOR TEXTUAL FEATURES

In recent years, IT Service Providers have been rapidly introducing automation to

their service delivery model. Driven by market pressure to reduce cost and maintain

quality of services, they are looking for technologies that will allow rapid progress

towards attainment of truly automated service delivery. Software monitoring systems

are designed to actively collect and signal event occurrences and, when necessary,

automatically generate incident tickets. Repeating events generate similar tickets,

which in turn have a vast number of repeated problem resolutions likely to be found

in earlier tickets.

In this chapter, we develop techniques to recommend an appropriate resolution for

incoming events by making use of similarities between the events and historical resolu-

tions of similar events. The traditional KNN (K Nearest Neighbor) algorithm has been

first applied to recommend resolutions for incoming tickets. Massive heterogeneous

applications as well as various monitoring software are running on clients’ servers

to accomplish required tasks and to monitor system health via different metrics. It

leads to generation of correlated tickets that have different symptom descriptions but

similar resolutions. Furthermore, change of servers’ environments can also induce

similar situations in which ticket descriptions differ before and after change but could

have similar resolutions. These correlated tickets cause performance degradation in

ticket resolution recommendation. Therefore, we propose using SCL (structural cor-

responding learning) based feature adaptation to uncover feature mapping in different

time intervals. Moreover, to put more insights into the periodic regularities existing

in our ticket datasets, we apply our algorithm on tickets grouped by different time

interval granularities. Extensive empirical evaluations on real-world ticket data sets

demonstrate the effectiveness and efficiency of our proposed methods.

75

5.1 Introduction

The competitive business climate, as well as the complexity of service environments,

dictate the need for efficient and cost-effective service delivery and support. These

are largely achieved through service-providing facilities integrated with system man-

agement tools in combination with automation of routine maintenance procedures

such as problem detection, determination and resolution for the service infrastruc-

ture [MSGL09, TLP+12, ABD+07, WE11, YPZ10]. Automatic problem detection is

typically realized by system monitoring software, such as IBM Tivoli Monitoring [urlc]

and HP OpenView [urla]. Monitoring continuously captures the events and generates

incident tickets when alerts are raised. Deployment of monitoring solutions is a first

step towards fully automated delivery of a service. Automated problem resolution,

however, is a hard problem.

However, most service providers keep years’ worth of historical tickets with their

resolutions. The resolution is usually collected as a free-form text and describes steps

taken to remediate the issue described in the ticket. We analyzed historical monitoring

tickets collected from three different accounts managed by one of the large service

providers (an account is an aggregate of services that uses common infrastructure).

We noticed that there are many repeating resolutions for monitoring tickets within

an account. It is natural to expect that if events are similar, then their respective

tickets probably have the same resolution. Therefore, we can recommend a resolution

for an incoming ticket based on the event information and historical tickets.

In our previous work [TLSG13], a KNN-based approach has been first applied

to provide resolution recommendations for incoming tickets in service management.

Additionally, several improved approaches [TLSG13] have been proposed to resolve

various shortcomings of the basic algorithm and thus to make recommended resolu-

76

tions more relevant and practical. However, a further drawback has been uncovered

when our previous methods were applied to system management.

In current service environments, massive heterogeneous applications, as well as

various monitoring software, running on customers’ servers to accomplish complex

tasks and to monitor system health via different metrics, lead to generation of corre-

lated tickets that have different symptom descriptions but similar resolutions. Fur-

thermore, evolving over time, service environments cause a further discrepancy. The

description of tickets generated before and after change differ but might have similar

resolutions since root causes remain unchanged.

Based on our previous understanding and initial experiments, we find out that

vocabularies used in ticket descriptions are changing and shifting over time but in-

teresting mappings exist in those different vocabularies. However, our previous algo-

rithms are not able to discover those mappings and thus their performance degrades

over time due to inaccurate ticket similarity. To overcome drawback, we propose

structural corresponding learning (SCL) to discover the words’ mapping and apply it

to our ticket resolution recommendation system.

The traditional KNN-based recommendation methodology was first proposed in

our preliminary work [TLSG13]. The details and extended algorithms are fully dis-

cussed there. The rest of this chapter is organized as follows: Section 5.2 briefly

introduces the workflow of the infrastructure management of an automated service

and shares our observations on real-world monitoring tickets. In Section 5.3, we

present SCL details and how they are used for finding feature mapping. Notice that

phrases “feature mapping” and “feature adaptation” are used interchangeably in the

rest of our work. Section 5.4 discusses detailed implementation and application of

SCL within resolution recommendation algorithms for monitoring tickets. In Section

77

5.5, we present experimental studies on real monitoring tickets. Finally, Section 5.6

concludes the paper and discusses our future work.

5.2 Background

In this section, we first provide an overview of automated service infrastructure mon-

itoring with ticket generation and resolution. Then we present our analysis on real

ticket data sets.

5.2.1 Automated Services Infrastructure Monitoring and Event

Tickets

The typical workflow of problem detection, determination, and resolution in services

infrastructure management is prescribed by the ITIL specification [urld]. Problem de-

tection is usually provided by monitoring software, which computes metrics for hard-

ware and software performance at regular intervals. The metrics are then matched

against acceptable thresholds. A violation induces an alert. If the violation per-

sists beyond a specified period, the monitor emits an event. Events from the entire

service infrastructure are accumulated in an enterprise console that uses rule-, case-

or knowledge-based engines to analyze the monitoring events and decide whether to

open an incident ticket in the ticketing system. The incident tickets created from

the monitoring events are called monitoring tickets. Additional tickets are created

upon customer request through Service Management System. The information ac-

cumulated in the ticket is used by technical support for problem determination and

resolution. In this chapter, we consider tickets generated by a monitoring system (see

Figure 5.1).

78

Figure 5.1: Service management system.

Each monitoring ticket is stored as a database record that consists of several re-

lated attributes with values describing the system status at the time when monitoring

event was generated. For example, a CPU-related ticket usually contains the CPU

utilization and paging utilization information. A capacity-related ticket usually con-

tains the disk name and the size of disk used/free space. Typically, different types

of monitoring events have different sets of related attributes. The resolution of every

ticket is stored as a textual description of steps taken by the system administrator to

resolve this problem.

5.2.2 Repeated Resolution of Monitoring Tickets

We analyzed ticket data from three different accounts managed by IBM Global Ser-

vices. Many ticket resolutions repeatedly appear in the ticket database. For example,

for a low disk capacity ticket, usual resolutions mean deletion of temporal files, backup

data, or addition of a new disk. Unusual resolutions are very rare.

Collected ticket sets from the three accounts are denoted by “account1,” “ac-

count2” and “account3,” respectively. Table 5.1 summarizes the three data sets.

Figure 5.2 shows the numbers of tickets and distinct resolutions. We observe that

79

Data set Num. of Tickets Time Frame
account1 31,447 1 month
account2 37,482 4 months
account3 29,057 5 months

Table 5.1: Data summary.

account1 account2 account3
0

5000

10000

15000

20000

25000

30000

35000

40000

#ticket #resolution

Figure 5.2: Numbers of tickets and distinct resolutions.

Figure 5.3: Recommendation performance degrading as testing instances coming from
different sliding window.

a single resolution can resolve multiple monitoring tickets. In other words, multiple

tickets share the same resolutions.

80

5.3 Feature Adaptation

In this chapter, we propose a solution for ticket resolution recommendation that

accommodates vocabularies changing or shifting with time. We evaluate our solution

on three real world ticket datasets collected from IBM service management system.

First, we show that feature variation and shift exists and degrades performance

of ticket resolution recommendation. Second, we apply a structural correspondence

learning (SCL) domain adaptation algorithm [BMP06] for use in ticket resolution

recommendation to solve the aforementioned issue. We assume that although fea-

tures shift with time, there exists some feature mapping, i.e., some correspondence of

features for tickets generated in different time intervals. We order and group tickets

based on consecutive and disjointed time windows, and consider each time window as

one domain. Thus, a feature mapping problem in ticket resolution recommendation

become a domain or feature adaptation problem.

In the following section we will briefly review SCL, introduce our new pivot se-

lection strategy and describe how we apply SCL to ticket resolution recommendation

problems.

5.3.1 Structural Corresponding Learning

First, we consider a simple example to illustrate application of SCL. Suppose that we

have a dataset of historical tickets based on which we need to identify an appropriate

resolution for the incoming event. Resolutions for the same root cause could slightly

differ, but descriptions of symptoms could vary significantly. For example, two tickets

have the same resolution as “archive the logs and thus reduce the space utilization”,

but their descriptions could be different when diverse vocabularies are used, such as

“volume”, “capacity” or “harddiskvolume”.

81

Our key intuition is that even if “volume”, “capacity” and “harddiskvolume”

are literally distinct, they have high correlation with “space” or “utilization” in the

historical data set, and thus we can tentatively construct some mapping between

them and recommend similar resolutions for incoming events represented by different

vocabulary.

5.3.2 Algorithm Overview

Given two consecutive sliding time windows, source tickets are defined as the tickets

from the first time window; target domain tickets are the tickets from the second

time window. The SCL first chooses a set of m pivot features that occur frequently

in both domains. Next, it models the correlation between the pivot features and all

other features by training pivot predictors to predict the occurrences of each pivot

feature in all training dataset from both domains [AZ05, BMP06]. The coefficients

of l-th pivot predictor characterize the correlation between non-pivot features with

the l-th pivot feature; positive coefficients indicate that a non-pivot features is highly

correlated with the corresponding pivot feature.

We consider the coefficients of each pivot predictor as a column vector. All pre-

dictors can then be arranged into a matrix W = [wl]
n
l=1, where wl is the lth column

coefficient vector and n is the number of pivot features. Let θ ∈ Rh×d be the top h

left singular vectors of W , i.e., [U D V T] = SV D(W), θ = UT [1 : h, :]. There vectors

are the principal predictors for our coefficient space. If these pivot features are well

chosen, we expect these principal predictors to distinguish between words leading to

similar and different resolutions in both domains.

As we observe a feature vector x ∈ S at training and testing time, we notice

feature space S is different for different domains. We apply the projection θx to

obtain k new real-valued features. Now we use augmented feature vector < x, θx >

82

for the same instance. If θ contains meaningful correspondences, then we have a

mapping of feature vectors from different feature spaces into a shared feature space.

The shared features will bring tickets predicting similar pivot features closer using

similarity measurement given in following Equation 5.1:

sim(xas, xat) =

∑
w∈V xs(w) ∗ xt(w)

2|xs| · |xt|
+
cos(θxs, θxt)

2
(5.1)

Where xa =< x, θx > is the augmented feature vector, V is the shared words in

two feature space that xs and xt belongs to, x(w) is the entry value for word w in

vector x and cos(·, ·) is the cosine similarity function. Here we assume those pivot

features strongly indicate the resolution and we will explain how we extract those

pivot features in the next section.

5.3.3 Picking Pivot Features

The efficacy of SCL depends on the choice of pivot features. In [BMP06], frequently-

occurring words are chosen as pivot features to resolve domain adaptation in a speech

tagging problem. Frequently-occurring words often correspond to function words,

such as prepositions and determiners, and are good indicators of parts of speech.

With respect to sentiment classification in [BDP+07], those features are chosen as

pivot features which have the highest mutual information to the source label. We use

a different approach, however, for a ticket resolution recommendation task in picking

up pivot features. We require pivot features to be good predictors of resolutions. We

attempt following two approaches in our situations.

First, we calculate the term frequency-inverse document frequency (TF-IDF [MRS+08])

scores for all words out of ticket symptom description in both domains and choose

1000 words having the highest TF-IDF scores for each domain. Then, we choose the

m most frequently-occurring words out of the two sets of 1000 words.This allows us

83

to eliminate function words, such as prepositions and determiners, while choosing less

frequently-occurring words that are strong indicators of resolutions. However, vocab-

ularies used for describing “ticket symptom” and “ticket resolution” could differ, and

the first approach only gives us the words that are strong indicators of “symptom”

instead of “resolution”. Second, we assume that there are some tickets with reso-

lution in target domain and use the strategy shown in Table 5.3 to pick the pivot

features from ticket resolutions instead of ticket symptoms. The assumption can be

easily satisfied in a practical scenario since we define source and target domain via

partitioning the tickets and, therefore, we can always assign those latest tickets with

resolutions to a target domain. Table 5.2 contains the top pivot features chosen using

these two approaches.

