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Abstract—Distributed compressive sensing (DCS) concerns the
reconstruction of multiple sensor signals with reduced numbers
of measurements, which exploits both intra- and inter-signal
correlations. In this paper, we propose a novel Bayesian DCS
algorithm based on variational Bayesian inference. The proposed
algorithm decouples the common component, that character-
izes inter-signal correlation, from innovation components, that
represent intra-signal correlation. Such an operation results in
a computational complexity of reconstruction which is linear
with the number of signals. The superior performance of the
algorithm, in terms of the computing time and reconstruction
quality, is demonstrated by numerical simulations in comparison
with other existing reconstruction methods.

Index Terms—Distributed compressive sensing (DCS),
Bayesian inference, signal reconstruction.

I. INTRODUCTION

COMPRESSIVE sensing (CS) [1], [2] enables one to
reconstruct compressible signals from a reduced number

of linear measurements. Owning to its convenience for data
acquisition, CS has been proposed to take the place of the
traditional sampling-and-compression approach in applications
such as wireless sensor networks (WSNs) where data acquisi-
tion is costly. In a WSN, the sensor nodes are embedded into
the environment being sensed, which often places stringent
constraints on power consumption, since it may be highly
impractical to regularly replace or recharge embedded or
implanted batteries, especially if there are many nodes forming
a network. By applying CS, the number of samples required
can be reduced and the compression operation is simpler
than that for traditional compression methods. It has been
shown that the limited energy supply in WSNs can be used
more efficiently with CS, which leads to a longer network
lifetime [3]–[5].

CS exploits the sparse structure of a signal and applies
random measurements. However, in WSN applications, dense-
ly deployed sensors within the event area have high spatial
correlations. Such spatial correlations, which represent inter-
signal correlations, are not considered in conventional CS. To
further exploit inter-signal correlations, the CS framework has
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been extended for multiple measurement vectors (MMVs) [6],
[7] which, similarly to sparse signal reconstruction, jointly
recover a set of signals. The MMVs model assumes that
all signals share a common support, which may not be true
in WSN applications. In [8], [9], distributed compressive
sensing (DCS) [8], [9] is proposed to model the intra- and
inter-signal correlations with a common component and an
innovation component. This DCS model occurs for example in
WSN applications that involve monitoring of various physical
parameters, such as temperature, humidity, light intensity and
air pressure. Global factors, e.g., the sun and prevailing winds,
are common to all sensors and contribute to the common com-
ponent, while local factors corresponding to distinct locations
results in different innovation components.

The convenience of the compression operation in CS leads
to the increased complexity of the decoding operation, and
sophisticated algorithms are required to recover the original
signal. Joint reconstruction of multiple signals in DCS has
a much higher computational complexity than signal recon-
struction in CS. The DCS reconstruction algorithm proposed
in [8] concatenates measurements of each signal and per-
forms a weighted ℓ1-norm minimization to jointly recover
multiple signals. This scheme has the following drawbacks:
i) the computational complexity of the joint reconstruction is
O(K3.5) (where K is the number of signals) times higher
than conventional CS with basis pursuit (BP) [10], and thus
the algorithm is impractical for a large number of signals with
a high dimensionality; ii) one needs to choose weights for the
common component and innovation components respectively,
and improper selection of weights degrades the reconstruction
performance. To reduce the computational complexity, Chen
et al. propose a Fréchet mean approach in [4], which first
estimates the common signal support from multiple correlated
signals and then leverages the support estimate to enhance the
reconstruction of each signal.

In this paper, we focus on the sparse common and innova-
tions model of DCS, and propose a Bayesian DCS algorithm,
which extends the sparse Bayesian learning framework [11]
to the DCS scenario. By applying variational approximation,
the new approach decouples the common component, that
characterizes inter-signal correlation, from innovation compo-
nents, that represent intra-signal correlation. Such an operation
results in a computational complexity which is linear with the
number of signals. The performance of the proposed algorithm

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Apollo

https://core.ac.uk/display/35278721?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


is studied by numerical simulations and compared with other
existing approaches.

