5 research outputs found

    Cluster Based Real Time Scheduling for Distributed System

    Get PDF
    Real time tasks scheduling on a distributed system is a complex problem. The existing real time tasks scheduling techniques are primarily based on partitioned and global scheduling. In partitioned based scheduling the tasks are assigned on a dedicated processor. The advantages of partitioned based approach is existing uni-processor scheduling techniques can be used; no migration overheads but task assignment is NP hard problem and optimal utilization of processing nodes is not possible. In global scheduling all tasks are maintained in a single tasks queue and allocated to multiple processing nodes. The advantage of global scheduling is optimal utilization of processing nodes but suffer from high migration and preemption overheads. This paper proposed cluster based real time tasks scheduling on a distributed system which is a hybrid scheduling approach where processing nodes group into cluster and scheduling using global scheduling. The simulation result shows that the proposed scheduling increases the tasks acceptance ratio, resource utilization as compared to partitioned and global scheduling and reduces migration as well as preemption overheads

    Delay and reliability analysis of p-persistent carrier sense multiple access for multi-event industrial wireless sensor networks

    Get PDF
    In industrial environments various events can concurrently occur and may require different quality of service (QoS) provision based on different priority levels. To reduce the chances of collision and to improve efficiency in multi-event occurrence, Carrier Sense Multiple Access (CSMA) is a preferable choice for Medium Access Control (MAC) protocols. However, it also increases the overall delay. In this paper, a Priority MAC protocol for Multi-Event industrial wireless sensor networks (PMME) is proposed. In PMME, use of different p values/sequences is proposed to enable multi-priority operation, which can be optimized to suit different operational classes within industrial applications including emergency, regulatory control, supervisory control, open-loop control, alerting and monitoring systems. In this work, novel mathematical model as well as simulations are presented to validate the accuracy and performance of the proposed protocol. Mathematical analysis shows that the proposed PMME can prioritize data packets effectively while ensuring ultra-reliable and low latency communications for high priority nodes. Simulations in Castalia verify that PMME with different p values/sequences notably reduces packet delay for all four priority classes. The PMME also returns a high packet success rate compared to other two well-known priority enabled MAC protocols, QoS aware energy-efficient (QAEE) and multi-priority based QoS (MPQ), in multi-event industrial wireless sensor networks
    corecore