TF 1 TF 3
app space job high restore status er-
ror procedures failed db

incident close copy resolve server
found issue action team job clear
close file

Table 5.2: Top pivot features chosen by TF 1, TF 3.

We refer throughout the rest of this work to the algorithm using the first approach

of picking pivot features as TF 1, and the algorithm using the second one as TF 3.

As shown in Table 5.2, the pivot features chosen by TF 1 strongly describe the ticket

symptom observed on the server system. At the same time, the pivot features chosen

by TF 3 describe the ticket resolution, i.e., how to resolve issues on the server system.

5.4 Implementation

In this section, we discuss implementation and some issues we encountered while

building the resolution recommendation system based on feature adaptation.

84

5.4.1 Pivot Predictors

From each pivot feature we create a binary classification problem of the form “does

pivot feature l occur in this ticket?”. Then we classify the training set. If we represent

our features as a vector x, we can solve these problems using m linear predictors

in which we use a linear regression model with l2 regularization as the underlying

classification model.

fl(x) = sgn(ŵl · x), l = 1 . . .m (5.2)

Notice that these predictors operate on the original feature space and that there

are several differences for constructing predictor formulas indicated by Equation 5.2.

Table 5.3 summarizes the differences.

TF 1 TF 3
sgn(·) does pivot feature l occurs in

the symptom description of
this ticket?

does pivot feature l occurs in
the resolution of this ticket?

pivot features the m most frequently-
occurring words shared in
the two sets of 1000 words
having the top TF-IDF
scores in ticket symptom
descriptions of both domains

the m most frequently-
occurring words shared in
the two sets of 1000 words
having the top TF-IDF
scores in ticket resolutions
of both domains

x 1000 words having the
highest TF-IDF scores from
symptom description but
excluding pivot features

1000 words having the
highest TF-IDF scores from
symptom description

training data all tickets from both domains all tickets attached with res-
olution from both domains

Table 5.3: Differences in constructing predictors for TF 1 and TF 3.

For TF 1, each instance contains features that are totally predictive of the pivot

features (the feature itself), so we exclude those features when making the binary

prediction as shown in Table 5.3. The pivot predictors are the key element in SCL.

The weight vectors ŵl encode the covariance of the non-pivot features with the pivot

85

features. If the weight given to the z-th feature by the l-th pivot predictor is posi-

tive, then feature z is positively correlated with pivot feature l. Since pivot features

strongly indicate resolutions, we expect non-pivot features from both domains to be

correlated with them. If two non-pivot features are correlated in the same way with

many of the same pivot features, then they have a high degree of correspondence.

5.4.2 Hyper Parameter Tuning

Structural corresponding learning uses the techniques of alternating structural op-

timization (ASO) to learn correlations among pivot and non-pivot features [AZ05].

There are several free parameters and extensions to ASO, and we briefly address our

choices here. As shown in Figure 5.4, setting h between 20 and 40 does not result

in large change in performance. With respect to the number of pivot features m, we

Figure 5.4: Hyper parameter selection. According to experimental results, h = 30
and m = 70 are chosen for the rest of our work.

observe that m around 65 gives a good performance. Therefore, through the rest of

this work, we set h = 30 and m = 70.

5.5 Evaluation

In this section, we will focus on the dataset, the running environment and discussion

of experimental results.

86

5.5.1 Setup

For each account, we ordered tickets by time and chose various approaches to slide

the dataset. Codes are implemented in Java, running on 64-bit Windows 7 operating

system residing on a machine equipped with 16 GB RAM, Intel(R) Core(TM) i7-4770

CPU running at 3.40 GHz. Training of pivot predictors is parallelized.

5.5.2 Evaluation of Feature Adaptation

The goal of our first experiment is to verify feature adaptation in which tickets are

ordered by time. The first 6000 tickets are chosen for experiments. Then a half of

these tickets are considered as source domain and the second half as target domain.

We assume the first 1000 tickets in target domain have resolutions. Therefore, pivot

features could be extracted from available resolutions of both source and target do-

main using the approach shown in Table 5.3 . Under this setup, our experiments

show that feature mapping between the vocabularies used in both source domain

and target domain exists, and it strongly helps in improving ticket recommendation

performance.

Figure 5.5 shows the overall performances using three algorithms “No-TF”, “TF-

1” and “TF-3”. “No-TF” is just the basic KNN-based recommendation algorithm

with no feature adaptation.

As shown in Figure 5.5, “TF-3” always outperforms the other two algorithms by

around 8%, and these two algorithms have similar performances but, “TF-1” never

performs better than “No-TF.” As we illustrated in Table 5.2, the approach of picking

pivot features in “TF-1” provides a strong indication of “symptom description” rather

than “resolution description,” and therefore is inaccurate and misleading in building

correlation between non-pivot features and pivot features.

87

Figure 5.5: Overall performance for three accounts.

We select an event ticket in account1 to illustrate why “TF-3” is better than

the basic KNN-based algorithm “No-TF.” Table 5.4 shows a list of recommended

resolutions given by each algorithm. The testing ticket is a real event ticket triggered

by an error when processing a text file. It has the symptom description as “an error in

process xxx while processing file xxx.txt, leave the processing” and its true resolution

is “connectivity issue, the file has been retransmitted successfully.” The general idea

of this resolution is to retransfer and reprocess the file.

As shown in Table 5.4, the second resolution recommended by “No-TF” is the

most relevant but still a wrong resolution: “as a part of application team testing, file

has been successfully repulled.” Obviously, it is caused by manual testing. “TF-3,”

however, recommends 4 resolutions all highly relevant to the true resolution. Accord-

ing to the definition of HIT [TLSG13], the first resolution recommended by “TF-3”

is regarded as a true resolution, i.e., “the file has been retransmitted successfully.”

Also as we notice, the word “file” is a pivot feature shown in Table 5.3 that allow us

to identify expected resolutions. Therefore, our proposed algorithm “TF-3” indeed

can find the hidden feature mapping using SCL and the feature mapping performs

better for recommending ticket resolution.

Moreover, we visulalized one row of the project matrix θ for our experiments on

general feature adaptation. Table 5.5 illustrates the first row of θ; the features on each

88

algorithm recommended resolutions isHit

No-TF
closing this ticket as its a duplicate of the incident
inc0771310

FALSE

as a part of application team testing, file has been suc-
cessfully repulled

FALSE

the file is been decomissioned, no action requried,
hence resolving

FALSE

TF-3

the file has been retransmitted successfully TRUE
the file was delivered successfully FALSE
the file has been successfully repulled FALSE
file was pulled successfully from bank of xxx FALSE

Table 5.4: Case study.

row appear only in the corresponding domain. In a traditional binary classification

problem of applying SCL [BDP+07], corresponding features indicate either a positive

or negative label. Corresponding features here indicate event tickets caused by the

same or similar root cause and thus share similar resolutions. We colored those

correpondence feature groups so they could be easily identified visually. For example,

features “sdump, page, harddiskvolume, paging, traps” colored in red indicate system

issues in or similar to paging due to low capacity. “sdump” is an excutable command

that tries to dump virtual storage and thus makes space for paging. Without feature

mapping, event tickets will be considered having low or no similarity if they contain

discriminant features. Once we disovered feature mapping, we can project those

discriminant features to shared feature space by applying them to θx. The features

will ensure that their corresponding event tickets have higher similarity.

5.5.3 Feature Adaptation for Different Time Granularity

In section 5.5.2, we discussed the experiments for general feature adaptation problems.

In this section we consider an adaptability between ticket data sets sliced by different

time granularities, i.e., daily, weekly or even monthly. As an example, we choose

89

type features
+s sdump bee idc ami sr included refer read processing queues page read-

response
+t readresponse getacctsummbycustid contingency cli logerror hard-

diskvolume paging traps getacctsforgrantee ant
-s messages wtprocess normal wiptrigger ifscmonitor poa responding

dumpcode acctinfo
-t batjbstrm sm fndstn xmx dbm aelv throw responsestream

Table 5.5: Correspondences discovered by SCL for general feature mapping exper-
iments. Notation “s” corresponds to features coming from source domain, and “t”
corresponds to features coming from target domain. The “+” and the “-” symbols
indicate positive and negative features in correspondences, respectively.

ticket sets from three consecutive days and use them for the experimental setup for

three algorithms listed in Table 5.6.

algorithm day1 day2 day3
No-TF training dataset N/A testing dataset
TF-1 source tickets target tickets for

training
target tickets for test-
ing

TF-3 source tickets target tickets for
training

testing tickets for
testing

Table 5.6: Experimental setup for feature adaptation using daily ticket set.

The goal of this experiment is to understand the feature shifting phenomenon and

the shifting of an event type in different time granuarities. Positive results would

indicate that monitoring tickets generated daily do not change too much and there

still exist stable pivot features for constructing meaningful feature mapping in the

feature vocabulary. Otherwise, it would indicate that the daily monitoring tickets

shift a lot leading to various daily resolutions and thus noisy pivot features.

Figures 5.6 show the daily ticket number generated for the three different accounts.

Here, we remove tickets that are scattered in days with very few tickets, and thus we

see fewer tickets compared to Table 5.1. We choose account1 to carry out our daily

adaptation experiments since the number of daily tickets in account1 is sufficiently

90

Figure 5.6: Daily ticket number for each account. X-axis indicates the date IDs in
which the same ID doesn’t necessarily corresponde to the same date for different
accounts. Around two weeks data is available in account3 and four weeks’ data in
account1 and account2 in which we require a sufficient number of tickets generated
daily for our experiments.

large and varies the least. Figure 5.7 shows the experimental results for daily feature

adaptation. Tickets from three consecutive days are required for one trial. The next

trial is based on the tickets from a time window that we get by sliding the start date of

time window one time unit later. Weekly consecutive feature adaptation experiments

have been carried out in a similar setup and the results are shown in Figure 5.8 and

Figure 5.9 for account1 and account2 respectively. Account3 has been ruled out of

weekly feature adaptation experiments since it only has two weeks tickets, and the

experiment requires ticket data from at least three weeks.

While feature mapping learned from the first two consecutive days’ tickets are

useful for recommending the last day’s event ticket resolutions from the first day,

it can also degrade the recommendation performance. This causes problems when

resolutions indicated by pivot features are quite commonly shared for the first two

days but not for the third day. For example, the event tickets occurred in the first

two days mainly caused by “software exception” and “system failure” but in the last

91

Figure 5.7: Daily adaptation for account1.

Figure 5.8: Weekly adaptation experimental results on account1’s four weeks data.
Two trials are carried out since each trial requires three weeks data.

Figure 5.9: Weekly adaptation experimental results on account2’s four weeks data.
Two trials are carried out since each trial requires three weeks data.

day they occurred because of “low capacity.” As shown in Figure 5.7, around half

of the trials show performance degradation for our approach “TF-3.” These feature

mappings, which are not applicable between the first daily tickets and the last daily

92

ones, are used to project features of the last daily tickets into shared feature space

with first daily tickets. They cause noisy and inaccurate similarity calculations by

recommending algorithm and degradation of accuracy in resolution recommendation

.

Our experiment on weekly ticket datasets achieved positive results as illustrated

in Figure 5.8 and Figure 5.9. They indicate that the distribution of event types

occurring weekly are similar for these three consecutive weeks. Notice that in our

general feature adaptation experiments, around 5 days tickets are used in learning

the feature mapping which is nearly one week tickets.

5.6 Summary

This chapter studies the problem of resolution recommendation for monitoring tickets

in an automated service management. We analyze several sets of real-world moni-

toring tickets collected from a production service infrastructure and identify a vast

number of repeated resolutions for monitoring tickets. Based on our previous work

and some initial experiments, we observe the feature shifting phenomon and the exis-

tence of feature mapping in those tickets. In this chapter, we applied structural corre-

sponding learning to the problem of recommending ticket resolution, and conducted

extensive experiments on real-world ticket data sets to demonstrate the effectiveness

and efficiency of proposed methods.

93

CHAPTER 6

LEARNING TEXTUAL REPRESENTATION IN RANKING MODEL

In large scale and complex IT service environments, a problematic incident is

logged as a ticket and contains the ticket summary (system status and problem de-

scription). The system administrators log the step-wise resolution description when

such tickets are resolved. The repeating service events are most likely resolved by

inferring similar historical tickets. With the availability of reasonably large ticket

datasets, we can have an automated system to recommend the best matching resolu-

tion for a given ticket summary.

