6,324 research outputs found

    The Sensing Capacity of Sensor Networks

    Full text link
    This paper demonstrates fundamental limits of sensor networks for detection problems where the number of hypotheses is exponentially large. Such problems characterize many important applications including detection and classification of targets in a geographical area using a network of sensors, and detecting complex substances with a chemical sensor array. We refer to such applications as largescale detection problems. Using the insight that these problems share fundamental similarities with the problem of communicating over a noisy channel, we define a quantity called the sensing capacity and lower bound it for a number of sensor network models. The sensing capacity expression differs significantly from the channel capacity due to the fact that a fixed sensor configuration encodes all states of the environment. As a result, codewords are dependent and non-identically distributed. The sensing capacity provides a bound on the minimal number of sensors required to detect the state of an environment to within a desired accuracy. The results differ significantly from classical detection theory, and provide an ntriguing connection between sensor networks and communications. In addition, we discuss the insight that sensing capacity provides for the problem of sensor selection.Comment: Submitted to IEEE Transactions on Information Theory, November 200

    Distributed Detection and Estimation in Wireless Sensor Networks

    Get PDF
    Wireless sensor networks (WSNs) are typically formed by a large number of densely deployed, spatially distributed sensors with limited sensing, computing, and communication capabilities that cooperate with each other to achieve a common goal. In this dissertation, we investigate the problem of distributed detection, classification, estimation, and localization in WSNs. In this context, the sensors observe the conditions of their surrounding environment, locally process their noisy observations, and send the processed data to a central entity, known as the fusion center (FC), through parallel communication channels corrupted by fading and additive noise. The FC will then combine the received information from the sensors to make a global inference about the underlying phenomenon, which can be either the detection or classification of a discrete variable or the estimation of a continuous one.;In the domain of distributed detection and classification, we propose a novel scheme that enables the FC to make a multi-hypothesis classification of an underlying hypothesis using only binary detections of spatially distributed sensors. This goal is achieved by exploiting the relationship between the influence fields characterizing different hypotheses and the accumulated noisy versions of local binary decisions as received by the FC, where the influence field of a hypothesis is defined as the spatial region in its surrounding in which it can be sensed using some sensing modality. In the realm of distributed estimation and localization, we make four main contributions: (a) We first formulate a general framework that estimates a vector of parameters associated with a deterministic function using spatially distributed noisy samples of the function for both analog and digital local processing schemes. ( b) We consider the estimation of a scalar, random signal at the FC and derive an optimal power-allocation scheme that assigns the optimal local amplification gains to the sensors performing analog local processing. The objective of this optimized power allocation is to minimize the L 2-norm of the vector of local transmission powers, given a maximum estimation distortion at the FC. We also propose a variant of this scheme that uses a limited-feedback strategy to eliminate the requirement of perfect feedback of the instantaneous channel fading coefficients from the FC to local sensors through infinite-rate, error-free links. ( c) We propose a linear spatial collaboration scheme in which sensors collaborate with each other by sharing their local noisy observations. We derive the optimal set of coefficients used to form linear combinations of the shared noisy observations at local sensors to minimize the total estimation distortion at the FC, given a constraint on the maximum average cumulative transmission power in the entire network. (d) Using a novel performance measure called the estimation outage, we analyze the effects of the spatial randomness of the location of the sensors on the quality and performance of localization algorithms by considering an energy-based source-localization scheme under the assumption that the sensors are positioned according to a uniform clustering process

    Fundamentals of Large Sensor Networks: Connectivity, Capacity, Clocks and Computation

    Full text link
    Sensor networks potentially feature large numbers of nodes that can sense their environment over time, communicate with each other over a wireless network, and process information. They differ from data networks in that the network as a whole may be designed for a specific application. We study the theoretical foundations of such large scale sensor networks, addressing four fundamental issues- connectivity, capacity, clocks and function computation. To begin with, a sensor network must be connected so that information can indeed be exchanged between nodes. The connectivity graph of an ad-hoc network is modeled as a random graph and the critical range for asymptotic connectivity is determined, as well as the critical number of neighbors that a node needs to connect to. Next, given connectivity, we address the issue of how much data can be transported over the sensor network. We present fundamental bounds on capacity under several models, as well as architectural implications for how wireless communication should be organized. Temporal information is important both for the applications of sensor networks as well as their operation.We present fundamental bounds on the synchronizability of clocks in networks, and also present and analyze algorithms for clock synchronization. Finally we turn to the issue of gathering relevant information, that sensor networks are designed to do. One needs to study optimal strategies for in-network aggregation of data, in order to reliably compute a composite function of sensor measurements, as well as the complexity of doing so. We address the issue of how such computation can be performed efficiently in a sensor network and the algorithms for doing so, for some classes of functions.Comment: 10 pages, 3 figures, Submitted to the Proceedings of the IEE

    A survey of localization in wireless sensor network

    Get PDF
    Localization is one of the key techniques in wireless sensor network. The location estimation methods can be classified into target/source localization and node self-localization. In target localization, we mainly introduce the energy-based method. Then we investigate the node self-localization methods. Since the widespread adoption of the wireless sensor network, the localization methods are different in various applications. And there are several challenges in some special scenarios. In this paper, we present a comprehensive survey of these challenges: localization in non-line-of-sight, node selection criteria for localization in energy-constrained network, scheduling the sensor node to optimize the tradeoff between localization performance and energy consumption, cooperative node localization, and localization algorithm in heterogeneous network. Finally, we introduce the evaluation criteria for localization in wireless sensor network
    • …
    corecore