6 research outputs found

    Distributed classification of multiple observation sets by consensus

    Get PDF
    We consider the problem of distributed classification of multiple observations of the same object that are collected in an ad hoc network of vision sensors. Assuming that each sensor captures a different observation of the same object, the problem is to classify this object by distributed processing in the network. We present a graph-based problem formulation whose objective function captures the smoothness of candidate labels on the data manifold formed by the observations of the object. We design a distributed average consensus algorithm for estimating the unknown object class by computing the value of the smoothness objective function for different class hypotheses. It initially estimates the objective function locally based on the observation of each sensor. As the distributed consensus algorithm progresses, all observations are gradually taken into account in the estimation of the objective function. We illustrate the performance of the distributed classification algorithm for multiview face recognition in an ad hoc network of vision sensors. When the training set is sufficiently large, the simulation results show that the consensus classification decision is equivalent to the decision of a centralized system that has access to all observations

    Distributed Classification of Multiple Observation Sets by Consensus

    Full text link

    Robust and adaptive diffusion-based classification in distributed networks

    Get PDF
    Distributed adaptive signal processing and communication networking are rapidly advancing research areas which enable new and powerful signal processing tasks, e.g., distributed speech enhancement in adverse environments. An emerging new paradigm is that of multiple devices cooperating in multiple tasks (MDMT). This is different from the classical wireless sensor network (WSN) setup, in which multiple devices perform one single joint task. A crucial first step in order to achieve a benefit, e.g., a better node-specific audio signal enhancement, is the common unique labeling of all relevant sources that are observed by the network. This challenging research question can be addressed by designing adaptive data clustering and classification rules based on a set of noisy unlabeled sensor observations. In this paper, two robust and adaptive distributed hybrid classification algorithms are introduced. They consist of a local clustering phase that uses a small part of the data with a subsequent, fully distributed on-line classification phase. The classification is performed by means of distance-based similarity measures. In order to deal with the presence of outliers, the distances are estimated robustly. An extensive simulation-based performance analysis is provided for the proposed algorithms. The distributed hybrid classification approaches are compared to a benchmark algorithm where the error rates are evaluated in dependence of different WSN parameters. Communication cost and computation time are compared for all algorithms under test. Since both proposed approaches use robust estimators, they are, to a certain degree, insensitive to outliers. Furthermore, they are designed in a way that they are applicable to on-line classification problems

    Homogeneous and Heterogeneous Face Recognition: Enhancing, Encoding and Matching for Practical Applications

    Get PDF
    Face Recognition is the automatic processing of face images with the purpose to recognize individuals. Recognition task becomes especially challenging in surveillance applications, where images are acquired from a long range in the presence of difficult environments. Short Wave Infrared (SWIR) is an emerging imaging modality that is able to produce clear long range images in difficult environments or during night time. Despite the benefits of the SWIR technology, matching SWIR images against a gallery of visible images presents a challenge, since the photometric properties of the images in the two spectral bands are highly distinct.;In this dissertation, we describe a cross spectral matching method that encodes magnitude and phase of multi-spectral face images filtered with a bank of Gabor filters. The magnitude of filtered images is encoded with Simplified Weber Local Descriptor (SWLD) and Local Binary Pattern (LBP) operators. The phase is encoded with Generalized Local Binary Pattern (GLBP) operator. Encoded multi-spectral images are mapped into a histogram representation and cross matched by applying symmetric Kullback-Leibler distance. Performance of the developed algorithm is demonstrated on TINDERS database that contains long range SWIR and color images acquired at a distance of 2, 50, and 106 meters.;Apart from long acquisition range, other variations and distortions such as pose variation, motion and out of focus blur, and uneven illumination may be observed in multispectral face images. Recognition performance of the face recognition matcher can be greatly affected by these distortions. It is important, therefore, to ensure that matching is performed on high quality images. Poor quality images have to be either enhanced or discarded. This dissertation addresses the problem of selecting good quality samples.;The last chapters of the dissertation suggest a number of modifications applied to the cross spectral matching algorithm for matching low resolution color images in near-real time. We show that the method that encodes the magnitude of Gabor filtered images with the SWLD operator guarantees high recognition rates. The modified method (Gabor-SWLD) is adopted in a camera network set up where cameras acquire several views of the same individual. The designed algorithm and software are fully automated and optimized to perform recognition in near-real time. We evaluate the recognition performance and the processing time of the method on a small dataset collected at WVU