In this chapter, we first identify the challenges in real-world ticket analysis and

develop an integrated framework to efficiently handle those challenges. The frame-

work first quantifies the quality of ticket resolutions using a regression model built on

carefully designed features. The tickets, along with their quality scores obtained from

the resolution quality quantification, are then used to train a deep neural network

ranking model that outputs the matching scores of ticket summary and resolution

pairs. This ranking model allows us to leverage the resolution quality in historical

tickets when recommending resolutions for an incoming incident ticket. In addition,

the feature vectors derived from the deep neural ranking model can be effectively

used in other ticket analysis tasks, such as ticket classification and clustering. The

proposed framework is extensively evaluated with a large real-world dataset.

6.1 Introduction

The prominence of efficient and cost-effective service delivery and support is undeni-

able in the competitive business enterprise and is critical with the growing complexity

of service environments. This has motivated service-providing facilities to automate

many of their tasks, including system management, and routine maintenance proce-

94

dures (for instance, problem detection, determination and resolution) for the service

infrastructure [ABD+07, MSGL09, WZZ+17]. The automated problem detection has

been realized by some system monitoring softwares, such as HP OpenView [urla] and

IBM Tivoli Monitoring [urlb] . Such monitoring systems continuously capture system

events and generate incident tickets when the alerts are triggered. A typical work-

flow of problem detection, determination and resolution in IT service management

is prescribed by the Information Technology Infrastructure Library (ITIL) specifi-

cation [urld] and is illustrated in Fig. 6.1. The Incident, Problem, and Change

(IPC) system facilitates the tracking, analysis and mitigation of problems and is a

requirement for organizations adapting the ITIL framework. A monitoring agent on

a server keeps track of the system statistics and triggers an alert when a problem

is detected. If an alert persists beyond the specified duration, an event is triggered.

Such events are consolidated into an enterprise console, which uses rule-based, case-

based or knowledge-based engines to analyze the events and determines whether or

not to create an incident ticket in the IPC system [Li15].

Each ticket is stored as a database record that consists of several related attributes

(see Table 6.1 for the major attributes) and of their values along with the system

status at the time this ticket was generated. Some of the major attributes, such as

the ticket summary (created by the aggregation of the system status and containing

the problem description) and the ticket resolution (the textual description of the

solution) are critical for diagnosing and resolving similar tickets. Service providers

provide an account for every beneficiary that uses the services on a common IT

infrastructure. System administrators use the historical tickets and their resolutions

from different accounts for problem diagnosis and resolution. The textual description

of steps taken to resolve a ticket is logged by the system administrator. Such a

human intensive process is quite inefficient in terms of resolution time and cost for

95

Figure 6.1: Information Technology Infrastructure Library (ITIL) service manage-
ment system.

large IT service providers that handle many tickets every day. This is one of the

major motivations behind the automated analysis of ticket resolution.

SEVERITY FIRST-OCCURRENCE LAST-OCCURRENCE
0 2014-03-29 05:50:39 2014-03-31 05:36:01

SUMMARY ANR2579E Schedule INC0630 in domain VLAN1400 for
node LAC2APP2204XWP failed (return code 12)

RESOLUTION Backups are working fine for the server.
CAUSE ACTIONABLE LAST-UPDATE
Maintenance Actionable 2014-04-29 23:19:25

Table 6.1: A sample ticket.

6.1.1 Challenges and Proposed Solutions

With the increasing complexity and scalability of IT servers, the necessity of a large-

scale efficient workflow in IT service management is undeniable. The samples of real-

96

world tickets (see Table 6.2 for the contents of tickets that are not easily interpretable)

illustrate the unique ticket features that are less intuitive and lead to challenges in

IT service management, especially in automated ticket resolution analysis.

ID Summary Resolution
1 Box getFolderContents

BoxServerException
user doesnt have proper BOX ac-
count

2 Box getFolderContents
BoxServerException

user should access box terms be-
fore access the efile site

3 Box getFolderContents
BoxServerException

resolved

4 High space used for logsapp resolved
5 High space used for disk C 5.24 GB free space present

Table 6.2: Illustration of ticket samples from an account. Only ticket summary and
resolution are displayed for the sake of simplicity.

Based on our preliminary studies [ZLSG14b, ZTZ+16], we have identified two key

challenges in automating ticket resolution.

Challenge 1 How to quantify the quality of the ticket resolution?

Earlier studies generally assumed that the tickets with similar descriptions should

have similar resolutions, and often treated all such ticket resolutions equally. However,

the study [ZTZ+16] demonstrated that not all of the resolutions are equally worthy.

For example, as shown in Table 6.2, the resolution text “resolved” is not useful at all.

As a result, the quality of “resolved” is much lower than other resolutions. In order to

develop an effective resolution recommendation model, such low-quality resolutions

should be ranked lower than high-quality resolutions. In our proposed framework, we

first carefully identify relevant features and then build a regression model to quantify

ticket resolution quality.

Challenge 2 How to make use of the historical tickets along with their resolution

quality for effective automation of IT service management?

97

Although, it might be intuitive to search for historical tickets with the most similar

ticket summary, and recommend their resolutions as potential solutions to the target

ticket [ZTZ+16], such an approach might not be effective due to 1) the difficulty in

representing the ticket summary and resolution, and 2) the avoidance of the resolution

quality quantification. It is an essential task in IT service management to accurately

represent the ticket summary and resolution. The classical techniques such as the

n-gram, TF-IDF, and LDA are not effective in representing tickets as the ticket sum-

mary and resolution are generally not well formatted. In our proposed framework,

we train a deep neural network ranking model using tickets along with their qual-

ity scores obtained from the resolution quality quantification. The ranking model

directly outputs the matching scores of ticket summary and resolution pairs. Given

an incoming incident, the historical resolutions having top matching scores with its

ticket summary can then be recommended. In addition, the feature vectors derived

from the ranking model provide effective representations for the tickets and can be

used in other ticket analysis tasks, such as ticket classification and clustering.

Recently, only a few studies have focused on ticket resolution [ZTZ+16] . They

have adapted the techniques, such as n-gram, Jaccard similarity and LDA [Alp14,

BNJ03], which are utilized mostly for processing well-formed text. As the textual

attributes of real-world tickets are far from the well-formed natural language (see

Table 6.1 for the ticket attributes), the studies relying just on the classical techniques

cannot be effective.

To the best of our knowledge, none of the existing studies has attempted to ad-

dress the aforementioned challenges. The main contributions of this chapter are:

(i) Identification and explanation of typical traits of the real-world tickets and the

major challenges in their analysis and resolution; (ii) Formulation of the problem as

an integrated deep neural network-based ranking framework and efficient handling

98

those challenges; (iii) Generalization of the ticket representation and successful appli-

cation to other ticket analysis tasks, such as, ticket classification and clustering; (iv)

Extensive evaluation of the proposed model against a large real-world dataset.

6.1.2 Road Map

The rest of this chapter is organized as follows. Section 6.2 gives an overview of frame-

work. Section 6.3 describes the pre-process on tickets and the features used to train

the model for quantifying the quality of ticket resolution. In Section 6.4, we introduce

our proposed deep neural ranking model. Automation of resolution recommendation

is studied in Section 6.5 and ticket clustering and classification are evaluated in 6.6.

Comprehensive experiments are conducted and presented in Section 6.5, 6.6. Finally,

Section 6.7 concludes the chapter.

6.2 Overview

In this section, we provide a high-level description of the system. As illustrated

in Figure 6.2, the training data taken from the historical tickets dataset are first

preprocessed in order to quantify and evaluate the quality of the resolution. The

preprocessed result is then represented as a triplet of the ticket summary, its resolution

text, and the quality score. These triplets are the training data for the proposed deep

neural network (DNN) ranking model. The trained DNN model outputs a matching

score of a quantified ticket resolution for an incoming ticket summary. The resolutions

with the top N highest matching score can be recommended for an incoming ticket.

The model’s intermediate result is a feature vector for a ticket representation. Such

vectors are used in other ticket analysis tasks, such as ticket classification and ticket

clustering.

99

Figure 6.2: Overview of the proposed system.

6.3 Ticket Resolution Quality Quantification

In this section, we describe the features used to quantify the quality of ticket resolu-

tions and present several interesting findings from our experiments.

As shown in Table 6.1, a ticket resolution is a textual attribute of a ticket. A high

quality ticket resolution is supposed to be well written and informative enough to

describe the detailed actions taken to fix the problem specified in the ticket summary.

A low-quality ticket resolution is less or non-informative and is mostly logged by a

careless system administrators or when the corresponding issue described in the ticket

is negligible. Based on our long preliminary study [ZTZ+16], we’ve found that for a

typical ticket, the ticket resolution quality is driven by the 33 features that can be

broadly divided into following four groups:

100

•Character-level features: A low-quality ticket resolution might include a large

number of unexpected characters, such as space, wrong or excessive capitalization,

and special characters.

• Entity-level features: A high-quality ticket resolution is expected to provide

information on IT-related entities, such as server name, file path, IP address, and so

forth. Because the ticket resolutions are expected to guide system administrators to

solve the problem specified in the ticket summary, the presence of the context-relevant

entities makes the resolution text more useful.

• Semantic-level features: A high-quality ticket resolution typically includes

Verb and Noun, which explicitly guides system administrators on the actions taken

to diagnose the problem and to resolve the ticket.

• Attribute-level features: A high-quality ticket resolution usually is lengthy

enough to carry sufficient information relevant to the problem described in the ticket

summary.

The ticket resolution quality quantifier uses these 4 groups of features and operates

on the historical tickets to output a set of triplets {< s1, r1, q1 >,< s2, r2, q2 >, . . . , <

sn, rn, qn >} where si and ri are ticket summary and ticket resolution for the ith ticket,

and qi is the quality score assigned by the quantifier.

6.3.1 Feature Description

Character-level features. To quantify the use of character usage, we considered

each of the nine character classes (exclamationRatio, colonRatio, braketRatio, @Ratio,

digitRatio, uppercaseRatio, lowercaseRatio, punctuationRatio, whitespaceRatio) as a

feature and then computed their frequency to all the characters within the ticket

resolution.

101

Concept Pattern Examples

Action NOUN/NP preceded/succeeded by VERB (file) is (deleted)
Problem NOUN/NP preceded/succeeded by ADJ/VERB (capacity) is (full)

Table 6.3: PoS tag pattern for concepts problem, action. NP refers to noun phrase
derived from the PoS tag sequence for each resolution.

Entity-level features. To quantify the usage of IT related entities, we considered

each of the eight entity classes (numericalNumber, percentNumber, filepathNumber,

dateNumber, timeNumber, ipNumber, servernameNumber, classNumber) as a feature

and computed their frequency to all the words within the ticket resolution. The

occurrence of these entities was captured using the regular expressions. For the

filepathNumber, it refers the total occurrence of Linux and Window file path in the

ticket resolution. For the classNumber, we considered the total occurrence of class

names or functions in the programming languages, such as Java, Python, and so

forth. We also explored some other entities, but in comparison to other features,

their contribution to overall model performance was negligible.

Semantic-level features. To quantify the usage of those specific semantic words,

we first preprocessed every ticket resolution into a Part-Of-Speech (PoS) [PDM11] tag

sequence and then calculated the ratio of each tag within the tag sequence. There

were 17 total tags, including the tag ”X” for the foreign words, typos and abbrevi-

ations, they were reduced to 12 tags in the NTLK implementation [Bir06]. Each of

the 12 tags, VERBRatio, NOUNRatio, PRONRatio, ADJRatio, ADVPNRatio, AD-

PRatio, CONJRatio, DETRatio, NUMRatio, PRTRatio, PUNCTRatio, XRatio, were

considered as a feature. Furthermore, we borrowed the concepts, such as, Problem,

Activity and Action in work [PJNR13] and defined the corresponding PoS tag pattern,

as shown in Table 6.3. We reduced the three concepts into two by merging the con-

cepts Activity, Action into the concept Action and then used the regular expressions

to calculate the occurrence of each concept feature problemNum, actionNum.

102

Attribute-level features. To quantify the high-quality resolution in ticket, we

included two attribute-level features resolutionLength, interSimilarity in our model.

