8,741 research outputs found

    Distributed joint probabilistic data association filter with hybrid fusion strategy

    Get PDF
    This paper investigates the problem of distributed multitarget tracking (MTT) over a large-scale sensor network, consisting of low-cost sensors. Each local sensor runs a joint probabilistic data association filter to obtain local estimates and communicates with its neighbors for information fusion. The conventional fusion strategies, i.e., consensus on measurement (CM) and consensus on information (CI), are extended to MTT scenarios. This means that data association uncertainty and sensor fusion problems are solved simultaneously. Motivated by the complementary characteristics of these two different fusion approaches, a novel distributed MTT algorithm using a hybrid fusion strategy, e.g., a mix of CM and CI, is proposed. A distributed counting algorithm is incorporated into the tracker to provide the knowledge of the total number of sensor nodes. The new algorithm developed shows advantages in preserving boundedness of local estimates, guaranteeing global convergence to the optimal centralized version and being implemented without requiring no global information, compared with other fusion approaches. Simulations clearly demonstrate the characteristics and tracking performance of the proposed algorithm

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted

    Target Tracking in Wireless Sensor Networks

    Get PDF

    Distributed multiple model joint probabilistic data association with Gibbs sampling-aided implementation

    Get PDF
    This paper proposes a new distributed multiple model multiple manoeuvring target tracking algorithm. The proposed tracker is derived by combining joint probabilistic data association (JPDA) with consensus-based distributed filtering. Exact implementation of the JPDA involves enumerating all possible joint association events and thus often becomes computationally intractable in practice. We propose a computationally tractable approximation of calculating the marginal association probabilities for measurement-target mappings based on stochastic Gibbs sampling. In order to achieve scalability for a large number of sensors and high tolerance to sensor failure, a simple average consensus algorithm-based information JPDA filter is proposed for distributed tracking of multiple manoeuvring targets. In the proposed framework, the state of each target is updated using consensus-based information fusion while the manoeuvre mode probability of each target is corrected with measurement probability fusion. Simulations clearly demonstrate the effectiveness and characteristics of the proposed algorithm. The results reveal that the proposed formulation is scalable and much more efficient than classical JPDA without sacrificing tracking accurac

    Multi Sensor Multi Target Perception and Tracking for Informed Decisions in Public Road Scenarios

    Get PDF
    Multi-target tracking in public traffic calls for a tracking system with automated track initiation and termination facilities in a randomly evolving driving environment. Besides, the key problem of data association needs to be handled effectively considering the limitations in the computational resources on-board an autonomous car. The challenge of the tracking problem is further evident in the use of high-resolution automotive sensors which return multiple detections per object. Furthermore, it is customary to use multiple sensors that cover different and/or over-lapping Field of View and fuse sensor detections to provide robust and reliable tracking. As a consequence, in high-resolution multi-sensor settings, the data association uncertainty, and the corresponding tracking complexity increases pointing to a systematic approach to handle and process sensor detections. In this work, we present a multi-target tracking system that addresses target birth/initiation and death/termination processes with automatic track management features. These tracking functionalities can help facilitate perception during common events in public traffic as participants (suddenly) change lanes, navigate intersections, overtake and/or brake in emergencies, etc. Various tracking approaches including the ones based on joint integrated probability data association (JIPDA) filter, Linear Multi-target Integrated Probabilistic Data Association (LMIPDA) Filter, and their multi-detection variants are adapted to specifically include algorithms that handle track initiation and termination, clutter density estimation and track management. The utility of the filtering module is further elaborated by integrating it into a trajectory tracking problem based on model predictive control. To cope with tracking complexity in the case of multiple high-resolution sensors, we propose a hybrid scheme that combines the approaches of data clustering at the local sensor and multiple detections tracking schemes at the fusion layer. We implement a track-to-track fusion scheme that de-correlates local (sensor) tracks to avoid double counting and apply a measurement partitioning scheme to re-purpose the LMIPDA tracking algorithm to multi-detection cases. In addition to the measurement partitioning approach, a joint extent and kinematic state estimation scheme are integrated into the LMIPDA approach to facilitate perception and tracking of an individual as well as group targets as applied to multi-lane public traffic. We formulate the tracking problem as a two hierarchical layer. This arrangement enhances the multi-target tracking performance in situations including but not limited to target initialization(birth process), target occlusion, missed detections, unresolved measurement, target maneuver, etc. Also, target groups expose complex individual target interactions to help in situation assessment which is challenging to capture otherwise. The simulation studies are complemented by experimental studies performed on single and multiple (group) targets. Target detections are collected from a high-resolution radar at a frequency of 20Hz; whereas RTK-GPS data is made available as ground truth for one of the target vehicle\u27s trajectory
    • …
    corecore