1,549 research outputs found

    Comprehensive review on controller for leader-follower robotic system

    Get PDF
    985-1007This paper presents a comprehensive review of the leader-follower robotics system. The aim of this paper is to find and elaborate on the current trends in the swarm robotic system, leader-follower, and multi-agent system. Another part of this review will focus on finding the trend of controller utilized by previous researchers in the leader-follower system. The controller that is commonly applied by the researchers is mostly adaptive and non-linear controllers. The paper also explores the subject of study or system used during the research which normally employs multi-robot, multi-agent, space flying, reconfigurable system, multi-legs system or unmanned system. Another aspect of this paper concentrates on the topology employed by the researchers when they conducted simulation or experimental studies

    Synchronization of multiple rigid body systems: a survey

    Full text link
    The multi-agent system has been a hot topic in the past few decades owing to its lower cost, higher robustness, and higher flexibility. As a particular multi-agent system, the multiple rigid body system received a growing interest since its wide applications in transportation, aerospace, and ocean exploration. Due to the non-Euclidean configuration space of attitudes and the inherent nonlinearity of the dynamics of rigid body systems, synchronization of multiple rigid body systems is quite challenging. This paper aims to present an overview of the recent progress in synchronization of multiple rigid body systems from the view of two fundamental problems. The first problem focuses on attitude synchronization, while the second one focuses on cooperative motion control in that rotation and translation dynamics are coupled. Finally, a summary and future directions are given in the conclusion

    Second-Order Consensus of Networked Mechanical Systems With Communication Delays

    Full text link
    In this paper, we consider the second-order consensus problem for networked mechanical systems subjected to nonuniform communication delays, and the mechanical systems are assumed to interact on a general directed topology. We propose an adaptive controller plus a distributed velocity observer to realize the objective of second-order consensus. It is shown that both the positions and velocities of the mechanical agents synchronize, and furthermore, the velocities of the mechanical agents converge to the scaled weighted average value of their initial ones. We further demonstrate that the proposed second-order consensus scheme can be used to solve the leader-follower synchronization problem with a constant-velocity leader and under constant communication delays. Simulation results are provided to illustrate the performance of the proposed adaptive controllers.Comment: 16 pages, 5 figures, submitted to IEEE Transactions on Automatic Contro

    Modeling, Analysis, and Optimization Issues for Large Space Structures

    Get PDF
    Topics concerning the modeling, analysis, and optimization of large space structures are discussed including structure-control interaction, structural and structural dynamics modeling, thermal analysis, testing, and design

    System analysis and integration studies for a 15-micron horizon radiance measurement experiment

    Get PDF
    Systems analysis and integration studies for 15-micron horizon radiance measurement experimen

    Control oriented modelling of an integrated attitude and vibration suppression architecture for large space structures

    Get PDF
    This thesis is divided into two parts. The main focus of the research, namely active vibration control for large flexible spacecraft, is exposed in Part I and, in parallel, the topic of machine learning techniques for modern space applications is described in Part II. In particular, this thesis aims at proposing an end-to-end general architecture for an integrated attitude-vibration control system, starting from the design of structural models to the synthesis of the control laws. To this purpose, large space structures based on realistic missions are investigated as study cases, in accordance with the tendency of increasing the size of the scientific instruments to improve their sensitivity, being the drawback an increase of its overall flexibility. An active control method is therefore investigated to guarantee satisfactory pointing and maximum deformation by avoiding classical stiffening methods. Therefore, the instrument is designed to be supported by an active deployable frame hosting an optimal minimum set of collocated smart actuators and sensors. Different spatial configurations for the placement of the distributed network of active devices are investigated, both at closed-loop and open-loop levels. Concerning closed-loop techniques, a method to optimally place the poles of the system via a Direct Velocity Feedback (DVF) controller is proposed to identify simultaneously the location and number of active devices for vibration control with an in-cascade optimization technique. Then, two general and computationally efficient open-loop placement techniques, namely Gramian and Modal Strain Energy (MSE)-based methods, are adopted as opposed to heuristic algorithms, which imply high computational costs and are generally not suitable for high-dimensional systems, to propose a placement architecture for generically shaped tridimensional space structures. Then, an integrated robust control architecture for the spacecraft is presented as composed of both an attitude control scheme and a vibration control system. To conclude the study, attitude manoeuvres are performed to excite main flexible modes and prove the efficacy of both attitude and vibration control architectures. Moreover, Part II is dedicated to address the problem of improving autonomy and self-awareness of modern spacecraft, by using machine-learning based techniques to carry out Failure Identification for large space structures and improving the pointing performance of spacecraft (both flexible satellite with sloshing models and small rigid platforms) when performing repetitive Earth Observation manoeuvres