The first one was used for the ticket resolution length. The second one was used to

record the Jaccard similarity between a ticket’s summary and its resolution, and was

used to define the relevance between them.

6.3.2 Findings

We evaluated three of the most popular regression models (logistic regression, gradient

boosting tree and random forest [Alp14]) on the labeled real-world ticket dataset and

found that the random forest performed best for the ticket resolution quantification

and also for evaluation of the feature importances, as illustrated in the Table 6.4.

Based on our evaluation, we found that the best indicator of a good resolution

was the length of the resolution resolutionLength, followed by the occurrence of the

concept action, i.e., feature actionNum. It is also self-intuitive that the long resolution

can be more informative. The features actionNum and problemNum correspond to

the problems identified and the actions taken by the system administrators in the

process of resolving the ticket.

Another interesting finding was that seven out of the top 15 features belonged to

the group word level semantic features, and were specifically derived from the PoS tag

sequence. The 3rd top-ranked feature was PRTRatio related to the ratio of the words

tagged as particle or function words. This implied that the resolutions containing the

function words such as “for” and “due to” have a high quality. Moreover, high-quality

resolutions were usually well written and complied with the natural language syntax,

while the low-quality resolutions, on the other hand, were ill-formated and caused

great difficulty for the PoS tagger trained on natural languages. In summary, the

103

Feature Group Importance score
Feature Rank Mean Variance
Character-features

uppercaseRatio 12 0.026123 0.008717
lowercaseRatio 10 0.049657 0.008206
punctuationRatio 11 0.036442 0.008710
whitespaceRatio 9 0.049123 0.008610

Entity-level features
servernameNumber 13 0.018770 0.008553

Semantic-level features
VERBRatio 7 0.079400 0.009091
NOUNRatio 4 0.088025 0.009420
ADJRatio 14 0.013885 0.009048
ADVRatio 5 0.084971 0.008327
DETRatio 8 0.055133 0.008147
PRTRatio 3 0.090921 0.022932
PUNCTRatio 15 0.008797 0.008228
problemNum 6 0.080322 0.008480
actionNum 2 0.147252 0.038538

Attribute-level features
resolutionLength 1 0.152234 0.043585

MSE Avg. 0.010269 MSE Var. 0.004163

Table 6.4: Illustration of the top 15 ranked features and their rank evaluated by
the random forest regression model. To best evaluate the feature importance score,
we show the rank of average importance score, its mean and variance. The best
performance in the metric of both MSE (mean square error) average and variance is
attached of the end.

semantic features have predominant advantages in characterizing and quantifying the

ticket resolution quality over the other features.

6.4 Deep Neural Ranking Model

In our preliminary work [ZTZ+16], we model automating ticket resolution task as an

information retrieval problem and tackle it from the perspective of finding a similar

ticket summary in historical data, in which we treat each ticket resolution equally.

However, given the triplets {< s1, r1, q1 >,< s2, r2, q2 >, . . . , < sn, rn, qn >} from

104

section 6.3, we can definitely improve the automating ticket resolution task by con-

sidering the quality of resolutions.

6.4.1 Problem formulation

In this section, we view the automating ticket resolution task as text pair ranking

task, which is one of the most popular tasks in the information retrieval (IR) domain.

As shown in Table 6.2, the ticket with the same ticket summary can be resolved

by multiple resolutions with different qualities. In automating ticket resolution, we

expect the model to recommend all the possible resolutions, but with the order in

which high quality resolution ranks first. Therefore, given the triplets {< s1, r1, q1 >

,< s2, r2, q2 >, . . . , < sn, rn, qn >} from section 6.3, the goal is to build a model that

for ticket summary si generates an optimal ranking score yi for each resolution, s.t.

a relevant resolution with a high quality has a high ranking score.

More formally, the task is to learn a ranking function:

h(w,ψ(si, ri))→ yi

where function ψ(·) maps ¡summary, resolution¿ pairs to a feature vector rep-

resentation, where each component reflects a certain type of similarity, e.g., lexical,

syntactic, or semantic. The weight vector w is a parameter of the model and is learned

during the training.

There are three common approaches in information retrieval to learn the ranking

function, namely, pointwise, pairwise and listwise [L+09].

Pairwise and listwise approaches yield better performance most of the time since

they exploit more information from the ground truth ordering, meanwhile they are

more complicated to implement and take more time to train. In this work, the

training data naturally comes as pointwise, and producing a better representation

105

ψ(·) that encodes ticket summary, resolution or even whole ticket is one of our goals.

Hence, we adopt the simple pointwise ranking model and focus more on modeling the

representation for a ticket and its components using deep learning techniques.

6.4.2 Deep Neural Ranking Architecture

In this section, we propose a deep neural ranking model to solve the problem. The

model consists of two sentence model [KGB14] for mapping ticket summary and reso-

lution to their vector representation, respectively. We argue that it plays an important

role in automation of IT service management to derive an efficient representation for

ticket summary and resolution from the ranking model.

In the following sections, we first describe the sentence model for mapping ticket

summary and resolution to their distributed vectors and then describe how they can

be used to learn semantic similarity metric between ticket summary and resolution

for ranking.

Sentence Model

The architecture of our CNN-based model is shown in Fig 6.3. It is inspired by the

CNN model for performing various sentence classifications [KGB14].

Our network is composed of a single embedding layer, two repeated composite

structures and a final fully connected layer that output the distributed representation.

The composite structure consists of one wide convolutional layer followed by a non-

linearity and k-max pooling. The input to the network includes not only the raw

words, but also the raw characters. We will briefly explain the components of our

neural network.

106

Embedding Layer

The input to our sentence model is a sentence s treated as a sequence of words

and characters: [w1, .., w|wl|, e1, .., e|el|], where each word and character is drawn from

a word vocabulary V and a character vocabulary E, respectively. Words are repre-

sented by distributional vectors w ∈ Rd in a word embeddings matrix W ∈ Rd×|V |.

Characters are represented in a similar way. We set the same dimension for word and

character embedding, and merge two vocabularies into one T = V ∪E as well as the

embedding matrices W ∈ Rd×|T |. Each input sentence s is represented by a sentence

matrix S ∈ Rd×|t| = [w1, . . . , w|t|], where t is the total length of words and characters

in s.

Convolution Layer

Convolutional layer aims to extract interesting patterns of word and character

sequences. Concretely, we harness the one-dimensional convolution operation working

on two vectors s ∈ R|s| and f ∈ Rm (a filter of size m) and taking the convolution

operation in each m-size window of the sentence s to obtain another sequence c:

cj = (s ∗ f)j = sTj−m+1:j · f =

j+m−1∑
k=j

skfk (6.1)

where each row vector cj ∈ R|s|+m−1 in C results from a convolutional operation

between jth row vector in S and jth row vector in F .

In practice, a set of filters, packed as F ∈ Rn×d×m, that work in parallel are applied

in a deep learning model, producing multiple feature maps C ∈ Rn×d×(|s|+m−1). To

allow the network learn an appropriate threshold, a bias matrix B ∈ Rn×d is added

to the result the feature maps.

Activation Layer

Following a convolutional layer, activation layer with a rectified function α(·) is

applied elementwise to the input, i.e., the output from convolutional layer.

107

Folding Layer

The dependency between different rows is captured by Folding Layer, which sums

up every two rows in a feature map component-wise. For a map of d rows, folding

reduces it into a map of d/2 rows.

Pooling Layer

The output from the convolutional layer (passed through the activation function)

is then passed to the pooling layer, whose goal is to aggregate the information and

reduce the representation. We use dynamic k-max pooling [NH10] to build rich

feature representations of the input.

Architecture for ranking ticket summary and resolution pairs

The partial network architecture introduced in Section 6.4.2 takes a sentence as in-

put and outputs a distributional vector. Applied to a pair of ticket resolution and

summary, it will output two distributional vectors with the same dimension thus, a

similarity score can be computed, which together with the two vectors are concate-

nated into a single representation, shown in Fig. 6.3.

In the following section, we briefly introduce how the intermediate distributed

representation produced by the sentence model can be used to compute the matching

scores of the ticket summary and resolution pairs.

Representation for ticket summary and resolution pair

Having the output of our sentence model for processing ticket summary and res-

olution, respectively, the resulting representation vectors xs and xr, can be used to

compute the ticket summary and resolution similarity score as follows:

sim(xs, xr) = xTsMxr (6.2)

108

Figure 6.3: Ranking model. The character level embedding is not shown for the sake
of saving space.

Where M ∈ Rd×d is a similarity matrix, it acts as a model of noisy channel ap-

proach for machine learning, which has been commonly adopted as a scoring model

in information retrieval and question answer [EM03]. It can also be viewed as a

process of learning similarity metric on two vectors drawing from different feature

spaces [K+13]. The similarity matrix M is a parameter of the network and is opti-

mized during the training.

109

Multilayer Perceptron

The joint vector is then passed through a 3-layer, fully-connected, feed-forward

neural network, which allows rich interactions between a sentence pair from one of

the three components. Finally, a single neuron outputs the score between a query (or

the context) and a reply for a linear regression.

Objective Function

The model is trained to minimize the binary cross-function:

L = − log ΠN
i=1p(yi|si, ri)

= −
N∑
i=1

[yi log ai + (1− yi) log(1− ai)] (6.3)

Where yi is the ground truth for instance i while ai is the prediction.

The parameters of the network are optimized with Adadelta [Zei12] with the

gradients computed by back propagation algorithm.

6.4.3 Regularization

To mitigate the overfitting issue we augment the cost function with L2-norm regular-

ization terms for the parameters of the network. Also, dropout [SHK+14] is employed

to prevent feature co-adaptation by setting to zero (dropping out) a portion of hidden

units during the forward phase.

6.4.4 Word Embedding

While our model allows for learning the word embeddings directly for a given task,

we initialize the word matrix parameter W from an unsupervised neural language

110

model [PSM14]. Although according to a common experience that a minimal size

of the dataset required for tuning the word embeddings for a given task should be

at least in the order of hundred thousands, and in our case the number of ticket

summary resolution pairs is sufficient, the wide existence of special words in tickets

results in a much larger vocabulary size than in common natural language. We choose

the dimensionality of our word embeddings as well as character embeddings to be 50.

This ends the description of our entire ranking model. In the following, we first

present experiments on training the deep neural model and its performance on au-

tomating ticket resolution.

6.5 Automating Ticket Resolution

This section evaluate the proposed deep neural ranking model on automating ticket

resolution against a series of baselines.

6.5.1 Datasets

To keep the consistency of our experiments, we conduct all the experiments on histor-

ical tickets from one single ticket account, which consists of a total of 479,079 tickets

with more than 30% labeled. Therefore, the only labeling effort is devoted to train

the resolution quality quantifier. We summarize the usage of dataset in Table 6.5.

System Training Validation Testing

Resolution Quality Quantifier 5000 – 1000
Ticket Resolution Automation 450,000 20,000 9,000

Ticket Clustering 10,000 – 2,000
Ticket Classification 20,000 – 3,000

Table 6.5: Ticket dataset summary.

111

6.5.2 Ticket Resolution Automation

Evaluation Metrics

Given the ranking lists based on their resolution quality score for test tickets, we

evaluated the performance in terms of the following metrics: precision@1 (p@1),

mean average precision (MAP) [Zhu04], and normalized discounted cumulative gain

(nDCG) [JK02]. Because the system outputs the best selected resolution, p@1 is

the precision at the 1st position, and should be the most natural way to indicate

the fraction of suitable resolution among the top-1 results retrieved. Besides, we

also provided the top-k ranking list for the test ticket using nDCG and MAP, which

test the potential for a system to provide more than one appropriate resolutions as

candidates. We aimed at selecting as many appropriate responses as possible into the

top-k list and rewarding methods on the top that return suitable replies.

Algorithms for Comparison

Automating ticket resolutions can be tackled from different perspectives, hence this

section mainly focuses on implementing potential competing solutions for automat-

ing ticket resolution from different perspectives and proving each one’s effectiveness.

We include several alternative algorithms for comparison. The algorithms can be di-

vided into two big categories, i.e., 1) generation-based methods and 2) retrieval-based

methods.

Generation-based method. For this group of algorithms, the system will gen-

erate a response from a given input. Hence, we use beam search [TN03] to enable

them to search for more than one response.

