3,691 research outputs found

    Spectral identification of networks using sparse measurements

    Full text link
    We propose a new method to recover global information about a network of interconnected dynamical systems based on observations made at a small number (possibly one) of its nodes. In contrast to classical identification of full graph topology, we focus on the identification of the spectral graph-theoretic properties of the network, a framework that we call spectral network identification. The main theoretical results connect the spectral properties of the network to the spectral properties of the dynamics, which are well-defined in the context of the so-called Koopman operator and can be extracted from data through the Dynamic Mode Decomposition algorithm. These results are obtained for networks of diffusively-coupled units that admit a stable equilibrium state. For large networks, a statistical approach is considered, which focuses on spectral moments of the network and is well-suited to the case of heterogeneous populations. Our framework provides efficient numerical methods to infer global information on the network from sparse local measurements at a few nodes. Numerical simulations show for instance the possibility of detecting the mean number of connections or the addition of a new vertex using measurements made at one single node, that need not be representative of the other nodes' properties.Comment: 3

    Spectral identification of networks with inputs

    Get PDF
    We consider a network of interconnected dynamical systems. Spectral network identification consists in recovering the eigenvalues of the network Laplacian from the measurements of a very limited number (possibly one) of signals. These eigenvalues allow to deduce some global properties of the network, such as bounds on the node degree. Having recently introduced this approach for autonomous networks of nonlinear systems, we extend it here to treat networked systems with external inputs on the nodes, in the case of linear dynamics. This is more natural in several applications, and removes the need to sometimes use several independent trajectories. We illustrate our framework with several examples, where we estimate the mean, minimum, and maximum node degree in the network. Inferring some information on the leading Laplacian eigenvectors, we also use our framework in the context of network clustering.Comment: 8 page

    On the Connectivity of Unions of Random Graphs

    Full text link
    Graph-theoretic tools and techniques have seen wide use in the multi-agent systems literature, and the unpredictable nature of some multi-agent communications has been successfully modeled using random communication graphs. Across both network control and network optimization, a common assumption is that the union of agents' communication graphs is connected across any finite interval of some prescribed length, and some convergence results explicitly depend upon this length. Despite the prevalence of this assumption and the prevalence of random graphs in studying multi-agent systems, to the best of our knowledge, there has not been a study dedicated to determining how many random graphs must be in a union before it is connected. To address this point, this paper solves two related problems. The first bounds the number of random graphs required in a union before its expected algebraic connectivity exceeds the minimum needed for connectedness. The second bounds the probability that a union of random graphs is connected. The random graph model used is the Erd\H{o}s-R\'enyi model, and, in solving these problems, we also bound the expectation and variance of the algebraic connectivity of unions of such graphs. Numerical results for several use cases are given to supplement the theoretical developments made.Comment: 16 pages, 3 tables; accepted to 2017 IEEE Conference on Decision and Control (CDC

    Approximating the Spectrum of a Graph

    Full text link
    The spectrum of a network or graph G=(V,E)G=(V,E) with adjacency matrix AA, consists of the eigenvalues of the normalized Laplacian L=ID1/2AD1/2L= I - D^{-1/2} A D^{-1/2}. This set of eigenvalues encapsulates many aspects of the structure of the graph, including the extent to which the graph posses community structures at multiple scales. We study the problem of approximating the spectrum λ=(λ1,,λV)\lambda = (\lambda_1,\dots,\lambda_{|V|}), 0λ1,,λV20 \le \lambda_1,\le \dots, \le \lambda_{|V|}\le 2 of GG in the regime where the graph is too large to explicitly calculate the spectrum. We present a sublinear time algorithm that, given the ability to query a random node in the graph and select a random neighbor of a given node, computes a succinct representation of an approximation λ~=(λ~1,,λ~V)\widetilde \lambda = (\widetilde \lambda_1,\dots,\widetilde \lambda_{|V|}), 0λ~1,,λ~V20 \le \widetilde \lambda_1,\le \dots, \le \widetilde \lambda_{|V|}\le 2 such that λ~λ1ϵV\|\widetilde \lambda - \lambda\|_1 \le \epsilon |V|. Our algorithm has query complexity and running time exp(O(1/ϵ))exp(O(1/\epsilon)), independent of the size of the graph, V|V|. We demonstrate the practical viability of our algorithm on 15 different real-world graphs from the Stanford Large Network Dataset Collection, including social networks, academic collaboration graphs, and road networks. For the smallest of these graphs, we are able to validate the accuracy of our algorithm by explicitly calculating the true spectrum; for the larger graphs, such a calculation is computationally prohibitive. In addition we study the implications of our algorithm to property testing in the bounded degree graph model