    Motion Coordination of Aerial Vehicles

    Get PDF
    The coordinated motion control of multiple vehicles has emerged as a field of major interest in the control community. This thesis addresses two topics related to the control of a group of aerial vehicles: the output feedback attitude synchronization of rigid bodies and the formation control of Unmanned Aerial Vehicles (UAVs) capable of Vertical Take-Off and Landing (VTOL). The information flow between members of the team is assumed fixed and undirected. The first part of this thesis is devoted to the attitude synchronization of a group of spacecraft. In this context, we propose control schemes for the synchronization of a group of spacecraft to a predefined attitude trajectory without angular velocity measurements. We also propose some velocity-free consensus-seeking schemes allowing a group of spacecraft to align their attitudes, without reference trajectory specification. The second part of this thesis is devoted to the control of a group of VTOL-UAVs in the Special Euclidian group SE(3), i.e., position and orientation. In this context, we propose a few position coordination schemes without linear-velocity measurements. We also propose some solutions to the same problem in the presence of communication time-delays between aircraft. To solve the above mentioned problems, several new technical tools have been introduced in this thesis to overcome the deficiencies of the existing techniques in this field

    Distributed Control of Networked Nonlinear Euler-Lagrange Systems

    Get PDF
    Motivated by recent developments in formation and cooperative control of networked multi-agent systems, the main goal of this thesis is development of efficient synchronization and formation control algorithms for distributed control of networked nonlinear systems whose dynamics can be described by Euler-Lagrange (EL) equations. One of the main challenges in the design of the formation control algorithm is its optimality and robustness to parametric uncertainties, external disturbances and ability to reconfigure in presence of component, actuator, or sensor faults. Furthermore, the controller should be capable of handling switchings in the communication network topology. In this work, nonlinear optimal control techniques are studied for developing distributed controllers for networked EL systems. An individual cost function is introduced to design a controller that relies on only local information exchanges among the agents. In the development of the controller, it is assumed that the communication graph is not fixed (in other words the topology is switching). Additionally, parametric uncertainties and faults in the EL systems are considered and two approaches, namely adaptive and robust techniques are introduced to compensate for the effects of uncertainties and actuator faults. Next, a distributed H_infinity performance measure is considered to develop distributed robust controllers for uncertain networked EL systems. The developed distributed controller is obtained through rigorous analysis and by considering an individual cost function to enhance the robustness of the controllers in presence of parametric uncertainties and external bounded disturbances. Moreover, a rigorous analysis is conducted on the performance of the developed controllers in presence of actuator faults as well as fault diagnostic and identification (FDI) imperfections. Next, synchronization and set-point tracking control of networked EL systems are investigated in presence of three constraints, namely, (i) input saturation constraints, (ii) unavailability of velocity feedback, and (iii) lack of knowledge on the system parameters. It is shown that the developed distributed controllers can accomplish the desired requirements and specification under the above constraints. Finally, a quaternion-based approach is considered for the attitude synchronization and set-point tracking control problem of formation flying spacecraft. Employing the quaternion in the control law design enables handling large rotations in the spacecraft attitude and, therefore, any singularities in the control laws are avoided. Furthermore, using the quaternion also enables one to guarantee boundedness of the control signals both with and without velocity feedback

    Spacecraft nonlinear attitude control with bounded control input

    Get PDF
    The research in this thesis deals with nonlinear control of spacecraft attitude stabilization and tracking manoeuvres and addresses the issue of control toque saturation on a priori basis. The cascaded structure of spacecraft attitude kinematics and dynamics makes the method of integrator backstepping preferred scheme for the spacecraft nonlinear attitude control. However, the conventional backstepping control design method may result in excessive control torque beyond the saturation bound of the actuators. While remaining within the framework of conventional backstepping control design, the present work proposes the formulation of analytical bounds for the control torque components as functions of the initial attitude and angular velocity errors and the gains involved in the control design procedure. The said analytical bounds have been shown to be useful for tuning the gains in a way that the guaranteed maximum torque upper bound lies within the capability of the actuator and, hence, addressing the issue of control input saturation. Conditions have also been developed as well as the generalization of the said analytical bounds which allow for the tuning of the control gains to guarantee prescribed stability with the additional aim that the control action avoids reaching saturation while anticipating the presence of bounded external disturbance torque and uncertainties in the spacecraft moments of inertia. Moreover, the work has also been extended blending it with the artificial potential function method for achieving autonomous capability of avoiding pointing constraints for the case of spacecraft large angle slew manoeuvres. The idea of undergoing such manoeuvres using control moment gyros to track commanded angular momentum rather than a torque command has also been studied. In this context, a gimbal position command generation algorithm has been proposed for a pyramid-type cluster of four single gimbal control moment gyros. The proposed algorithm not only avoids the saturation of the angular momentum input from the control moment gyro cluster but also exploits its maximum value deliverable by the cluster along the direction of the commanded angular momentum for the major part of the manoeuvre. In this way, it results in rapid spacecraft slew manoeuvres. The ideas proposed in the thesis have also been validated using numerical simulations and compared with results already existing in the literature
    corecore