• Statistical Machine Translation (SMT): SMT [RCD11] is a machine translation

paradigm that translates one sentence in the source language to a sentence in the

112

target language. If we treat ticket summary and resolution as separate languages, we

can train a translation model to “translate” summary into resolution.

• LSTM-RNN: LSTM-RNN is a Recurrent Neural Network (RNN) using the Long

Short Term Memory (LSTM) architecture. The RNN with LSTM units consists of

memory cells in order to store information for extended periods of time. We first use

an LSTM-RNN to encode the input sequence (ticket summary) to a vector space, and

then use another LSTM-RNN to decode the vector into the output sequence (ticket

resolution) [SVL14].

Retrieval-based method. The approaches within this group of baselines are

based on retrieval systems, which return the best matched candidate resolution out

of the historical ticket data repository given a particular new unresolved ticket.

• Random Shuffle. The method randomly selects replies for each query from

the retrieved resolution list obtained from tickets having closest (Jaccard distance)

ticket summaries as the query. However we only randomize the order of the retrieved

resolution candidates instead of randomly choosing the candidates. The true random

match is too weak to be included as a decent baseline.

• CombinedLDAKNN. This is one approach adopted in our previous work [ZTZ+16]

on automating ticket resolution task without demanding any labeling efforts. It first

trains an LDA model on whole historical tickets. For each new ticket, we retrieve the

most relevant resolution, directly applying cosine similarity on the feature vector for

tickets inferred from the trained LDA model.

Results

Overall performance results are shown in Table 6.6. We have some interesting observa-

tions. The performance of the generative methods is quite moderate, which concurs

the judgment from [SLL15]. The automatic resolution generators tend to produce

113

System p1 MAP nDCG5 nDCG10
SMT 0.421 0.324 0.459 0.501
LSTM-RNN 0.563 0.367 0.572 0.628
Random Shuffle 0.343 0.273 0.358 0.420
CombinedLDAKNN 0.482 0.347 0.484 0.536

Our method 0.742 0.506 0.628 0.791

Table 6.6: Overall performance comparison. For generative model, we enable beam
search for multiple output result, so that MAP and nDCG scores can be computed.

universal, trivial and ambiguous resolutions, which are likely to resolve a wide range

of tickets, but not specific enough to conduct a meaningful remediation on faulted

servers, i.e., low quality resolutions. This leads to the overwhelming performance of

retrieved methods over generative methods.

When it comes to phrase-based SMT, it is very tricky to segment a large part

of ticket summaries into meaningful words or phrases since they are automatically

generated by machines and can be extremely noisy. In general, generative approaches

using deep learning (LSTM-RNN) outperform those without deep learning techniques

and more advantage can be gained using input with character level order information.

With respect to retrieval-based methods, they attempt to obtain a ranked list of

candidate resolutions, which show great potential to conduct system diagnosis and

resolving with diversity. Among retrieval-based methods, Random shuffle is a lower

bound for all baselines. As we mentioned, it randomizes the order of the retrieved

results. Hence, the result is still promising as the straightforward index approach.

CombinedLDAKNN slightly outperform the SMT approach, which is not surprising.

The trained LDA model enables the algorithm to learn data statistic information,

such as resolution popularity, the correlation between ticket summary and resolution,

which benefits retrieving high relevant resolutions. The performance of deep learning

based algorithms in general overwhelms that of shallow learning-based algorithms.

114

6.6 Other Ticket Analysis Applications

Category Measure Formula Note

Surface
Matching
Similarity

Jaccard
[GBJR08]

SJAC(T1, T2) = |A∩B|
|A∪B| A and B be sets of words

in two ticket descriptions

N-word overlap
[AHS08]

Snwo(T1, T2) = tanh(
overlapphrase(T1,T2)

n1+n2
) A phrasal n-word overlap

NLCS [II08] SNLCS(T1, T2) = (|LCS(T1,T2)|)2
|T1|×|T2| Considering the length of

both the shorter and the
longer string

Semantic
Similarity

Leacock &
Chodorow
[LC98]

Slch(c1, c2) = − log len(c1,c2)
2×D Path-based method us-

ing wordnet

RES [Res95] Sres(c1, c2) = IC(lcs(c1, c2)) Information content-
based method

Word2vec based
[MSC+13]

Sw2v(w1, w2) Word2vec based
word similarity using
wikipedia

Hybrid
Similarity

ISLAM’s mea-
sure [II08]

SSTS(T1, T2) =
(δ(1−wf+wfSo)+

∑ρ
i=1 ρi)×(m+n)

2mn
Combining string simi-
larity, semantic similar-
ity and common-word or-
der similarity

Li’s measure
[LMB+06]

SSSI(T1, T2) = δ s1·s2
‖s1‖·‖s2‖ + (1− δ)‖r1−r2‖‖r1+r2‖ Considering semantic

similarity and word-
order similarity

SyMSS
[OSdCI11]

Ssymss(T1, T2) = 1
n

∑n
i=1 sim(h1i, h2i)− l × PF Considering semantic

and syntactic info

our method ST icDNN(s1, s2) = cosine(xs1, xs2) xs is the vector repre-
sentation for ticket sum-
mary s

Table 6.7: The evaluated similarity measures including 3 categories and 10 measures.
The distributed representation for tickets learned in our model capture both string
and semantic similarity, thus we categorize it as hybrid similarity.

In this section, we demonstrate that the vector representation xs for ticket sum-

mary and xr for ticket resolution, derived from our sentence model play an important

role in the automation of IT service management, such as ticket clustering and ticket

classification. More specifically, we focus on the vector representation for ticket sum-

mary xs since most tasks in the IT service management are accomplished before

resolving tickets. The comprehensive empirical experiments conducted on the real

115

world ticket data set (see Table 6.5 for details) illustrate the effectiveness of the

learned vector representation.

6.6.1 Ticket Clustering

In IT service management, ticket clustering is important for optimal ticket dispatch-

ing [BBG+15] to relevant service teams. The role of similarity metrics is crucial for

any clustering algorithm. In this section, we compare the performance of the cluster-

ing based on the ticket’s feature vector with other popular metrics when applied to

the k-means clustering method (which assigns the ticket to the closest group). The

evaluated similarity measures can be classified into three categories: surface match-

ing methods, semantic similarity methods, and hybrid methods (see Table 6.7 for their

formula).

The F1 scores [AGK+12] obtained for evaluating the ticket clustering task over

different measures are illustrated in Table 6.8. To ensure the fairness of comparisons,

the F1 score for each measure was taken as the median from the 10 trials of differ-

ent testing samples (we used the worst case, the median case, and the best case).

Moreover, the value with the bold font in each column denotes the best value for

that case corresponding to the column. As shown in the table, the hybrid similar-

ity measure performed better than those using the simple similarity measures, the

surface matching similarity measures, and the semantic similarity measures. These

findings provide an optimistic insight for the development of a new similarity mea-

sure by incorporating information from additional sources. Meanwhile, we also found

that the semantic similarity measures performed better than the surface matching

similarity measures in most cases. A possible reason could be that most of the words

recognized by the surface matching measure can also be recognized by the seman-

tic similarity measures using a well-known knowledge base. However, the semantic

116

similarity measures do not work well for non-English dictionary words because these

words are domain-specific and are still not included in common knowledge bases. This

makes the surface matching similarity measure more relevant to our framework even

though it has a relatively low contribution to the overall similarity. Our proposed

method outperformed all the listed similarity measures, which illustrates its ability

to better capture the string similarity, semantic similarity and word order similarity

simultaneously (even slightly better than SSTS).

Measures
F1 score

Worst Avg. Best
SJAC 0.4318 0.5677 0.7024
Snwo 0.4763 0.5998 0.7043
SNLCS 0.5325 0.6332 0.7221

Slch 0.6823 0.7427 0.7866
Sres 0.6885 0.7576 0.7969
Sw2v 0.7538 0.8169 0.8693

SSTS 0.8048 0.8553 0.8953
SSSI 0.8035 0.8497 0.8834
Ssymss 0.8042 0.8503 0.8885
STicDNN 0.8103 0.8595 0.9002

Table 6.8: Comparisons of F1 scores using different similarity measures.

6.6.2 Ticket Classification

The ticket classification is an important step in the automation of ticket assignment

across the processing teams in the IT service management. In this section, we illus-

trate the efficiency of the ticket summary vector representation xs by applying it to

a hierarchical multi-label classification task [ZZL+17].

Let x = (x0, x1, ..., xd−1) be an instance from the d-dimensional input feature

space χ, and y = (y0, y1, ..., yN−1) be the N -dimensional output class label vector

where yi ∈ {0, 1}. A multi-label classification assigns a multi-label vector y to a

given instance x, where yi = 1 if x belongs to the ith class, and yi = 0 otherwise.

117

The hierarchical multi-label classification is a special type of multi-label classification

when a hierarchical relation H is predefined on all class labels. The hierarchy H can

be a tree, or an arbitrary DAG.

Figure 6.4: The lowest Hamming loss: GLabel gets 0.901 and GLabel+ 0.872; CSSA
gets 0.923 and CSSA+ 0.901.

Figure 6.5: The lowest HMC-Loss: GLabel gets 0.022 and GLabel+ 0.020; CSSA
gets 0.023 and CSSA+ 0.023.

118

Figure 6.6: The lowest H-Loss: GLabel gets 0.022 and GLabel+ 0.021; CSSA gets
0.023 and CSSA+ 0.21.

Evaluation Metrics

In order to illustrate the effectiveness of our model, we introduced several metrics to

evaluate the hierarchical multi-label classification problem including Hamming-loss,

H-loss and HMC-loss [ZZL+17].

• Hamming-Loss: calculated by the fraction of the misclassification to the total

number of predictions.

• H-Loss: penalized only the first classification mistake along each prediction path.

• HMC-Loss: weighted the misclassification with the hierarchy information while

avoiding the deficiencies of the H-loss

Algorithms for Comparison

We perform the experiments over the same setup as the previous study [ZZL+17],

where GLabel, a hierarchical multi-label classification algorithm, was proposed to clas-

sify tickets and has achieved better performance over the state-of-the-arts algorithms.

We compared the performance of two classification algorithms on the original feature

119

representation (GLabel and CSSA) and the derived feature representation (GLabel+

and CSSA+). We found that the derived feature representation was efficient.

The performance comparison is shown in Figures 6.4- 6.6. GLabel+ and CSSA+

outperformed their counterparts (GLabel and CSSA) which indicates the effective-

ness for our derived feature representation.

6.7 Summary

In this Chapter, we presented the major challenges in ticket resolution, such as quality

quantification of ticket resolutions and consideration of resolution quantification in a

recommendation problem. We defined a deep neural network-based ticket resolution

recommendation framework and evaluated it against a large real-world dataset. The

evaluation demonstrated the effectiveness of the proposed model. Moreover, The dis-

tributed representation induced by the network is able to capture semantical relations

of noisy ticket components, and can be applied to relevant fundamental applications

in ticket analysis, such as ticket clustering, ticket classification and so on.

120

CHAPTER 7

CONCLUSION AND FUTURE WORK

Intelligent textual understanding for computers can alleviate the human effort

investment, and thereby reduce the risk of human mistakes involved in many repetitive

tasks. Many data mining techniques can be utilized to achieve the goal of various

intelligent textual understanding tasks. After meticulously studying, four research

directions are identified from data mining perspective, with the purpose to intelligent

understanding textual data for computers in the areas of disaster management and

IT service management.

The four research directions are highlighted as below:

1. Intelligent generate a storyline summarizing the evolution of a hurricane from

relevant online corpus.

2. Automatically recommending resolutions according to the symptom description

in a ticket.

3. Gradually adapting the resolution recommendation system for time correlated

features.

4. Efficiently learning distributed representation for text using scalable deep neural

ranking model.

To follow up with work in my dissertation, some future work along the related

directions are provided.

1. We focus on linear storyline in the dissertation, which can be extended to more

complicated evolution structures of different disaster types for storyline gener-

ation, such as earthquakes and other man-made disasters.

2. There are several avenues for future research in automating ticket resolution. In

this dissertation, we recommend the resolution directly. However, it is worthy

121

investigating and developing intelligent classification techniques to automati-

cally label resolutions [ZLSG14a, CQT+13] first, and then recommend the res-

olution in related categories. Furthermore, it is possible to use an active query

strategy to fully automate resolution recommendations.

