29,272 research outputs found

    Model-based Optimization of Compressive Antennas for High-Sensing-Capacity Applications

    Full text link
    This paper presents a novel, model-based compressive antenna design method for high sensing capacity imaging applications. Given a set of design constraints, the method maximizes the sensing capacity of the compressive antenna by varying the constitutive properties of scatterers distributed along the antenna. Preliminary 2D design results demonstrate the new method's ability to produce antenna configurations with enhanced imaging capabilities

    Measurement Bounds for Sparse Signal Ensembles via Graphical Models

    Full text link
    In compressive sensing, a small collection of linear projections of a sparse signal contains enough information to permit signal recovery. Distributed compressive sensing (DCS) extends this framework by defining ensemble sparsity models, allowing a correlated ensemble of sparse signals to be jointly recovered from a collection of separately acquired compressive measurements. In this paper, we introduce a framework for modeling sparse signal ensembles that quantifies the intra- and inter-signal dependencies within and among the signals. This framework is based on a novel bipartite graph representation that links the sparse signal coefficients with the measurements obtained for each signal. Using our framework, we provide fundamental bounds on the number of noiseless measurements that each sensor must collect to ensure that the signals are jointly recoverable.Comment: 11 pages, 2 figure

    Dictionary design for distributed compressive sensing

    Get PDF
    Conventional dictionary learning frameworks attempt to find a set of atoms that promote both signal representation and signal sparsity for a class of signals. In distributed compressive sensing (DCS), in addition to intra-signal correlation, inter-signal correlation is also exploited in the joint signal reconstruction, which goes beyond the aim of the conventional dictionary learning framework. In this letter, we propose a new dictionary learning framework in order to improve signal reconstruction performance in DCS applications. By capitalizing on the sparse common component and innovations (SCCI) model [1], which captures both intra- and inter-signal correlation, the proposed method iteratively finds a dictionary design that promotes various goals: i) signal representation; ii) intra-signal correlation; and iii) inter-signal correlation. Simulation results show that our dictionary design leads to an improved DCS reconstruction performance in comparison to other designs.This work is supported by EPSRC Research Grant EP/K033700/1 and EP/K033166/1, the Fundamental Research Funds for the Central Universities (No. 2014JBM149), the State Key Laboratory of Rail Traffic Control and Safety (RCS2012ZT014) of Beijing Jiaotong University, the Natural Science Foundation of China (U1334202), the Key Grant Project of Chinese Ministry of Education (313006).This is the published manuscript. It is freely available online from the IEEE website here: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6880772. © 2014 IEE

    Sparse Spectrum Sensing in Infrastructure-less Cognitive Radio Networks via Binary Consensus Algorithms

    Full text link
    Compressive Sensing has been utilized in Cognitive Radio Networks (CRNs) to exploit the sparse nature of the occupation of the primary users. Also, distributed spectrum sensing has been proposed to tackle the wireless channel problems, like node or link failures, rather than the common (centralized approach) for spectrum sensing. In this paper, we propose a distributed spectrum sensing framework based on consensus algorithms where SU nodes exchange their binary decisions to take global decisions without a fusion center to coordinate the sensing process. Each SU will share its decision with its neighbors, and at every new iteration each SU will take a new decision based on its current decision and the decisions it receives from its neighbors; in the next iteration, each SU will share its new decision with its neighbors. We show via simulations that the detection performance can tend to the performance of majority rule Fusion Center based CRNs
    • …
    corecore