    Moment-Based Spectral Analysis of Random Graphs with Given Expected Degrees

    Get PDF
    In this paper, we analyze the limiting spectral distribution of the adjacency matrix of a random graph ensemble, proposed by Chung and Lu, in which a given expected degree sequence wnT=(w1(n),,wn(n))\overline{w}_n^{^{T}} = (w^{(n)}_1,\ldots,w^{(n)}_n) is prescribed on the ensemble. Let ai,j=1\mathbf{a}_{i,j} =1 if there is an edge between the nodes {i,j}\{i,j\} and zero otherwise, and consider the normalized random adjacency matrix of the graph ensemble: An\mathbf{A}_n == [ai,j/n]i,j=1n [\mathbf{a}_{i,j}/\sqrt{n}]_{i,j=1}^{n}. The empirical spectral distribution of An\mathbf{A}_n denoted by Fn()\mathbf{F}_n(\mathord{\cdot}) is the empirical measure putting a mass 1/n1/n at each of the nn real eigenvalues of the symmetric matrix An\mathbf{A}_n. Under some technical conditions on the expected degree sequence, we show that with probability one, Fn()\mathbf{F}_n(\mathord{\cdot}) converges weakly to a deterministic distribution F()F(\mathord{\cdot}). Furthermore, we fully characterize this distribution by providing explicit expressions for the moments of F()F(\mathord{\cdot}). We apply our results to well-known degree distributions, such as power-law and exponential. The asymptotic expressions of the spectral moments in each case provide significant insights about the bulk behavior of the eigenvalue spectrum

    Filtering Random Graph Processes Over Random Time-Varying Graphs

    Get PDF
    Graph filters play a key role in processing the graph spectra of signals supported on the vertices of a graph. However, despite their widespread use, graph filters have been analyzed only in the deterministic setting, ignoring the impact of stochastic- ity in both the graph topology as well as the signal itself. To bridge this gap, we examine the statistical behavior of the two key filter types, finite impulse response (FIR) and autoregressive moving average (ARMA) graph filters, when operating on random time- varying graph signals (or random graph processes) over random time-varying graphs. Our analysis shows that (i) in expectation, the filters behave as the same deterministic filters operating on a deterministic graph, being the expected graph, having as input signal a deterministic signal, being the expected signal, and (ii) there are meaningful upper bounds for the variance of the filter output. We conclude the paper by proposing two novel ways of exploiting randomness to improve (joint graph-time) noise cancellation, as well as to reduce the computational complexity of graph filtering. As demonstrated by numerical results, these methods outperform the disjoint average and denoise algorithm, and yield a (up to) four times complexity redution, with very little difference from the optimal solution

    Distributed Adaptive Learning of Graph Signals

    Full text link
    The aim of this paper is to propose distributed strategies for adaptive learning of signals defined over graphs. Assuming the graph signal to be bandlimited, the method enables distributed reconstruction, with guaranteed performance in terms of mean-square error, and tracking from a limited number of sampled observations taken from a subset of vertices. A detailed mean square analysis is carried out and illustrates the role played by the sampling strategy on the performance of the proposed method. Finally, some useful strategies for distributed selection of the sampling set are provided. Several numerical results validate our theoretical findings, and illustrate the performance of the proposed method for distributed adaptive learning of signals defined over graphs.Comment: To appear in IEEE Transactions on Signal Processing, 201
    corecore