The rest of the paper is organized as follows: Section
II describes in detail the background for CS and DCS. In
Section III, we provide the Bayesian DCS framework and the
proposed variational Bayesian algorithm. Numerical results are
presented in Section IV, followed by conclusions in Section
V.

The following notation is used. Lower-case letters denote
numbers, boldface upper-case letters denote matrices, and
boldface lower-case letters denote column vectors. The su-
perscripts (·)T and (·)−1 denote the transpose and the inverse
of a matrix, respectively. rank(X) and |X| denotes the rank
and the determinant of matrix X, respectively. xi denotes the
ith element of x and Xi,i denotes the ith diagonal element
of X. Ep(x)(·) denotes expectation with respect to p(x), i.e.,
the distribution of x. N (µ,Σ) denotes the multivariate normal
distribution with mean vector µ and covariance matrix Σ. In
denotes the n× n identity matrix. The ℓ0 norm, the ℓ1 norm,
and the ℓ2 norm of vectors, are denoted by ∥ · ∥0, ∥ · ∥1,
and ∥ · ∥2, respectively. The Frobenius norm of a matrix X is
denoted by ∥X∥F .

II. BACKGROUND

In this section, we first provide a brief overview of CS under
the sparse Bayesian learning framework, and then introduce
DCS, i.e., an extension of CS for joint reconstruction of
multiple signals with both sparse structures and inter-signal
correlation.

A. Compressive Sensing and Sparse Bayesian Learning

The classical CS model is given by:

y = Ax+ e, (1)

where y ∈ Rm (m < n) denotes the vector of measurements,
A ∈ Rm×n denotes the projection matrix, e ∈ Rm denotes
the noise term for the measuring process, and x ∈ Rn denotes
the s-sparse vector to be estimated. Here, s-sparse means that
only s (s ≪ n) elements in vector x are non-zeros while all
the other elements are zeros, i.e., ∥x∥0 = s. In practice, one
may obtain the measurements vector from the original signal
using analogue CS encoders [12], whereby the measurements
vector is obtained directly from the analogue continuous-
time signal, or using digital CS encoders [13], whereby the
measurements vector is obtained from the Nyquist sampled
discrete-time signal. Recent studies suggest that digital CS
encoders are more energy efficient than analogue CS encoders
for WSNs [13].

The typical signal reconstruction process behind conven-
tional CS approaches involves solving the following optimiza-
tion problem to recover the original signal:

min
x

∥x∥1 + λ∥Ax− y∥22, (2)

where λ is a parameter to trade-off sparsity level and dis-
tortion. It has been demonstrated that only m = O(s log n

s )

measurements [14] are required for robust reconstruction in
the CS framework.

The conventional CS problem can be formulated from
a Bayesian perspective. Under the assumption of Gaussian
measurement noise, i.e., e ∼ N (0, σ2Im), where σ2 denotes
the noise variance, we have the following likelihood

p(y|x;σ2) = N (y;Ax, σ2Im). (3)

To obtain a sparse solution, it is necessary to consider the
use of a sparse-enforcing prior p(x). For example, by using
a Laplace prior, the maximum a posteriori estimate, i.e.,
argmax

x
p(x|y), is the solution of the optimization problem

(2).
The sparse Bayesian learning framework [11] considers a

zero-mean Gaussian prior distribution

p(x;Γ) = N (x;0,Γ) (4)

where Γ ∈ Rn×n is a diagonal matrix composed of n
hyperparameters γi (i = 1, . . . , n). With uniform hyperpriors,
i.e., p(γi) and p(σ2), the value of these hyperparameters can
be inferred by

max
Γ,σ2

log p(Γ, σ2|y) ∝ max
Γ,σ2

log p(y;Γ, σ2)

= max
Γ,σ2

log

∫
p(y|x;σ2)p(x;γ)dx

∝ min
Γ,σ2

log |Σ|+ yTΣ−1y,

(5)

where Σ = σ2Im + AΓAT . In [11], the expectation-
maximization (EM) algorithm is employed to solve (5). Given
these hyperparameters, x can be inferred by maximizing the
posterior distribution

x̂ = argmax
x

p(x|y;γ, σ2)

= argmax
x

p(y|x;σ2)p(x;γ)

= ΓATΣ−1y.