    Distributed consensus in multi-robot systems with visual perception

    Get PDF
    La idea de equipos de robots actuando con autonomía y de manera cooperativa está cada día más cerca de convertirse en realidad. Los sistemas multi robot pueden ejecutar tareas de gran complejidad con mayor robustez y en menos tiempo que un robot trabajando solo. Por otra parte, la coordinación de un equipo de robots introduce complicaciones que los ingenieros encargados de diseñar estos sistemas deben afrontar. Conseguir que la percepción del entorno sea consistente en todos los robots es uno de los aspectos más importantes requeridos en cualquier tarea cooperativa, lo que implica que las observaciones de cada robot del equipo deben ser transmitidas a todos los otros miembros. Cuando dos o más robots poseen información común del entorno, el equipo debe alcanzar un consenso usando toda la información disponible. Esto se debe hacer considerando las limitaciones de cada robot, teniendo en cuenta que no todos los robots se pueden comunicar unos con otros. Con este objetivo, se aborda la tarea de diseñar algoritmos distribuidos que consigan que un equipo de robots llegue a un consenso acerca de la información percibida por todos los miembros. Específicamente, nos centramos en resolver este problema cuando los robots usan la visión como sensor para percibir el entorno. Las cámaras convencionales son muy útiles a la hora de ejecutar tareas como la navegación y la construcción de mapas, esenciales en el ámbito de la robótica, gracias a la gran cantidad de información que contiene cada imagen. Sin embargo, el uso de estos sensores en un marco distribuido introduce una gran cantidad de complicaciones adicionales que deben ser abordadas si se quiere cumplir el objetivo propuesto. En esta Tesis presentamos un estudio profundo de los algoritmos distribuidos de consenso y cómo estos pueden ser usados por un equipo de robots equipados con cámaras convencionales, resolviendo los aspectos más importantes relacionados con el uso de estos sensores. En la primera parte de la Tesis nos centramos en encontrar correspondencias globales entre las observaciones de todos los robots. De esta manera, los robots son capaces de detectar que observaciones deben ser combinadas para el cálculo del consenso. También lidiamos con el problema de la robustez y la detección distribuida de espurios durante el cálculo del consenso. Para contrarrestar el incremento del tamaño de los mensajes intercambiados por los robots en las etapas anteriores, usamos las propiedades de los polinomios de Chebyshev, reduciendo el número de iteraciones que se requieren para alcanzar el consenso. En la segunda parte de la Tesis, centramos nuestra atención en los problemas de crear un mapa y controlar el movimiento del equipo de robots. Presentamos soluciones para alcanzar un consenso en estos escenarios mediante el uso de técnicas de visión por computador ampliamente conocidas. El uso de algoritmos de estructura y movimiento nos permite obviar restricciones tales como que los robots tengan que observarse unos a otros directamente durante el control o la necesidad de especificar un marco de referencia común. Adicionalmente, nuestros algoritmos tienen un comportamiento robusto cuando la calibración de las cámaras no se conoce. Finalmente, la evaluación de las propuestas se realiza utilizando un data set de un entorno urbano y robots reales con restricciones de movimiento no holónomas. Todos los algoritmos que se presentan en esta Tesis han sido diseñados para ser ejecutados de manera distribuida. En la Tesis demostramos de manera teórica las principales propiedades de los algoritmos que se proponen y evaluamos la calidad de los mismos con datos simulados e imágenes reales. En resumen, las principales contribuciones de esta Tesis son: • Un conjunto de algoritmos distribuidos que permiten a un equipo de robots equipados con cámaras convencionales alcanzar un consenso acerca de la información que perciben. En particular, proponemos tres algoritmos distribuidos con el objetivo de resolver los problemas de encontrar correspondencias globales entre la información de todos los robots, detectar y descartar información espuria, y reducir el número de veces que los robots tienen que comunicarse entre ellos antes de alcanzar el consenso. • La combinación de técnicas de consenso distribuido y estructura y movimiento en tareas de control y percepción. Se ha diseñado un algoritmo para construir un mapa topológico de manera cooperativa usando planos como características del mapa y restricciones de homografía como elementos para relacionar las observaciones de los robots. También se ha propuesto una ley de control distribuida utilizando la geometría epipolar con el objetivo de hacer que el equipo de robots alcance una orientación común sin la necesidad de observarse directamente unos a otros
    corecore