434 research outputs found

    BEACON: A Cloud Network Federation Framework

    Get PDF
    This paper presents the BEACON Framework, which will enable the provision and management of cross-site virtual networks for federated cloud infrastructures in order to support the automated deployment of applications and services across different clouds and datacenters. The proposed framework will support different federation architectures, going from tightly coupled (datacenter federation) to loosely coupled (cloud federation and multi-cloud orchestration) architectures, and will enable the creation of Layer 2 and Layer 3 overlay networks to interconnect remote resources located at different cloud sites. A high level description of the main components of the BEACON framework is also introduced

    Interoperable Federated Cloud Networking

    Get PDF
    The BEACON framework enables the provision of federated cloud infrastructures, with special emphasis on inter-cloud networking and security issues, to support the automated deployment of applications and services across different clouds and datacenters. BEACON is distributed as open source (see http://github.com/BeaconFramework) and some enhancements are being contributed to the OpenNebula and OpenStack cloud management platforms

    Research challenges for cross-cloud applications.

    Get PDF

    Research challenges for cross-cloud application

    Get PDF
    Federated clouds can expose the Internet as a homogeneous compute fabric. There is an opportunity for developing cross-cloud applications that can be deployed pervasively over the Internet, dynamically adapting their internal topology to their needs. In this paper we explore the main challenges for fully realizing the potential of cross-cloud applications. First, we focus on the networking dimension of these applications. We evaluate what support is needed from the infrastructure, and what are the further implications of opening the networking side. On a second part, we examine the impact of a distributed deployment for applications, assessing the implications from a management perspective, and how it affects the delivery of quality of service and non-functional requirements

    Interoperable Federated Cloud Networking

    Full text link

    Cloud computing for the architecture, engineering & construction sector: requirements, prototype & experience

    Get PDF
    The Architecture, Engineering \& Construction (AEC) sector is a highly fragmented, data intensive, project based industry, involving a number of very different professions and organisations. Projects carried out within this sector involve collaboration between various people, using a variety of different systems. This, along with the industry's strong data sharing and processing requirements, means that the management of building data is complex and challenging. This paper presents a solution to data sharing requirements of the AEC sector by utilising Cloud Computing. Our solution presents two key contributions, first a governance model for building data, based on extensive research and industry consultation. Second, a prototype implementation of this governance model, utilising the CometCloud autonomic cloud computing engine based on the Master/Work paradigm. we have integrated our prototype with the 3D modelling software Google Sketchup. The approach and prototype presented has applicability in a number of other eScience related applications involving multi-disciplinary, collaborative working using Cloud computing infrastructure

    Computing Without Borders: The Way Towards Liquid Computing

    Get PDF
    Despite the de-facto technological uniformity fostered by the cloud and edge computing paradigms, resource fragmentation across isolated clusters hinders the dynamism in application placement, leading to suboptimal performance and operational complexity. Building upon and extending these paradigms, we propose a novel approach envisioning a transparent continuum of resources and services on top of the underlying fragmented infrastructure, called liquid computing. Fully decentralized, multi-ownership-oriented and intent-driven, it enables an overarching abstraction for improved applications execution, while at the same time opening up for new scenarios, including resource sharing and brokering. Following the above vision, we present liqo, an open-source project that materializes this approach through the creation of dynamic and seamless Kubernetes multi-cluster topologies. Extensive experimental evaluations have shown its effectiveness in different contexts, both in terms of Kubernetes overhead and compared to other open-source alternatives

    Performance analysis of multi-institutional data sharing in the Clouds4Coordination system

    Get PDF
    Cloud computing is used extensively in Architecture/ Engineering/ Construction projects for storing data and running simulations on building models (e.g. energy efficiency/environmental impact). With the emergence of multi-Clouds it has become possible to link such systems and create a distributed cloud environment. A multi-Cloud environment enables each organisation involved in a collaborative project to maintain its own computational infrastructure/ system (with the associated data), and not have to migrate to a single cloud environment. Such infrastructure becomes efficacious when multiple individuals and organisations work collaboratively, enabling each individual/ organisation to select a computational infrastructure that most closely matches its requirements. We describe the “Clouds-for-Coordination” system, and provide a use case to demonstrate how such a system can be used in practice. A performance analysis is carried out to demonstrate how effective such a multi-Cloud system can be, reporting “aggregated-time-to-complete” metric over a number of different scenarios
    corecore