(6)

It has been demonstrated in [15], [16] that the sparse Bayesian
learning approach penalizes non-sparse solutions with a non-
seperable cost function which is superior to solving the opti-
mization problem (2).

B. Distributed Compressive Sensing

DCS extends CS to the application of joint reconstruction
of multiple correlated signals. In the DCS setting, K signals
are measured by

yk = Akxk + ek (k = 1, . . . ,K), (7)

where yk ∈ Rmk , Ak ∈ Rmk×n, xk ∈ Rn, and ek ∈ Rmk

denote the vector of measurements, the projection matrix, the
sparse signal to be estimated, and measurement noise for
signal k, respectively. In the DCS model, the sparse signal
xk (k = 1, . . . ,K) can be represented as

xk = zc + zk, (8)



where zc ∈ Rn with ∥zc∥0 = sc ≪ n denotes the common
component of the sparse signal xk, which captures the inter-
signal correlation and is common to all signals, and zk ∈ Rn

(i = 1, . . . ,K) with ∥zk∥0 = sk ≪ n denotes the innovations
component of the sparse signal xk, which captures the intra-
signal correlation and is specific to the signal k.

In [8], Baron et al. propose to jointly reconstruct multiple
sparse signals by solving the following optimization problem:

min
z̃

∥z̃∥1 s.t. ∥Az̃− ỹ∥22 ≤ ϵ, (9)

where ϵ ≥ 0, z̃ =
[
zTc zT1 . . . zTK

]T ∈ R(K+1)n is the ex-
tended signal vector, ỹ =

[
yT
1 . . . yT

K

]T ∈ R
∑K

k=1 mk is the
extended measurements vector and A ∈ R

∑K
k=1 mk×(K+1)n is

the extended sensing matrix given by:

A =

A1 A1 0 0 · · · 0
...

. . .
...

AK 0 0 0 · · · AK

 .

The optimization problem in (9) can be seen as recovering
a (K +1)×n signal with

∑K
k=1 mk measurements, which in

general requires more computing power and storage resources
than does independent reconstruction of K signals. In [4], a
Fréchet mean approach is proposed for joint reconstruction
of multiple correlated signals with a reduced computational
complexity. Instead of solving (9) with concatenated mea-
surements ỹ, a crude estimate of the common component
is inferred directly from the measurements, and then those
signals are recovered one by one with the use of the estimate
of the common component. The Fréchet mean of K sparse
signals, i.e., z̃c ∈ Rn, can be obtained from the measurements
as follows:

z̃c = argmin
z̃c

K∑
k=1

λkd
2(Akz̃c,yk), (10)

where λk > 0 denotes the contribution weight of the kth signal
and d(Akx̃,yk) denotes the distance function between the
vector Akz̃c and yk. By using the Euclidean distance function,
the Fréchet mean is given by:

z̃c = (ÂT Â)−1ÂT ŷ, (11)

where the extended sensing matrix Â ∈ R(
∑K

k=1 mk)×n

and the extended measurement vector ŷ ∈ R
∑K

k=1 mk

are given by Â =
[√

λ1A
T
1 , · · · ,

√
λKAT

K

]T
and ŷ =[√

λ1y
T
1 , · · · ,

√
λKyT

K

]T
respectively1.

III. VARIATIONAL BAYESIAN LEARNING FOR
DISTRIBUTED COMPRESSIVE SENSING

In this section, we provide the Bayesian formulation for the
DCS model and a variation inference approach for solving the
joint reconstruction problem.

1Equation (11) requires rank(Â) = n, which can be satisfied when∑K
k=1 mk ≥ n for randomly generated sensing matrices Ak (k =

1, . . . ,K).