122

BIBLIOGRAPHY

[ABD+07] Naga Ayachitula, Melissa Buco, Yixin Diao, Surendra Maheswaran,
Raju Pavuluri, Larisa Shwartz, and Chris Ward. It service manage-
ment automation-a hybrid methodology to integrate and orchestrate
collaborative human centric and automation centric workflows. In Ser-
vices Computing, 2007. SCC 2007. IEEE International Conference on,
pages 574–581. IEEE, 2007.

[ABYG09] Omar Alonso, Ricardo Baeza-Yates, and Michael Gertz. Effectiveness
of temporal snippets. In WSSP Workshop at the World Wide Web
ConferenceWWW, volume 9, 2009.

[ADNR07] Shipra Agrawal, Supratim Deb, KVM Naidu, and Rajeev Rastogi.
Efficient detection of distributed constraint violations. In Data Engi-
neering, 2007. ICDE 2007. IEEE 23rd International Conference on,
pages 1320–1324. IEEE, 2007.

[AGK+12] Elke Achtert, Sascha Goldhofer, Hans-Peter Kriegel, Erich Schubert,
and Arthur Zimek. Evaluation of clusterings–metrics and visual sup-
port. In Data Engineering (ICDE), 2012 IEEE 28th International
Conference on, pages 1285–1288. IEEE, 2012.

[AHS08] Palakorn Achananuparp, Xiaohua Hu, and Xiajiong Shen. The evalu-
ation of sentence similarity measures. In International Conference on
Data Warehousing and Knowledge Discovery, pages 305–316. Springer,
2008.

[All12] James Allan. Topic detection and tracking: event-based information
organization, volume 12. Springer Science & Business Media, 2012.

[Alp14] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[AZ05] Rie Kubota Ando and Tong Zhang. A framework for learning predic-
tive structures from multiple tasks and unlabeled data. The Journal
of Machine Learning Research, 6:1817–1853, 2005.

[BBG+15] Mirela Madalina Botezatu, Jasmina Bogojeska, Ioana Giurgiu, Hagen
Voelzer, and Dorothea Wiesmann. Multi-view incident ticket cluster-
ing for optimal ticket dispatching. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 1711–1720. ACM, 2015.

123

[BDP+07] John Blitzer, Mark Dredze, Fernando Pereira, et al. Biographies, bol-
lywood, boom-boxes and blenders: Domain adaptation for sentiment
classification. In ACL, volume 7, pages 440–447, 2007.

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for asso-
ciative searching. Communications of the ACM, 18(9):509–517, 1975.

[BGL+14] Jasmina Bogojeska, Ioana Giurgiu, David Lanyi, George Stark, and
Dorothea Wiesmann. Impact of hw and os type and currency on server
availability derived from problem ticket analysis. In Network Opera-
tions and Management Symposium (NOMS), 2014 IEEE, pages 1–9.
IEEE, 2014.

[BH03] Bart Bakker and Tom Heskes. Task clustering and gating for bayesian
multitask learning. Journal of Machine Learning Research, 4(May):83–
99, 2003.

[Bir06] Steven Bird. Nltk: the natural language toolkit. In Proceedings of
the COLING/ACL on Interactive presentation sessions, pages 69–72.
Association for Computational Linguistics, 2006.

[BK07] Robert M Bell and Yehuda Koren. Scalable collaborative filtering with
jointly derived neighborhood interpolation weights. In Data Mining,
2007. ICDM 2007. Seventh IEEE International Conference on, pages
43–52. IEEE, 2007.

[BKL06] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for
nearest neighbor. In Proceedings of the 23rd international conference
on Machine learning, pages 97–104. ACM, 2006.

[BM98] Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data
with co-training. In Proceedings of the eleventh annual conference on
Computational learning theory, pages 92–100. ACM, 1998.

[BMP06] John Blitzer, Ryan McDonald, and Fernando Pereira. Domain adap-
tation with structural correspondence learning. In Proceedings of the
2006 conference on empirical methods in natural language processing,
pages 120–128. Association for Computational Linguistics, 2006.

[BNJ03] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirich-
let allocation. the Journal of machine Learning research, 3:993–1022,
2003.

124

[BTWDR13] Richard Berendsen, Manos Tsagkias, Wouter Weerkamp, and Maarten
De Rijke. Pseudo test collections for training and tuning microblog
rankers. In Proceedings of the 36th international ACM SIGIR con-
ference on Research and development in information retrieval, pages
53–62. ACM, 2013.

[CA06] Ciprian Chelba and Alex Acero. Adaptation of maximum entropy
capitalizer: Little data can help a lot. Computer Speech & Language,
20(4):382–399, 2006.

[CCC+99] Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish
Goel, Sudipto Guha, and Ming Li. Approximation algorithms for di-
rected steiner problems. Journal of Algorithms, 33(1):73–91, 1999.

[CCS10] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular
value thresholding algorithm for matrix completion. SIAM Journal on
Optimization, 20(4):1956–1982, 2010.

[Cho10] Gobinda G Chowdhury. Introduction to modern information retrieval.
Facet publishing, 2010.

[CKC05] Hang Cui, Min-Yen Kan, and Tat-Seng Chua. Generic soft pattern
models for definitional question answering. In Proceedings of the 28th
annual international ACM SIGIR conference on Research and devel-
opment in information retrieval, pages 384–391. ACM, 2005.

[CM12] Angel X Chang and Christopher D Manning. Sutime: A library for
recognizing and normalizing time expressions. In LREC, pages 3735–
3740, 2012.

[CPL09] IBM ILOG CPLEX. V12. 1: Users manual for cplex. International
Business Machines Corporation, 46(53):157, 2009.

[CQT+13] Shiyu Chang, Guo-Jun Qi, Jinhui Tang, Qi Tian, Yong Rui, and
Thomas S Huang. Multimedia lego: Learning structured model by
probabilistic logic ontology tree. In Data Mining (ICDM), 2013 IEEE
13th International Conference on, pages 979–984. IEEE, 2013.

[CW08] Ronan Collobert and Jason Weston. A unified architecture for natural
language processing: Deep neural networks with multitask learning. In
Proceedings of the 25th international conference on Machine learning,
pages 160–167. ACM, 2008.

125

[DDF+90] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American society for information science, 41(6):391,
1990.

[DIM06] Hal Daume III and Daniel Marcu. Domain adaptation for statistical
classifiers. Journal of Artificial Intelligence Research, pages 101–126,
2006.

[DL05] Yi Ding and Xue Li. Time weight collaborative filtering. In Proceed-
ings of the 14th ACM international conference on Information and
knowledge management, pages 485–492. ACM, 2005.

[Dud76] Sahibsingh A Dudani. The distance-weighted k-nearest-neighbor rule.
IEEE Transactions on Systems, Man, and Cybernetics, (4):325–327,
1976.

[DYXY07] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for
transfer learning. In Proceedings of the 24th international conference
on Machine learning, pages 193–200. ACM, 2007.

[DYXY08] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Self-taught
clustering. In Proceedings of the 25th international conference on Ma-
chine learning, pages 200–207. ACM, 2008.

[EM03] Abdessamad Echihabi and Daniel Marcu. A noisy-channel approach
to question answering. In Proceedings of the 41st Annual Meeting
on Association for Computational Linguistics-Volume 1, pages 16–23.
Association for Computational Linguistics, 2003.

[ER04] Günes Erkan and Dragomir R Radev. Lexpagerank: Prestige in multi-
document text summarization. In EMNLP, volume 4, pages 365–371,
2004.

[ESV03] Cristian Estan, Stefan Savage, and George Varghese. Automatically
inferring patterns of resource consumption in network traffic. In Pro-
ceedings of the 2003 conference on Applications, technologies, archi-
tectures, and protocols for computer communications, pages 137–148.
ACM, 2003.

[FGM05] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incor-
porating non-local information into information extraction systems by

126

gibbs sampling. In Proceedings of the 43rd Annual Meeting on Asso-
ciation for Computational Linguistics, pages 363–370. Association for
Computational Linguistics, 2005.

[FSSM07] Andrea Frome, Yoram Singer, Fei Sha, and Jitendra Malik. Learn-
ing globally-consistent local distance functions for shape-based image
retrieval and classification. In Computer Vision, 2007. ICCV 2007.
IEEE 11th International Conference on, pages 1–8. IEEE, 2007.

[GBJR08] CG González, W Bonventi Jr, and AL Vieira Rodrigues. Density of
closed balls in real-valued and autometrized boolean spaces for clus-
tering applications. In Brazilian Symposium on Artificial Intelligence,
pages 8–22. Springer, 2008.

[Geo10] GeoVISTA. GeoVISTA. http://www.geovista.psu.edu, 2010.

[GIM+99] Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search
in high dimensions via hashing. In VLDB, volume 99, pages 518–529,
1999.

[GSSM04] Genady Grabarnik, Abdi Salahshour, Balan Subramanian, and Sheng
Ma. Generic adapter logging toolkit. In Autonomic Computing, 2004.
Proceedings. International Conference on, pages 308–309. IEEE, 2004.

[Gut84] Antonin Guttman. R-trees: A dynamic index structure for spatial
searching, volume 14. ACM, 1984.

[HMP02] Joseph L. Hellerstein, Sheng Ma, and C-S Perng. Discovering action-
able patterns in event data. IBM Systems Journal, 41(3):475–493,
2002.

[IBM16] IBMTivoli. IBM Tivoli Monitoring. https://www.ibm.com/

software/tivoli, 2016.

[II08] Aminul Islam and Diana Inkpen. Semantic text similarity using
corpus-based word similarity and string similarity. ACM Transactions
on Knowledge Discovery from Data (TKDD), 2(2):10, 2008.

[Inc12] E. A. Inc. WebEoc. http://www.esi911.com/home, 2012.

127

http://www.geovista.psu.edu
https://www.ibm.com/software/tivoli
https://www.ibm.com/software/tivoli
http://www.esi911.com/home

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based eval-
uation of ir techniques. ACM Transactions on Information Systems
(TOIS), 20(4):422–446, 2002.

[Joh74] David S Johnson. Approximation algorithms for combinatorial prob-
lems. Journal of computer and system sciences, 9(3):256–278, 1974.

[JPL11] Yexi Jiang, Chang-Shing Perng, and Tao Li. Natural event summa-
rization. In Proceedings of the 20th ACM international conference on
Information and knowledge management, pages 765–774. ACM, 2011.

[K+13] Brian Kulis et al. Metric learning: A survey. Foundations and Trends R©
in Machine Learning, 5(4):287–364, 2013.

[Kar01] George Karypis. Evaluation of item-based top-n recommendation al-
gorithms. In Proceedings of the tenth international conference on In-
formation and knowledge management, pages 247–254. ACM, 2001.

[KGB14] Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A con-
volutional neural network for modelling sentences. arXiv preprint
arXiv:1404.2188, 2014.

[Kor10] Yehuda Koren. Collaborative filtering with temporal dynamics. Com-
munications of the ACM, 53(4):89–97, 2010.

[KR07] Ludmila I Kuncheva and Juan J Rodriguez. Classifier ensembles with
a random linear oracle. IEEE Transactions on Knowledge and Data
Engineering, 19(4):500–508, 2007.

[KRRS08] Srinivas Kashyap, Jeyashankher Ramamirtham, Rajeev Rastogi, and
Pushpraj Shukla. Efficient constraint monitoring using adaptive
thresholds. In Data Engineering, 2008. ICDE 2008. IEEE 24th In-
ternational Conference on, pages 526–535. IEEE, 2008.

[Kul12] Brian Kulis. Metric learning: A survey. Foundations and Trends in
Machine Learning, 5(4):287–364, 2012.

[L+09] Tie-Yan Liu et al. Learning to rank for information retrieval. Foun-
dations and Trends R© in Information Retrieval, 3(3):225–331, 2009.

[LAD+02] Victor Lavrenko, James Allan, Edward DeGuzman, Daniel LaFlamme,
Veera Pollard, and Stephen Thomas. Relevance models for topic de-

128

tection and tracking. In Proceedings of the second international confer-
ence on Human Language Technology Research, pages 115–121. Mor-
gan Kaufmann Publishers Inc., 2002.

