111,902 research outputs found

    Deterministic Graph Exploration with Advice

    Get PDF
    We consider the task of graph exploration. An nn-node graph has unlabeled nodes, and all ports at any node of degree dd are arbitrarily numbered 0,,d10,\dots, d-1. A mobile agent has to visit all nodes and stop. The exploration time is the number of edge traversals. We consider the problem of how much knowledge the agent has to have a priori, in order to explore the graph in a given time, using a deterministic algorithm. This a priori information (advice) is provided to the agent by an oracle, in the form of a binary string, whose length is called the size of advice. We consider two types of oracles. The instance oracle knows the entire instance of the exploration problem, i.e., the port-numbered map of the graph and the starting node of the agent in this map. The map oracle knows the port-numbered map of the graph but does not know the starting node of the agent. We first consider exploration in polynomial time, and determine the exact minimum size of advice to achieve it. This size is logloglognΘ(1)\log\log\log n -\Theta(1), for both types of oracles. When advice is large, there are two natural time thresholds: Θ(n2)\Theta(n^2) for a map oracle, and Θ(n)\Theta(n) for an instance oracle, that can be achieved with sufficiently large advice. We show that, with a map oracle, time Θ(n2)\Theta(n^2) cannot be improved in general, regardless of the size of advice. We also show that the smallest size of advice to achieve this time is larger than nδn^\delta, for any δ<1/3\delta <1/3. For an instance oracle, advice of size O(nlogn)O(n\log n) is enough to achieve time O(n)O(n). We show that, with any advice of size o(nlogn)o(n\log n), the time of exploration must be at least nϵn^\epsilon, for any ϵ<2\epsilon <2, and with any advice of size O(n)O(n), the time must be Ω(n2)\Omega(n^2). We also investigate minimum advice sufficient for fast exploration of hamiltonian graphs

    Dynamic graph-based search in unknown environments

    Get PDF
    A novel graph-based approach to search in unknown environments is presented. A virtual geometric structure is imposed on the environment represented in computer memory by a graph. Algorithms use this representation to coordinate a team of robots (or entities). Local discovery of environmental features cause dynamic expansion of the graph resulting in global exploration of the unknown environment. The algorithm is shown to have O(k.nH) time complexity, where nH is the number of vertices of the discovered environment and 1 <= k <= nH. A maximum bound on the length of the resulting walk is given

    Time Versus Cost Tradeoffs for Deterministic Rendezvous in Networks

    Full text link
    Two mobile agents, starting from different nodes of a network at possibly different times, have to meet at the same node. This problem is known as rendezvous\mathit{rendezvous}. Agents move in synchronous rounds. Each agent has a distinct integer label from the set {1,,L}\{1,\dots,L\}. Two main efficiency measures of rendezvous are its time\mathit{time} (the number of rounds until the meeting) and its cost\mathit{cost} (the total number of edge traversals). We investigate tradeoffs between these two measures. A natural benchmark for both time and cost of rendezvous in a network is the number of edge traversals needed for visiting all nodes of the network, called the exploration time. Hence we express the time and cost of rendezvous as functions of an upper bound EE on the time of exploration (where EE and a corresponding exploration procedure are known to both agents) and of the size LL of the label space. We present two natural rendezvous algorithms. Algorithm Cheap\mathtt{Cheap} has cost O(E)O(E) (and, in fact, a version of this algorithm for the model where the agents start simultaneously has cost exactly EE) and time O(EL)O(EL). Algorithm Fast\mathtt{Fast} has both time and cost O(ElogL)O(E\log L). Our main contributions are lower bounds showing that, perhaps surprisingly, these two algorithms capture the tradeoffs between time and cost of rendezvous almost tightly. We show that any deterministic rendezvous algorithm of cost asymptotically EE (i.e., of cost E+o(E)E+o(E)) must have time Ω(EL)\Omega(EL). On the other hand, we show that any deterministic rendezvous algorithm with time complexity O(ElogL)O(E\log L) must have cost Ω(ElogL)\Omega (E\log L)

    Intermittent Connectivity for Exploration in Communication-Constrained Multi-Agent Systems

    Get PDF
    Motivated by exploration of communication-constrained underground environments using robot teams, we study the problem of planning for intermittent connectivity in multi-agent systems. We propose a novel concept of information-consistency to handle situations where the plan is not initially known by all agents, and suggest an integer linear program for synthesizing information-consistent plans that also achieve auxiliary goals. Furthermore, inspired by network flow problems we propose a novel way to pose connectivity constraints that scales much better than previous methods. In the second part of the paper we apply these results in an exploration setting, and propose a clustering method that separates a large exploration problem into smaller problems that can be solved independently. We demonstrate how the resulting exploration algorithm is able to coordinate a team of ten agents to explore a large environment
    corecore