A. Bayesian Formulation for Distributed Compressive Sensing

Akin to the sparse Bayesian learning framework [11], we
adopt zero-mean Gaussian prior distributions for the common
component and innovation components, respectively, which
are given as

p(zc;Γc) = N (zc;0,Γc) (12)

and
p(zk;Γk) = N (zk;0,Γk), (13)

where Γc ∈ Rn×n is a diagonal matrix with hyperparameters
γc,i (i = 1, . . . , n), and Γk ∈ Rn×n is a diagonal matrix
with hyperparameters γk,i (k = 1, . . . ,K; i = 1, . . . , n).
Assuming elements of the measurement noise vector ek are
drawn from independent and identically distributed (i.i.d.)
zero-mean Gaussian distributions with variance σ2, we can
write the likelihood function as

p(yk|zc, zk;σ2) = N (yk;Ak(zc + zk), σ
2Imk

). (14)

Thus, the marginalized probability density function (PDF) is
given by

p(y1, . . . ,yK ;Γc,Γ1, . . . ,ΓK , σ2)

=

∫
p(zc;Γc)

K∏
k=1

∫
p(yk|zc, zk;σ2)p(zk;Γk)dzk dzc

=

∣∣∣∣∣In + Γc

K∑
k=1

AT
kΣ

−1
k Ak

∣∣∣∣∣
− 1

2 K∏
k=1

(2π)−
mk
2 |Σk|−

1
2

exp

1

2

(
K∑

k=1

yT
k Σ

−1
k Ak

)(
Γ−1
c +

K∑
k=1

AT
kΣ

−1
k Ak

)−1

(
K∑

k=1

AT
kΣ

−1
k yk

)
− 1

2

(
K∑

k=1

yT
k Σ

−1
k yk

))
(15)

where Σk = σ2Imk
+AkΓkA

T
k (k = 1, . . . ,K).

As with sparse Bayesian learning in [11], it is impossible
to directly find the optimal hyperparameters that maximize the
marginalized PDF (15). By employing Bayesian inference, we
can express the posterior as

p(zc, z1, . . . , zK |y1, . . . ,yK ;Γc,Γ1, . . . ,ΓK , σ2)

=

p(zc;Γc)
K∏

k=1

p(yk|zc, zk;σ2)p(zk;Γk)

p(y1, . . . ,yK ;Γc,Γ1, . . . ,ΓK , σ2)
.

(16)

We note that the common component and the innovation
components are coupled in (15) which makes the posterior (16)
become non-separable for zc and zk. Therefore, operations in
sparse Bayesian learning [11] cannot be directly applied to
solve this problem. In order to apply sparse Bayesian learning,
one has to concatenate all sensing matrices and solve a sparse
signal reconstruction problem, which leads to manipulations
on an (K + 1)n× (K + 1)n covariance matrix.



B. Variational Bayesian Algorithm for Distributed Compres-
sive Sensing

In order to reduce the computational complexity, we propose
a variational Bayesian algorithm for DCS reconstruction. The
essence of variational inference is to find some distribution
which usually has a factorized form and closely approximates
the true posterior distribution. Variational approximation pro-
vides a method to bypass the requirement of exactly knowing
the posterior. We adopt the variational approximation in the
Bayesian formulation of DCS to find separable functions that
approximate the posterior of zc and zk.

To simplify the notations, we define Y = {y1, . . . ,yK},
Z = {zc, z1, . . . , zK} and θ = {Γc,Γ1, . . . ,ΓK , σ2}. Our
goal is to estimate the value of the hyperparameters, i.e., θ,
which maximize the following log-likelihood

log p(Y;θ) = F (q(Z),θ) + KL(q(Z)∥p(Z|Y;θ)), (17)

where

F (q(Z),θ) =

∫
q(Z) log

(
p(Z,Y;θ)

q(Z)

)
dZ, (18)

and

KL(q(Z)∥p(Z|Y;θ) = −
∫

q(Z) log

(
p(Z|Y;θ)

q(Z)

)
dZ

(19)

is the Kullback-Leibler (KL) divergence between the true pos-
terior p(Z|Y;θ) and a variational distribution q(Z). The KL
divergence KL(q(Z)∥p(Z|Y;θ)) ≥ 0 and equality holds only
when q(Z) = p(Z|Y;θ). We assume q(Z) has a factorized
form, which is given by

q(Z) = q(zc)q(z1) . . . q(zK). (20)

According to [17], to maximize F (q(Z),θ), the variational
distributions satisfy

q(zc) ∝ exp
(
Eq(z1),...,q(zK)

[
ln p(y1, . . . ,yK ,

zc, z1, . . . , zK ;Γc,Γ1, . . . ,ΓK , σ2)
])

∝ exp
(
Eq(z1)

[
ln p(y1|zc, z1, σ2)

]
+ . . .