[LC98] C Leacock and M Chodorow. Combining local context and wordnet
sense similarity for word sense identification. wordnet, an electronic
lexical database, 1998.

[LH03] Chin-Yew Lin and Eduard Hovy. Automatic evaluation of summaries
using n-gram co-occurrence statistics. In Proceedings of the 2003 Con-
ference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology-Volume 1, pages
71–78. Association for Computational Linguistics, 2003.

[Li15] Tao Li. Event mining: algorithms and applications. Chapman and
Hall/CRC, 2015.

[LL14] Lei Li and Tao Li. An empirical study of ontology-based multi-
document summarization in disaster management. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 44(2):162–171, 2014.

[LLL12a] Jingxuan Li, Lei Li, and Tao Li. Multi-document summarization via
submodularity. Applied Intelligence, 37(3):420–430, 2012.

[LLL+12b] Chen Lin, Chun Lin, Jingxuan Li, Dingding Wang, Yang Chen, and
Tao Li. Generating event storylines from microblogs. In Proceedings of
the 21st ACM international conference on Information and knowledge
management, pages 175–184. ACM, 2012.

[LMB+06] Yuhua Li, David McLean, Zuhair A Bandar, James D O’shea, and
Keeley Crockett. Sentence similarity based on semantic nets and cor-
pus statistics. IEEE transactions on knowledge and data engineering,
18(8):1138–1150, 2006.

[LMX11] Liwei Liu, Nikolay Mehandjiev, and Dong-Ling Xu. Multi-criteria ser-
vice recommendation based on user criteria preferences. In Proceedings
of the fifth ACM conference on Recommender systems, pages 77–84.
ACM, 2011.

[log16] logicMonitor. LogicMonitor. http://www.logicmonitor.com/, 2016.

129

http://www.logicmonitor.com/

[LWSL10] Lei Li, Dingding Wang, Chao Shen, and Tao Li. Ontology-enriched
multi-document summarization in disaster management. In Proceed-
ings of the 33rd international ACM SIGIR conference on Research and
development in information retrieval, pages 819–820. ACM, 2010.

[MAMS04] Juha Makkonen, Helena Ahonen-Myka, and Marko Salmenkivi. Simple
semantics in topic detection and tracking. Information retrieval, 7(3-
4):347–368, 2004.

[Man01] Inderjeet Mani. Automatic summarization, volume 3. John Benjamins
Publishing, 2001.

[Man16] ManageEngine. ManageEngine. https://www.manageengine.com/,
2016.

[MJ93] Steven McCanne and Van Jacobson. The bsd packet filter: A new ar-
chitecture for user-level packet capture. In USENIX winter, volume 93,
1993.

[MMY+10] Gengxin Miao, Louise E Moser, Xifeng Yan, Shu Tao, Yi Chen, and
Nikos Anerousis. Generative models for ticket resolution in expert
networks. In Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 733–742.
ACM, 2010.

[MRS+08] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al.
Introduction to information retrieval, volume 1. Cambridge university
press Cambridge, 2008.

[MSC+13] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their com-
positionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

[MSGL09] Patricia Marcu, Larisa Shwartz, Genady Grabarnik, and David
Loewenstern. Managing faults in the service delivery process of ser-
vice provider coalitions. In Services Computing, 2009. SCC’09. IEEE
International Conference on, pages 65–72. IEEE, 2009.

[NC412] NC4. E-teams. http://www.nc4.us/ETeam.php, 2012.

130

https://www.manageengine.com/
http://www.nc4.us/ETeam.php

[NH10] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international
conference on machine learning (ICML-10), pages 807–814, 2010.

[NK11] Xia Ning and George Karypis. Slim: Sparse linear methods for top-
n recommender systems. In Data Mining (ICDM), 2011 IEEE 11th
International Conference on, pages 497–506. IEEE, 2011.

[NMTM00] Kamal Nigam, Andrew Kachites McCallum, Sebastian Thrun, and
Tom Mitchell. Text classification from labeled and unlabeled docu-
ments using em. Machine learning, 39(2):103–134, 2000.

[OSdCI11] Jesús Oliva, José Ignacio Serrano, Maŕıa Dolores del Castillo, and
Ángel Iglesias. Symss: A syntax-based measure for short-text semantic
similarity. Data & Knowledge Engineering, 70(4), 2011.

[PDM11] Slav Petrov, Dipanjan Das, and Ryan McDonald. A universal part-of-
speech tagset. arXiv preprint arXiv:1104.2086, 2011.

[PJNR13] Rahul Potharaju, Navendu Jain, and Cristina Nita-Rotaru. Juggling
the jigsaw: Towards automated problem inference from network trou-
ble tickets. In NSDI, pages 127–141, 2013.

[PSM14] Jeffrey Pennington, Richard Socher, and Christopher D Manning.
Glove: Global vectors for word representation. In EMNLP, volume 14,
pages 1532–1543, 2014.

[PTG+03] Chang-Shing Perng, David Thoenen, Genady Grabarnik, Sheng Ma,
and Joseph Hellerstein. Data-driven validation, completion and con-
struction of event relationship networks. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 729–734. ACM, 2003.

[PY10] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2010.

[RB03] Brian Roark and Michiel Bacchiani. Supervised and unsupervised pcfg
adaptation to novel domains. In Proceedings of the 2003 Conference
of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology-Volume 1, pages 126–133.
Association for Computational Linguistics, 2003.

131

[RBL+07] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and An-
drew Y Ng. Self-taught learning: transfer learning from unlabeled
data. In Proceedings of the 24th international conference on Machine
learning, pages 759–766. ACM, 2007.

[RCD11] Alan Ritter, Colin Cherry, and William B Dolan. Data-driven response
generation in social media. In Proceedings of the conference on empiri-
cal methods in natural language processing, pages 583–593. Association
for Computational Linguistics, 2011.

[Res95] Philip Resnik. Using information content to evaluate semantic simi-
larity in a taxonomy. arXiv preprint cmp-lg/9511007, 1995.

[RHM02] Dragomir R Radev, Eduard Hovy, and Kathleen McKeown. Introduc-
tion to the special issue on summarization. Computational linguistics,
28(4):399–408, 2002.

[RJB00] Dragomir R Radev, Hongyan Jing, and Malgorzata Budzikowska.
Centroid-based summarization of multiple documents: sentence ex-
traction, utility-based evaluation, and user studies. In Proceedings
of the 2000 NAACL-ANLP Workshop on Automatic summarization,
pages 21–30. Association for Computational Linguistics, 2000.

[RJST04] Dragomir R Radev, Hongyan Jing, Ma lgorzata Styś, and Daniel Tam.
Centroid-based summarization of multiple documents. Information
Processing & Management, 40(6):919–938, 2004.

[RLS+98] Marcus J Ranum, Kent Landfield, Mike Stolarchuk, Mark Sienkiewicz,
Andrew Lambeth, and Eric Wall. Implementing a generalized tool for
network monitoring. Information Security Technical Report, 3(4):53–
64, 1998.

[Sas05] Yutaka Sasaki. Question answering as question-biased term extraction:
a new approach toward multilingual qa. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics, pages
215–222. Association for Computational Linguistics, 2005.

[SBC03] Horacio Saggion, Kalina Bontcheva, and Hamish Cunningham. Robust
generic and query-based summarisation. In Proceedings of the tenth
conference on European chapter of the Association for Computational
Linguistics-Volume 2, pages 235–238. Association for Computational
Linguistics, 2003.

132

[SCT+08] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and Nikos Anerousis.
Easyticket: a ticket routing recommendation engine for enterprise
problem resolution. Proceedings of the VLDB Endowment, 1(2):1436–
1439, 2008.

[SGH12] Dafna Shahaf, Carlos Guestrin, and Eric Horvitz. Trains of thought:
Generating information maps. In Proceedings of the 21st international
conference on World Wide Web, pages 899–908. ACM, 2012.

[Shi00] Hidetoshi Shimodaira. Improving predictive inference under covariate
shift by weighting the log-likelihood function. Journal of statistical
planning and inference, 90(2):227–244, 2000.

[SHK+14] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever,
and Ruslan Salakhutdinov. Dropout: a simple way to prevent neu-
ral networks from overfitting. Journal of Machine Learning Research,
15(1):1929–1958, 2014.

[SKKR00] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Ap-
plication of dimensionality reduction in recommender system-a case
study. Technical report, Minnesota Univ Minneapolis Dept of Com-
puter Science, 2000.

[SL10] Chao Shen and Tao Li. Multi-document summarization via the min-
imum dominating set. In Proceedings of the 23rd International Con-
ference on Computational Linguistics, pages 984–992. Association for
Computational Linguistics, 2010.

[SLD11] Chao Shen, Tao Li, and Chris HQ Ding. Integrating clustering and
multi-document summarization by bi-mixture probabilistic latent se-
mantic analysis (plsa) with sentence bases. In AAAI, 2011.

[SLL15] Lifeng Shang, Zhengdong Lu, and Hang Li. Neural responding machine
for short-text conversation. arXiv preprint arXiv:1503.02364, 2015.

[SM13] Aliaksei Severyn and Alessandro Moschitti. Automatic feature engi-
neering for answer selection and extraction. In EMNLP, volume 13,
pages 458–467, 2013.

[SSM02] Jun Suzuki, Yutaka Sasaki, and Eisaku Maeda. Svm answer selection
for open-domain question answering. In Proceedings of the 19th in-

133

ternational conference on Computational linguistics-Volume 1, pages
1–7. Association for Computational Linguistics, 2002.

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence
learning with neural networks. In Advances in neural information pro-
cessing systems, pages 3104–3112, 2014.

[T+06] Pang-Ning Tan et al. Introduction to data mining. Pearson Education
India, 2006.

[TH01] Loren Terveen and Will Hill. Beyond recommender systems: Helping
people help each other. HCI in the New Millennium, 1(2001):487–509,
2001.

[TLP+12] Liang Tang, Tao Li, Florian Pinel, Larisa Shwartz, and Genady
Grabarnik. Optimizing system monitoring configurations for non-
actionable alerts. In Network Operations and Management Symposium
(NOMS), 2012 IEEE, pages 34–42. IEEE, 2012.

[TLS12] Liang Tang, Tao Li, and Larisa Shwartz. Discovering lag intervals for
temporal dependencies. In Proceedings of the 18th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pages
633–641. ACM, 2012.

[TLSG13] Liang Tang, Tao Li, Larisa Shwartz, and Genady Grabarnik. Rec-
ommending resolutions for problems identified by monitoring. In In-
tegrated Network Management (IM 2013), 2013 IFIP/IEEE Interna-
tional Symposium on, pages 134–142. IEEE, 2013.

[TN03] Christoph Tillmann and Hermann Ney. Word reordering and a dy-
namic programming beam search algorithm for statistical machine
translation. Computational linguistics, 29(1):97–133, 2003.

[urla] HP OpenView : Network and Systems Management Products. http:
//www8.hp.com/us/en/software/enterprise-software.html.

[urlb] IBM Tivoli : Integrated Service Management. http://ibm.com/

software/tivoli/.

[urlc] IBM Tivoli Monitoring. http://ibm.com/software/tivoli/

products/monitor/.

134

http://www8.hp.com/us/en/software/enterprise-software.html
http://www8.hp.com/us/en/software/enterprise-software.html
 http://ibm.com/software/tivoli/
 http://ibm.com/software/tivoli/
http://ibm.com/software/tivoli/products/monitor/
http://ibm.com/software/tivoli/products/monitor/

[urld] ITIL. http://www.itil-officialsite.com/home/home.aspx.

[urle] Splunk: A commerical machine data managment engine. http://www.
splunk.com/.

[ush12] ushahidi. ushahidi. http://www.ushahidi.com/, 2012.

[VLL+10] Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and
Pierre-Antoine Manzagol. Stacked denoising autoencoders: Learning
useful representations in a deep network with a local denoising crite-
rion. Journal of Machine Learning Research, 11(Dec):3371–3408, 2010.

[WE11] Bruno Wassermann and Wolfgang Emmerich. Monere: Monitoring of
service compositions for failure diagnosis. Service-Oriented Computing,
pages 344–358, 2011.

[WLLH08] Furu Wei, Wenjie Li, Qin Lu, and Yanxiang He. Query-sensitive mu-
tual reinforcement chain and its application in query-oriented multi-
document summarization. In Proceedings of the 31st annual interna-
tional ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 283–290. ACM, 2008.