+Eq(zK)

[
ln p(yK |zc, zK , σ2)

]
+ ln p(zc|Γc)

)
∝ N (zc;µc,Σc),

(21)

where µc = σ−2Σc

K∑
k=1

AT
k (yk − Akµk), Σc =(

K∑
k=1

AT
k Ak

σ2 + Γ−1
c

)−1

and µk = Eq(z1)

[
zk
]
, and

q(zk) ∝ exp
(
Eq(zc),q(zj),j ̸=k

[
ln p(y1, . . . ,yK ,

zc, z1, . . . , zK ;Γc,Γ1, . . . ,ΓK , σ2)
])

∝ exp
(
Eq(zc)

[
ln p(yk|zc, zk, σ2)

]
+ ln p(zk|Γk)

)
∝ N (zk;µk,Σk),

(22)

where µk = σ−2ΣkA
T
k (yk − Akµc) and Σk =(

AT
k Ak

σ2 + Γ−1
k

)−1

.
According to (21) and (22), we conclude that q(zc) and

q(zk) are Gaussian distributions, i.e., q(zc) = N (zc;µc,Σc)
and q(zk) = N (zk;µk,Σk) (k = 1, . . . ,K). Now given q(zc)
and q(zk) (k = 1, . . . ,K), hyperparameters can be updated by
θ = argmax

θ
F (q(Z),θ). Specifically, we have

γnew
c,i = (Σc)i,i + µ2

c,i,

γnew
k,i = (Σk)i,i + µ2

k,i,

(σ2)new =
1

K
∑K

k=1 mk

(
K∑

k=1

∥yk −Ak(µc + µk)∥22+

(σ2)old
K∑

k=1

n∑
i=1

(
1− (γold

k,i)
−1(Σk)i,i

)
+

(σ2)old
n∑

i=1

(
1− (γold

c,i )
−1(Σc)i,i

))
.

(23)
The variational optimization proceeds by iteratively updat-

ing (21), (22) and (23) until convergence to stable hyperpa-
rameters θ. In the end, we can obtain the reconstructed signal
by applying the maximum a posteriori estimation

x̂k = arg max
zc+zk

p(Z|Y;θ)

= argmax
zc

q(zc) + argmax
zk

q(zk)

= µc + µk.

(24)

C. Comparison with the Fréchet mean approach
The proposed variational Bayesian algorithm for DCS is

derived directly from a Bayesian perspective, while it exhibits
some similarities to the Fréchet mean approach [4] in the
estimation of the common component. In specific, in each
iteration of the proposed algorithm, the mean of the common
component is updated by

µc =

(
K∑

k=1

AT
kAk + σ2Γ−1

c

)−1 K∑
k=1

AT
k (yk−Akµk), (25)

while the Fréchet mean approach with equal weights and
Euclidean distance function gives a crude estimate of the
common component by

z̃c =

(
K∑

k=1

AT
kAk

)−1 K∑
k=1

AT
k yk. (26)

Comparing (25) (26), we note that the Fréchet mean ap-
proach employs least squares estimation and ignores the im-
pact of innovation components, while the proposed approach
essentially applies minimum mean square error estimation
with previous estimate of innovation components.

Given the estimated mean and covariance of the common
component, the innovation components are updated separately
in the proposed algorithm, which is similar to the process
used by the sparse Bayesian learning and the Fréchet mean
approach.



IV. NUMERICAL SIMULATIONS

In this section, we compare the performance of the proposed
variational Baysian algorithm for DCS reconstruction with
other existing approaches by numerical simulations.

A. Experiment Setup

We consider a set of K correlated signals following the
DCS model. Without loss of generality, we let m = mk

(k = 1, . . . ,K), i.e., all signals have the same number
of measurements, and sI = sk (k = 1, . . . ,K), i.e., the
innovation components of different signals have the same
sparsity level. We first generate the sparse common component
zc randomly for all signals and then generate the sparse
innovation component zk (k = 1, . . . ,K) randomly for each of
the signals independently, where the non-zero components of
both zc and zk are drawn from i.i.d. Gaussian distributions
N (0, 1). The sensing matrices Ak are generated randomly
for different signals, where the elements are drawn from the
i.i.d. Gaussian distribution N (0, 1), followed by a column
normalization. The received measurements are corrupted by
additive zero-mean Gaussian noise to yield signal noise ratio
(SNR), i.e., ∥Akxk∥2

2

∥ek∥2
2

, of 20dB.
Two performance metrics including computing time and

averaged relative error are considered in the comparison.
The averaged relative error is defined as the average of∑K

k=1 ∥x̂k−xk∥2
2∑K

k=1 ∥xk∥2
2

. We conduct 1000 trials for each experiment
setting and provide the averaged result.

The following approaches are compared:
1) ℓ1 minimization: Signals are reconstructed independent-

ly by basis pursuit denoising;
2) Joint ℓ1 minimization: Joint signal reconstruction by the

concatenated and weighted ℓ1-norm minimization as (9);
3) Fréchet mean approach: Joint signal reconstruction by

the Fréchet mean approach [4];
4) Proposed approach: Joint signal reconstruction by the

proposed variational Baysian algorithm.
We use CVX, a package for specifying and solving convex
programs [18], to solve inverse problems in ℓ1 minimization,
joint ℓ1 minimization and the Fréchet mean approach.

B. Performance Comparison for DCS

In the first experiment, we compare the computing time
consumed by the different approaches in the joint recon-
struction of multiple correlated signals that satisfy the DCS
model. Our simulations are performed in a MATLAB R2012b
environment on a system with a quad-core 3.4GHz CPU
and 32 GB RAM, running under the Microsoft Windows 7
operating system. As shown in Fig. 1, a significant improve-
ment of the required computing time can be observed using
the proposed approach. This simulation result agrees with
the analysis that the computational complexity of joint ℓ1
minimization is O

(
(Km)2(Kn)1.5

)
, which is much higher

than O
(
Km2n1.5

)
, i.e., the complexity of solving an ℓ1

optimization problem [10].
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Fig. 1. Comparison of computing time consumed by different approaches
(m = 250, n = 500, sc = 90 and sI = 10).

The reconstruction quality for different approaches is given
in Fig. 2. In this experiment, we have compared the averaged
relative error against number of measurements, number of
signals and innovation component sparsity level. Comparing
with conventional CS, i.e., performing independent ℓ1 min-
imization, improved reconstruction quality is observed for
the three approaches that exploit inter-signal correlations,
and the proposed approach outperforms the other two joint
reconstruction approaches. In addition, from Fig. 2 (c) we
note that a high innovation component sparsity level results
in a poor estimation quality of the common component by
using the Fréchet mean, and thus degrades the performance
of the Fréchet mean approach. However, the gain of the pro-
posed approach is maintained for the case of high innovation
component sparsity levels.

V. CONCLUSION

In this paper, we provide a Bayesian DCS framework
for joint reconstruction of multiple correlated signals. An
algorithm is proposed based on variational inference under
the Bayesian DCS framework. The superiority of the proposed
approach in relation to other existing approaches is revealed by
our experimental study. Future work is to explore theoretical
guarantees for the proposed approach.
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Fig. 2. Comparison of reconstruction performance for different approaches.
(a) reconstruction quality vs. number of measurements (n = 50, K = 4,
sc = 8 and sI = 2); (b) reconstruction quality vs. number of correlated
signals (n = 50, m = 25, sc = 10 and sI = 1); (c) reconstruction quality
vs. innovation component sparsity level (n = 50, m = 25, K = 4 and
sc = 10).