[WLO12] Dingding Wang, Tao Li, and Mitsunori Ogihara. Generating pictorial
storylines via minimum-weight connected dominating set approxima-
tion in multi-view graphs. In AAAI. Citeseer, 2012.

[WLZD08] Dingding Wang, Tao Li, Shenghuo Zhu, and Chris Ding. Multi-
document summarization via sentence-level semantic analysis and
symmetric matrix factorization. In Proceedings of the 31st annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval, pages 307–314. ACM, 2008.

[WLZG11] Dingding Wang, Tao Li, Shenghuo Zhu, and Yihong Gong. ihelp: An
intelligent online helpdesk system. IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), 41(1):173–182, 2011.

[WSM07] Mengqiu Wang, Noah A Smith, and Teruko Mitamura. What is the
jeopardy model? a quasi-synchronous grammar for qa. In EMNLP-
CoNLL, volume 7, pages 22–32, 2007.

135

http://www.itil-officialsite.com/home/home.aspx
http://www.splunk.com/
http://www.splunk.com/
http://www.ushahidi.com/

[WSZ08] Zheng Wang, Yangqiu Song, and Changshui Zhang. Transferred di-
mensionality reduction. Machine learning and knowledge discovery in
databases, pages 550–565, 2008.

[WZZ+17] Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, and
Genady Ya. Grabarnik. Constructing the knowledge base for cognitive
it service management. In Services Computing (SCC), 2017 IEEE
International Conference on. IEEE, 2017.

[XZB05] Kuai Xu, Zhi-Li Zhang, and Supratik Bhattacharyya. Profiling in-
ternet backbone traffic: behavior models and applications. In ACM
SIGCOMM Computer Communication Review, volume 35, pages 169–
180. ACM, 2005.

[YCMP13] Scott Wen-tau Yih, Ming-Wei Chang, Chris Meek, and Andrzej Pas-
tusiak. Question answering using enhanced lexical semantic models.
2013.

[YHBP14] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pul-
man. Deep learning for answer sentence selection. arXiv preprint
arXiv:1412.1632, 2014.

[YHYY06] Xiaoxin Yin, Jiawei Han, Jiong Yang, and Philip S Yu. Efficient clas-
sification across multiple database relations: A crossmine approach.
IEEE Transactions on Knowledge and Data Engineering, 18(6):770–
783, 2006.

[Yia93] Peter N Yianilos. Data structures and algorithms for nearest neighbor
search in general metric spaces. In SODA, volume 93, pages 311–321,
1993.

[YPZ10] Yuhong Yan, Pascal Poizat, and Ludeng Zhao. Repair vs. recomposi-
tion for broken service compositions. In International Conference on
Service-Oriented Computing, pages 152–166. Springer, 2010.

[YVDCBC13] Xuchen Yao, Benjamin Van Durme, Chris Callison-Burch, and Peter
Clark. Answer extraction as sequence tagging with tree edit distance.
In HLT-NAACL, pages 858–867, 2013.

[Zad04] Bianca Zadrozny. Learning and evaluating classifiers under sample se-
lection bias. In Proceedings of the twenty-first international conference
on Machine learning, page 114. ACM, 2004.

136

[Zei12] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701, 2012.

[zen16] zenoss. zenoss. http://ownit.zenoss.com/, 2016.

[Zhu04] Mu Zhu. Recall, precision and average precision. Department of Statis-
tics and Actuarial Science, University of Waterloo, Waterloo, 2004.

[Zhu05] Xiaojin Zhu. Semi-supervised learning literature survey. 2005.

[ZLSG14a] Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik.
Hierarchical multi-label classification over ticket data using contextual
loss. In Proceedings of IEEE/IFIP Network Operations and Manage-
ment Symposium, pages 1–8. IEEE, 2014.

[ZLSG14b] Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik.
Hierarchical multi-label classification over ticket data using contextual
loss. In Network Operations and Management Symposium (NOMS),
2014 IEEE, pages 1–8. IEEE, 2014.

[ZST+13] Li Zheng, Chao Shen, Liang Tang, Chunqiu Zeng, Tao Li, Steve Luis,
and Shu-Ching Chen. Data mining meets the needs of disaster infor-
mation management. IEEE Transactions on Human-Machine Systems,
43(5):451–464, 2013.

[ZTZ+16] Wubai Zhou, Liang Tang, Chunqiu Zeng, Tao Li, Larisa Shwartz, and
Genady Ya Grabarnik. Resolution recommendation for event tickets
in service management. IEEE Transactions on Network and Service
Management, 13(4):954–967, 2016.

[ZW06] Xingquan Zhu and Xindong Wu. Class noise handling for effective cost-
sensitive learning by cost-guided iterative classification filtering. IEEE
Transactions on Knowledge and Data Engineering, 18(10):1435–1440,
2006.

[ZZL+17] Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Y
Grabarnik. Knowledge guided hierarchical multi-label classification
over ticket data. IEEE Transactions on Network and Service Manage-
ment, 2017.

137

http://ownit.zenoss.com/

VITA

WUBAI ZHOU

2012-Present M.S. and Ph.D., Computer Science
Florida International University, Miami, Florida

2008-2012 B.S., Computer Science
Wuhan University, Wuhan, P.R. China

PUBLICATIONS

Wubai Zhou, Wei Xue, Ramesh Baral, Qing Wang, Chunqiu Zeng, Tao Li, Jian

Xu, Zhen Liu, Larisa Shwartz, Genady Ya. Grabarnik. STAR: A System for Ticket

Analysis and Resolution. In Proceedings of the 23th ACM SIGKDD international

conference on Knowledge discovery and data mining, 2017.

Qing Wang, Wubai Zhou, Chunqiu Zeng, Tao Li, Larisa Shwartz, and Genady Ya.

Grabarnik. 2017. Constructing the Knowledge Base for Cognitive IT Service Man-

agement. In Services Computing (SCC), 2017 IEEE International Conference.

Tao Li, Chunqiu Zeng, Yexi Jiang, Wubai Zhou, Liang Tang, Zheng Liu, Yue Huang,

Datadriven Techniques in Computing System Management, ACM Computing Sur-

veys, 2017.

Chunqiu Zeng, Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Y Grabarnik. 2017.

Knowledge Guided Hierarchical Multi-Label Classication over Ticket Data. IEEE

Transactions on Network and Service Management, 2017.

Wubai Zhou , Liang Tang, Chunqiu Zeng, Tao Li, Larisa Shwartz, Genady Ya.Grabarnik.

Resolution Recommendation for Event Tickets in Service Management, in IEEE Trans-

actions on Network and Service Management(TNSM), 2016.

Chunqiu Zeng, Liang Tang, Wubai Zhou, Tao Li, Larisa Shwartz, Genady Ya.Grabarnik.

An Integrated Framework for Mining Temporal Logs from Fluctuating Events, in IEEE

Transactions on Services Computing(TSC), 2016.

Tao Li, Wubai Zhou, Chunqiu Zeng, Qing Wang, Qifeng Zhou, Dingding Wang, Yue

138

Huang, Jia Xu, Wentao Wang, Minjing Zhang, Steve Luis, Shu-Ching Chen, Naphtali

Rishe. DI-DAP: An Efficient Disaster Information Delivery and Analysis Platform

in Disaster Management, in Proceedings of the 25th ACM Conference on Information

and Knowledge Management(CIKM), 2016.

Wubai Zhou, Tao Li, Larisa Shwartz, and Genady Ya Grabarnik. Recommend-

ing ticket resolution using feature adaptation. In Network and Service Management

(CNSM), 2015 11th International Conference on, pp. 15-21. IEEE, 2015.

Wubai Zhou, Liang Tang, Tao Li, Larisa Shwartz, Genady Ya. Grabarnik. Resolution

recommendation for event tickets in service management. In 2015 IFIP/IEEE Inter-

national Symposium on Integrated Network Management (IM), pp. 287-295. IEEE,

2015.

Wubai Zhou, Chao Shen, Tao Li, Shu-Ching Chen, and Ning Xie. Generating textual

storyline to improve situation awareness in disaster management. In Information

Reuse and Integration (IRI), 2014 IEEE 15th International Conference on, pp. 585-

592. IEEE, 2014.

Li Zheng, Chunqiu Zeng, Lei Li, Yexi Jiang, Wei Xue, Jingxuan Li, Chao Shen, Wubai

Zhou, Hongtai Li, Liang Tang, Tao Li, Bing Duan, Ming Lei, Pengnian Wang. Apply-

ing data mining techniques to address critical process optimization needs in advanced

manufacturing. In Proceedings of the 20th ACM SIGKDD international conference

on Knowledge discovery and data mining, pp. 1739-1748. ACM, 2014.

Chunqiu Zeng, Yexi Jiang, Li Zheng, Jingxuan Li, Lei Li, Hongtai Li, Chao Shen,

Wubai Zhou, Tao Li, Bing Duan, Ming Lei, Pengnian Wang. Fiu-miner: a fast,

integrated, and user-friendly system for data mining in distributed environment. In

Proceedings of the 19th ACM SIGKDD international conference on Knowledge dis-

covery and data mining, pp. 1506-1509. ACM, 2013.

139

	Florida International University
	FIU Digital Commons
	10-4-2017

	Data Mining Techniques to Understand Textual Data
	Wubai Zhou
	Recommended Citation

	INTRODUCTION
	Background
	Motivation and Problem Statement
	Contribution
	Intelligent storyline generation
	Automatic ticket resolution
	Adaptive recommendation system on time varying features
	Learn distributed representation via deep neural ranking model

	Summary and Roadmap

	PRELIMINARIES AND RELATED WORK
	Related Work of Storyline Generation
	Multi-document Summarization
	Topic Detection and Tracking
	Storyline Generation
	Disaster Situation-specific Tools

	Related Work of Ticket Resolution Recommendation
	IT monitoring system
	Recommendation System

	Related Work of Domain Adaptation
	Transfer Learning
	Domain Adaptation

	Related Work of Deep Neural Ranking Model
	Learning to Rank
	Summary

	GENERATING TEXTUAL STORYLINE FOR DISASTER
	Introduction
	Research Objective
	Problem Definition
	System Framework
	Global Storyline Generation
	Text Snippet Graph Construction
	Identifying Events via Dominating Set
	Storyline Generation by Connecting Dominating Objects via Linear Programming (LP)

	Local Storyline Generation
	Augmented Multi-view Graph Construction
	Generating Storylines via Directed Steiner Tree

	System Evaluation
	Datasets
	Summarization Performance of Global Storylines
	A Case Study

	Summary

	AUTOMATE TEXTUAL RESOLUTION RECOMMENDATION
	Introduction
	Background
	Automated Services Infrastructure Monitoring and Event Tickets
	Repeated Resolutions of Monitoring Tickets

	Preliminary Work
	Workflow
	Basic KNN-based Recommendation
	Representation of Monitoring Tickets
	Incorporating the Resolution Information
	Metric Learning

	implementation
	Evaluation
	Algorithms
	Experimental Data
	Evaluation Metric
	Choosing the Number of Topics
	Overall Recommendation Performance

	Summary

	DOMAIN ADAPTATION FOR TEXTUAL FEATURES
	Introduction
	Background
	Automated Services Infrastructure Monitoring and Event Tickets
	Repeated Resolution of Monitoring Tickets

	Feature Adaptation
	Structural Corresponding Learning
	Algorithm Overview
	Picking Pivot Features

	Implementation
	Pivot Predictors
	Hyper Parameter Tuning

	Evaluation
	Setup
	Evaluation of Feature Adaptation
	Feature Adaptation for Different Time Granularity

	Summary

	LEARNING TEXTUAL REPRESENTATION IN RANKING MODEL
	Introduction
	Challenges and Proposed Solutions
	Road Map

	Overview
	Ticket Resolution Quality Quantification
	Feature Description
	Findings

	Deep Neural Ranking Model
	Problem formulation
	Deep Neural Ranking Architecture
	Regularization
	Word Embedding

	Automating Ticket Resolution
	Datasets
	Ticket Resolution Automation

	Other Ticket Analysis Applications
	Ticket Clustering
	Ticket Classification

	Summary

	CONCLUSION AND FUTURE WORK
	BIBLIOGRAPHY
	VITA

